Abstract

Many kinds of subsurface defects are always present together in the subsurface of fused silica optics. It is imperfect that only one kind of defects is isolated to investigate its impact on laser damage. Therefore it is necessary to investigate the impact of subsurface defects on laser induced damage of fused silica optics with a comprehensive vision. In this work, we choose the fused silica samples manufactured by different vendors to characterize subsurface defects and measure laser induced damage. Contamination defects, subsurface damage (SSD), optical-thermal absorption and hardness of fused silica surface are characterized with time-of-flight secondary ion mass spectrometry (TOF-SIMS), fluorescence microscopy, photo-thermal common-path interferometer and fully automatic micro-hardness tester respectively. Laser induced damage threshold and damage density are measured by 351 nm nanosecond pulse laser. The correlations existing between defects and laser induced damage are analyzed. The results show that Cerium element and SSD both have a good correlation with laser-induced damage thresholds and damage density. Research results evaluate process technology of fused silica optics in China at present. Furthermore, the results can provide technique support for improving laser induced damage performance of fused silica.

© 2013 OSA

Full Article  |  PDF Article
OSA Recommended Articles
Polishing-induced contamination of fused silica optics and laser induced damage density at 351 nm

J. Neauport, L. Lamaignere, H. Bercegol, F. Pilon, and J.-C. Birolleau
Opt. Express 13(25) 10163-10171 (2005)

Reaction ion etching process for improving laser damage resistance of fused silica optical surface

Laixi Sun, Hongjie Liu, Jin Huang, Xin Ye, Handing Xia, Qingzhi Li, Xiaodong Jiang, Weidong Wu, Liming Yang, and Wanguo Zheng
Opt. Express 24(1) 199-211 (2016)

Detection of subsurface trace impurity in polished fused silica with biological method

Zhuo Wang, Lin Wang, Junhong Yang, Wenqiang Peng, and Hao Hu
Opt. Express 22(18) 21292-21301 (2014)

References

  • View by:
  • |
  • |
  • |

  1. E. I. Moses, J. H. Campbell, C. J. Stolz, and C. R. Wuest, “The national ignition facility: the world’s largest optics and laser system,” Proc. SPIE 5001, 1–15 (2003).
    [Crossref]
  2. E. I. Moses, “National ignition facility: 1.8MJ, 750TW ultraviolet laser,” Proc. SPIE 5341, 13–24 (2004).
    [Crossref]
  3. M. L. André, “Status of the LMJ project,” in Solid State Lasers for Application to Inertial Confinement Fusion: Second Annual International Conference, M. L. André, ed., Proc. SPIE 3047, 38–42 (1996).
  4. H. S. Peng, X. M. Zhang, X. F. Wei, W. G. Zheng, F. Jing, Z. Sui, Q. Zhao, D. Fan, Z. Q. Ling, and J. Q. Zhou, “Design of 60-kJ SG-III laser facility and related technology development,” Proc. SPIE 4424, 98–103 (2001).
  5. G. Y. Xiao, D. Y. Fan, S. J. Wang, Z. Q. Lin, Y. Gu, J. Q. Zhu, Y. X. Zhen, J. Zhu, F. Q. Liu, S. C. Chen, Q. H. Chen, G. L. Huang, and X. M. Deng, “SG-II solid-state laser ICF system,” Proc. SPIE 3492, 890–895 (1999).
    [Crossref]
  6. S. G. Demos and M. Staggs, “Application of fluorescence microscopy for noninvasive detection of surface contamination and precursors to laser-induced damage,” Appl. Opt. 41(10), 1977–1983 (2002).
    [Crossref] [PubMed]
  7. S. G. Demos, A. Burnham, P. Wegner, M. Norton, L. Zeller, M. Runkel, M. R. Kozlowski, M. Staggs, and H. B. Radousky, “Surface defect generation in optical materials under high fluence laser irradiation in vacuum,” Electron. Lett. 36(6), 566–572 (2000).
    [Crossref]
  8. D. Ehrt, P. Ebeling, and U. Natura, “UV transmission and radiation-induced defects in phosphate and fluoride-phosphate glasses,” J. Non-Cryst. Solids 263-264, 240–250 (2000).
    [Crossref]
  9. J. Neauport, P. Cormont, L. Lamaignére, C. Ambard, F. Pilon, and H. Bercegol, “Concerning the impact of polishing induced contamination of fused silica optics on the laser-induced damage density at 351 nm,” Opt. Commun. 281(14), 3802–3805 (2008).
    [Crossref]
  10. M. R. Kozlowski, J. Carr, I. Hutcheon, R. Torres, L. Sheehan, D. Camp, and M. Yan, “Depth profiling of polishing induced contamination on fused silica surface,” Proc. SPIE 3244, 365–375 (1998).
    [Crossref]
  11. J. Neauport, L. Lamaignere, H. Bercegol, F. Pilon, and J. C. Birolleau, “Polishing-induced contamination of fused silica optics and laser induced damage density at 351 nm,” Opt. Express 13(25), 10163–10171 (2005).
    [Crossref] [PubMed]
  12. J. Neauport, P. Cormont, P. Legros, C. Ambard, and J. Destribats, “Imaging subsurface damage of grinded fused silica optics by confocal fluorescence microscopy,” Opt. Express 17(5), 3543–3554 (2009).
    [Crossref] [PubMed]
  13. P. E. Miller, T. I. Suratwala, L. L. Wong, M. D. Feit, J. A. Menapace, P. J. Davis, and R. A. Steele, “The Distribution of Subsurface Damage in Fused Silica,” Proc. SPIE 5991, 599101, 599101-25 (2005).
    [Crossref]
  14. Y. G. Li, H. Huang, R. Q. Xie, H. B. Li, Y. Deng, X. H. Chen, J. Wang, Q. Xu, W. Yang, and Y. B. Guo, “A method for evaluating subsurface damage in optical glass,” Opt. Express 18(16), 17180–17186 (2010).
    [Crossref] [PubMed]
  15. F. Y. Génin, A. Salleo, T. V. Pistor, and L. L. Chase, “Role of light intensification by cracks in optical breakdown on surfaces,” J. Opt. Soc. Am. A 18(10), 2607–2616 (2001).
    [Crossref] [PubMed]
  16. P. P. Hed and D. F. Edwards, “Optical glass fabrication technology. 2: Relationship between surface roughness and subsurface damage,” Appl. Opt. 26(21), 4677–4680 (1987).
    [Crossref] [PubMed]
  17. T. Suratwala, L. Wong, P. Miller, M. D. Feit, J. Menapace, R. Steele, P. Davis, and D. Walmer, “Subsurface mechanical damage distributions during grinding of fused silica,” J. Non-Cryst. Solids 352(52-54), 5601–5617 (2006).
    [Crossref]
  18. Y. Zhou, P. D. Funkenbusch, D. J. Quesnel, D. Golini, and A. Lindquist, “Effect of etching and imaging mode on the measurement of subsurface damage in microground optical glasses,” J. Am. Ceram. Soc. 77(12), 3277–3280 (1994).
    [Crossref]
  19. O. W. Fähnle, T. Wons, E. Koch, S. Debruyne, M. Meeder, S. M. Booij, and J. J. Braat, “iTIRM as a tool for qualifying polishing processes,” Appl. Opt. 41(19), 4036–4038 (2002).
    [Crossref] [PubMed]
  20. A. Wuttig, J. Steinert, A. Duparre, and H. Truckenbrodt, “Surface roughness and subsurface damage charaacterization of fused silica substrates,” in Proceedings Of The EUROPTO Conference on Topical Fabrication and Testing, Proc. SPIE 3739, 369–376 (1999).
    [Crossref]
  21. L. Névot and P. Croce, “Sur l’étude des couches superficielles monoatomiques par reflexion rasante (spéculaire ou diffuse) de rayons X par la méthode de l’empilement sandwich,” J. Appl. Cryst. 8(2), 304–314 (1975).
    [Crossref]
  22. M. A. Bolorizadeh, S. Ruffell, I. V. Mitchell, and R. Gwilliam, “Quantitative depth profiling of ultra-shallow phosphorus implants in silicon using time-of-flight secondary ion mass spectrometry and the nuclear reaction 31P(a,p0)34S,” Nucl. Instr. and Meth. in Phys. Res. B 225, 345–352 (2004).
  23. S. G. Demos and M. Staggs, “Application of fluorescence microscopy for noninvasive detection of surface contamination and precursors to laser-induced damage,” Appl. Opt. 41(10), 1977–1983 (2002).
    [Crossref] [PubMed]
  24. H. L. Smith and A. J. Cohen, “Absorption spectra of cations in alkali-silicate glasses of high ultra-violet transmission,” Phys. Chem. Glasses 4(5), 173–187 (1963).

2010 (1)

2009 (1)

2008 (1)

J. Neauport, P. Cormont, L. Lamaignére, C. Ambard, F. Pilon, and H. Bercegol, “Concerning the impact of polishing induced contamination of fused silica optics on the laser-induced damage density at 351 nm,” Opt. Commun. 281(14), 3802–3805 (2008).
[Crossref]

2006 (1)

T. Suratwala, L. Wong, P. Miller, M. D. Feit, J. Menapace, R. Steele, P. Davis, and D. Walmer, “Subsurface mechanical damage distributions during grinding of fused silica,” J. Non-Cryst. Solids 352(52-54), 5601–5617 (2006).
[Crossref]

2005 (2)

P. E. Miller, T. I. Suratwala, L. L. Wong, M. D. Feit, J. A. Menapace, P. J. Davis, and R. A. Steele, “The Distribution of Subsurface Damage in Fused Silica,” Proc. SPIE 5991, 599101, 599101-25 (2005).
[Crossref]

J. Neauport, L. Lamaignere, H. Bercegol, F. Pilon, and J. C. Birolleau, “Polishing-induced contamination of fused silica optics and laser induced damage density at 351 nm,” Opt. Express 13(25), 10163–10171 (2005).
[Crossref] [PubMed]

2004 (2)

E. I. Moses, “National ignition facility: 1.8MJ, 750TW ultraviolet laser,” Proc. SPIE 5341, 13–24 (2004).
[Crossref]

M. A. Bolorizadeh, S. Ruffell, I. V. Mitchell, and R. Gwilliam, “Quantitative depth profiling of ultra-shallow phosphorus implants in silicon using time-of-flight secondary ion mass spectrometry and the nuclear reaction 31P(a,p0)34S,” Nucl. Instr. and Meth. in Phys. Res. B 225, 345–352 (2004).

2003 (1)

E. I. Moses, J. H. Campbell, C. J. Stolz, and C. R. Wuest, “The national ignition facility: the world’s largest optics and laser system,” Proc. SPIE 5001, 1–15 (2003).
[Crossref]

2002 (3)

2001 (2)

F. Y. Génin, A. Salleo, T. V. Pistor, and L. L. Chase, “Role of light intensification by cracks in optical breakdown on surfaces,” J. Opt. Soc. Am. A 18(10), 2607–2616 (2001).
[Crossref] [PubMed]

H. S. Peng, X. M. Zhang, X. F. Wei, W. G. Zheng, F. Jing, Z. Sui, Q. Zhao, D. Fan, Z. Q. Ling, and J. Q. Zhou, “Design of 60-kJ SG-III laser facility and related technology development,” Proc. SPIE 4424, 98–103 (2001).

2000 (2)

S. G. Demos, A. Burnham, P. Wegner, M. Norton, L. Zeller, M. Runkel, M. R. Kozlowski, M. Staggs, and H. B. Radousky, “Surface defect generation in optical materials under high fluence laser irradiation in vacuum,” Electron. Lett. 36(6), 566–572 (2000).
[Crossref]

D. Ehrt, P. Ebeling, and U. Natura, “UV transmission and radiation-induced defects in phosphate and fluoride-phosphate glasses,” J. Non-Cryst. Solids 263-264, 240–250 (2000).
[Crossref]

1999 (2)

G. Y. Xiao, D. Y. Fan, S. J. Wang, Z. Q. Lin, Y. Gu, J. Q. Zhu, Y. X. Zhen, J. Zhu, F. Q. Liu, S. C. Chen, Q. H. Chen, G. L. Huang, and X. M. Deng, “SG-II solid-state laser ICF system,” Proc. SPIE 3492, 890–895 (1999).
[Crossref]

A. Wuttig, J. Steinert, A. Duparre, and H. Truckenbrodt, “Surface roughness and subsurface damage charaacterization of fused silica substrates,” in Proceedings Of The EUROPTO Conference on Topical Fabrication and Testing, Proc. SPIE 3739, 369–376 (1999).
[Crossref]

1998 (1)

M. R. Kozlowski, J. Carr, I. Hutcheon, R. Torres, L. Sheehan, D. Camp, and M. Yan, “Depth profiling of polishing induced contamination on fused silica surface,” Proc. SPIE 3244, 365–375 (1998).
[Crossref]

1994 (1)

Y. Zhou, P. D. Funkenbusch, D. J. Quesnel, D. Golini, and A. Lindquist, “Effect of etching and imaging mode on the measurement of subsurface damage in microground optical glasses,” J. Am. Ceram. Soc. 77(12), 3277–3280 (1994).
[Crossref]

1987 (1)

1975 (1)

L. Névot and P. Croce, “Sur l’étude des couches superficielles monoatomiques par reflexion rasante (spéculaire ou diffuse) de rayons X par la méthode de l’empilement sandwich,” J. Appl. Cryst. 8(2), 304–314 (1975).
[Crossref]

1963 (1)

H. L. Smith and A. J. Cohen, “Absorption spectra of cations in alkali-silicate glasses of high ultra-violet transmission,” Phys. Chem. Glasses 4(5), 173–187 (1963).

Ambard, C.

J. Neauport, P. Cormont, P. Legros, C. Ambard, and J. Destribats, “Imaging subsurface damage of grinded fused silica optics by confocal fluorescence microscopy,” Opt. Express 17(5), 3543–3554 (2009).
[Crossref] [PubMed]

J. Neauport, P. Cormont, L. Lamaignére, C. Ambard, F. Pilon, and H. Bercegol, “Concerning the impact of polishing induced contamination of fused silica optics on the laser-induced damage density at 351 nm,” Opt. Commun. 281(14), 3802–3805 (2008).
[Crossref]

Bercegol, H.

J. Neauport, P. Cormont, L. Lamaignére, C. Ambard, F. Pilon, and H. Bercegol, “Concerning the impact of polishing induced contamination of fused silica optics on the laser-induced damage density at 351 nm,” Opt. Commun. 281(14), 3802–3805 (2008).
[Crossref]

J. Neauport, L. Lamaignere, H. Bercegol, F. Pilon, and J. C. Birolleau, “Polishing-induced contamination of fused silica optics and laser induced damage density at 351 nm,” Opt. Express 13(25), 10163–10171 (2005).
[Crossref] [PubMed]

Birolleau, J. C.

Bolorizadeh, M. A.

M. A. Bolorizadeh, S. Ruffell, I. V. Mitchell, and R. Gwilliam, “Quantitative depth profiling of ultra-shallow phosphorus implants in silicon using time-of-flight secondary ion mass spectrometry and the nuclear reaction 31P(a,p0)34S,” Nucl. Instr. and Meth. in Phys. Res. B 225, 345–352 (2004).

Booij, S. M.

Braat, J. J.

Burnham, A.

S. G. Demos, A. Burnham, P. Wegner, M. Norton, L. Zeller, M. Runkel, M. R. Kozlowski, M. Staggs, and H. B. Radousky, “Surface defect generation in optical materials under high fluence laser irradiation in vacuum,” Electron. Lett. 36(6), 566–572 (2000).
[Crossref]

Camp, D.

M. R. Kozlowski, J. Carr, I. Hutcheon, R. Torres, L. Sheehan, D. Camp, and M. Yan, “Depth profiling of polishing induced contamination on fused silica surface,” Proc. SPIE 3244, 365–375 (1998).
[Crossref]

Campbell, J. H.

E. I. Moses, J. H. Campbell, C. J. Stolz, and C. R. Wuest, “The national ignition facility: the world’s largest optics and laser system,” Proc. SPIE 5001, 1–15 (2003).
[Crossref]

Carr, J.

M. R. Kozlowski, J. Carr, I. Hutcheon, R. Torres, L. Sheehan, D. Camp, and M. Yan, “Depth profiling of polishing induced contamination on fused silica surface,” Proc. SPIE 3244, 365–375 (1998).
[Crossref]

Chase, L. L.

Chen, Q. H.

G. Y. Xiao, D. Y. Fan, S. J. Wang, Z. Q. Lin, Y. Gu, J. Q. Zhu, Y. X. Zhen, J. Zhu, F. Q. Liu, S. C. Chen, Q. H. Chen, G. L. Huang, and X. M. Deng, “SG-II solid-state laser ICF system,” Proc. SPIE 3492, 890–895 (1999).
[Crossref]

Chen, S. C.

G. Y. Xiao, D. Y. Fan, S. J. Wang, Z. Q. Lin, Y. Gu, J. Q. Zhu, Y. X. Zhen, J. Zhu, F. Q. Liu, S. C. Chen, Q. H. Chen, G. L. Huang, and X. M. Deng, “SG-II solid-state laser ICF system,” Proc. SPIE 3492, 890–895 (1999).
[Crossref]

Chen, X. H.

Cohen, A. J.

H. L. Smith and A. J. Cohen, “Absorption spectra of cations in alkali-silicate glasses of high ultra-violet transmission,” Phys. Chem. Glasses 4(5), 173–187 (1963).

Cormont, P.

J. Neauport, P. Cormont, P. Legros, C. Ambard, and J. Destribats, “Imaging subsurface damage of grinded fused silica optics by confocal fluorescence microscopy,” Opt. Express 17(5), 3543–3554 (2009).
[Crossref] [PubMed]

J. Neauport, P. Cormont, L. Lamaignére, C. Ambard, F. Pilon, and H. Bercegol, “Concerning the impact of polishing induced contamination of fused silica optics on the laser-induced damage density at 351 nm,” Opt. Commun. 281(14), 3802–3805 (2008).
[Crossref]

Croce, P.

L. Névot and P. Croce, “Sur l’étude des couches superficielles monoatomiques par reflexion rasante (spéculaire ou diffuse) de rayons X par la méthode de l’empilement sandwich,” J. Appl. Cryst. 8(2), 304–314 (1975).
[Crossref]

Davis, P.

T. Suratwala, L. Wong, P. Miller, M. D. Feit, J. Menapace, R. Steele, P. Davis, and D. Walmer, “Subsurface mechanical damage distributions during grinding of fused silica,” J. Non-Cryst. Solids 352(52-54), 5601–5617 (2006).
[Crossref]

Davis, P. J.

P. E. Miller, T. I. Suratwala, L. L. Wong, M. D. Feit, J. A. Menapace, P. J. Davis, and R. A. Steele, “The Distribution of Subsurface Damage in Fused Silica,” Proc. SPIE 5991, 599101, 599101-25 (2005).
[Crossref]

Debruyne, S.

Demos, S. G.

Deng, X. M.

G. Y. Xiao, D. Y. Fan, S. J. Wang, Z. Q. Lin, Y. Gu, J. Q. Zhu, Y. X. Zhen, J. Zhu, F. Q. Liu, S. C. Chen, Q. H. Chen, G. L. Huang, and X. M. Deng, “SG-II solid-state laser ICF system,” Proc. SPIE 3492, 890–895 (1999).
[Crossref]

Deng, Y.

Destribats, J.

Duparre, A.

A. Wuttig, J. Steinert, A. Duparre, and H. Truckenbrodt, “Surface roughness and subsurface damage charaacterization of fused silica substrates,” in Proceedings Of The EUROPTO Conference on Topical Fabrication and Testing, Proc. SPIE 3739, 369–376 (1999).
[Crossref]

Ebeling, P.

D. Ehrt, P. Ebeling, and U. Natura, “UV transmission and radiation-induced defects in phosphate and fluoride-phosphate glasses,” J. Non-Cryst. Solids 263-264, 240–250 (2000).
[Crossref]

Edwards, D. F.

Ehrt, D.

D. Ehrt, P. Ebeling, and U. Natura, “UV transmission and radiation-induced defects in phosphate and fluoride-phosphate glasses,” J. Non-Cryst. Solids 263-264, 240–250 (2000).
[Crossref]

Fähnle, O. W.

Fan, D.

H. S. Peng, X. M. Zhang, X. F. Wei, W. G. Zheng, F. Jing, Z. Sui, Q. Zhao, D. Fan, Z. Q. Ling, and J. Q. Zhou, “Design of 60-kJ SG-III laser facility and related technology development,” Proc. SPIE 4424, 98–103 (2001).

Fan, D. Y.

G. Y. Xiao, D. Y. Fan, S. J. Wang, Z. Q. Lin, Y. Gu, J. Q. Zhu, Y. X. Zhen, J. Zhu, F. Q. Liu, S. C. Chen, Q. H. Chen, G. L. Huang, and X. M. Deng, “SG-II solid-state laser ICF system,” Proc. SPIE 3492, 890–895 (1999).
[Crossref]

Feit, M. D.

T. Suratwala, L. Wong, P. Miller, M. D. Feit, J. Menapace, R. Steele, P. Davis, and D. Walmer, “Subsurface mechanical damage distributions during grinding of fused silica,” J. Non-Cryst. Solids 352(52-54), 5601–5617 (2006).
[Crossref]

P. E. Miller, T. I. Suratwala, L. L. Wong, M. D. Feit, J. A. Menapace, P. J. Davis, and R. A. Steele, “The Distribution of Subsurface Damage in Fused Silica,” Proc. SPIE 5991, 599101, 599101-25 (2005).
[Crossref]

Funkenbusch, P. D.

Y. Zhou, P. D. Funkenbusch, D. J. Quesnel, D. Golini, and A. Lindquist, “Effect of etching and imaging mode on the measurement of subsurface damage in microground optical glasses,” J. Am. Ceram. Soc. 77(12), 3277–3280 (1994).
[Crossref]

Génin, F. Y.

Golini, D.

Y. Zhou, P. D. Funkenbusch, D. J. Quesnel, D. Golini, and A. Lindquist, “Effect of etching and imaging mode on the measurement of subsurface damage in microground optical glasses,” J. Am. Ceram. Soc. 77(12), 3277–3280 (1994).
[Crossref]

Gu, Y.

G. Y. Xiao, D. Y. Fan, S. J. Wang, Z. Q. Lin, Y. Gu, J. Q. Zhu, Y. X. Zhen, J. Zhu, F. Q. Liu, S. C. Chen, Q. H. Chen, G. L. Huang, and X. M. Deng, “SG-II solid-state laser ICF system,” Proc. SPIE 3492, 890–895 (1999).
[Crossref]

Guo, Y. B.

Gwilliam, R.

M. A. Bolorizadeh, S. Ruffell, I. V. Mitchell, and R. Gwilliam, “Quantitative depth profiling of ultra-shallow phosphorus implants in silicon using time-of-flight secondary ion mass spectrometry and the nuclear reaction 31P(a,p0)34S,” Nucl. Instr. and Meth. in Phys. Res. B 225, 345–352 (2004).

Hed, P. P.

Huang, G. L.

G. Y. Xiao, D. Y. Fan, S. J. Wang, Z. Q. Lin, Y. Gu, J. Q. Zhu, Y. X. Zhen, J. Zhu, F. Q. Liu, S. C. Chen, Q. H. Chen, G. L. Huang, and X. M. Deng, “SG-II solid-state laser ICF system,” Proc. SPIE 3492, 890–895 (1999).
[Crossref]

Huang, H.

Hutcheon, I.

M. R. Kozlowski, J. Carr, I. Hutcheon, R. Torres, L. Sheehan, D. Camp, and M. Yan, “Depth profiling of polishing induced contamination on fused silica surface,” Proc. SPIE 3244, 365–375 (1998).
[Crossref]

Jing, F.

H. S. Peng, X. M. Zhang, X. F. Wei, W. G. Zheng, F. Jing, Z. Sui, Q. Zhao, D. Fan, Z. Q. Ling, and J. Q. Zhou, “Design of 60-kJ SG-III laser facility and related technology development,” Proc. SPIE 4424, 98–103 (2001).

Koch, E.

Kozlowski, M. R.

S. G. Demos, A. Burnham, P. Wegner, M. Norton, L. Zeller, M. Runkel, M. R. Kozlowski, M. Staggs, and H. B. Radousky, “Surface defect generation in optical materials under high fluence laser irradiation in vacuum,” Electron. Lett. 36(6), 566–572 (2000).
[Crossref]

M. R. Kozlowski, J. Carr, I. Hutcheon, R. Torres, L. Sheehan, D. Camp, and M. Yan, “Depth profiling of polishing induced contamination on fused silica surface,” Proc. SPIE 3244, 365–375 (1998).
[Crossref]

Lamaignere, L.

Lamaignére, L.

J. Neauport, P. Cormont, L. Lamaignére, C. Ambard, F. Pilon, and H. Bercegol, “Concerning the impact of polishing induced contamination of fused silica optics on the laser-induced damage density at 351 nm,” Opt. Commun. 281(14), 3802–3805 (2008).
[Crossref]

Legros, P.

Li, H. B.

Li, Y. G.

Lin, Z. Q.

G. Y. Xiao, D. Y. Fan, S. J. Wang, Z. Q. Lin, Y. Gu, J. Q. Zhu, Y. X. Zhen, J. Zhu, F. Q. Liu, S. C. Chen, Q. H. Chen, G. L. Huang, and X. M. Deng, “SG-II solid-state laser ICF system,” Proc. SPIE 3492, 890–895 (1999).
[Crossref]

Lindquist, A.

Y. Zhou, P. D. Funkenbusch, D. J. Quesnel, D. Golini, and A. Lindquist, “Effect of etching and imaging mode on the measurement of subsurface damage in microground optical glasses,” J. Am. Ceram. Soc. 77(12), 3277–3280 (1994).
[Crossref]

Ling, Z. Q.

H. S. Peng, X. M. Zhang, X. F. Wei, W. G. Zheng, F. Jing, Z. Sui, Q. Zhao, D. Fan, Z. Q. Ling, and J. Q. Zhou, “Design of 60-kJ SG-III laser facility and related technology development,” Proc. SPIE 4424, 98–103 (2001).

Liu, F. Q.

G. Y. Xiao, D. Y. Fan, S. J. Wang, Z. Q. Lin, Y. Gu, J. Q. Zhu, Y. X. Zhen, J. Zhu, F. Q. Liu, S. C. Chen, Q. H. Chen, G. L. Huang, and X. M. Deng, “SG-II solid-state laser ICF system,” Proc. SPIE 3492, 890–895 (1999).
[Crossref]

Meeder, M.

Menapace, J.

T. Suratwala, L. Wong, P. Miller, M. D. Feit, J. Menapace, R. Steele, P. Davis, and D. Walmer, “Subsurface mechanical damage distributions during grinding of fused silica,” J. Non-Cryst. Solids 352(52-54), 5601–5617 (2006).
[Crossref]

Menapace, J. A.

P. E. Miller, T. I. Suratwala, L. L. Wong, M. D. Feit, J. A. Menapace, P. J. Davis, and R. A. Steele, “The Distribution of Subsurface Damage in Fused Silica,” Proc. SPIE 5991, 599101, 599101-25 (2005).
[Crossref]

Miller, P.

T. Suratwala, L. Wong, P. Miller, M. D. Feit, J. Menapace, R. Steele, P. Davis, and D. Walmer, “Subsurface mechanical damage distributions during grinding of fused silica,” J. Non-Cryst. Solids 352(52-54), 5601–5617 (2006).
[Crossref]

Miller, P. E.

P. E. Miller, T. I. Suratwala, L. L. Wong, M. D. Feit, J. A. Menapace, P. J. Davis, and R. A. Steele, “The Distribution of Subsurface Damage in Fused Silica,” Proc. SPIE 5991, 599101, 599101-25 (2005).
[Crossref]

Mitchell, I. V.

M. A. Bolorizadeh, S. Ruffell, I. V. Mitchell, and R. Gwilliam, “Quantitative depth profiling of ultra-shallow phosphorus implants in silicon using time-of-flight secondary ion mass spectrometry and the nuclear reaction 31P(a,p0)34S,” Nucl. Instr. and Meth. in Phys. Res. B 225, 345–352 (2004).

Moses, E. I.

E. I. Moses, “National ignition facility: 1.8MJ, 750TW ultraviolet laser,” Proc. SPIE 5341, 13–24 (2004).
[Crossref]

E. I. Moses, J. H. Campbell, C. J. Stolz, and C. R. Wuest, “The national ignition facility: the world’s largest optics and laser system,” Proc. SPIE 5001, 1–15 (2003).
[Crossref]

Natura, U.

D. Ehrt, P. Ebeling, and U. Natura, “UV transmission and radiation-induced defects in phosphate and fluoride-phosphate glasses,” J. Non-Cryst. Solids 263-264, 240–250 (2000).
[Crossref]

Neauport, J.

Névot, L.

L. Névot and P. Croce, “Sur l’étude des couches superficielles monoatomiques par reflexion rasante (spéculaire ou diffuse) de rayons X par la méthode de l’empilement sandwich,” J. Appl. Cryst. 8(2), 304–314 (1975).
[Crossref]

Norton, M.

S. G. Demos, A. Burnham, P. Wegner, M. Norton, L. Zeller, M. Runkel, M. R. Kozlowski, M. Staggs, and H. B. Radousky, “Surface defect generation in optical materials under high fluence laser irradiation in vacuum,” Electron. Lett. 36(6), 566–572 (2000).
[Crossref]

Peng, H. S.

H. S. Peng, X. M. Zhang, X. F. Wei, W. G. Zheng, F. Jing, Z. Sui, Q. Zhao, D. Fan, Z. Q. Ling, and J. Q. Zhou, “Design of 60-kJ SG-III laser facility and related technology development,” Proc. SPIE 4424, 98–103 (2001).

Pilon, F.

J. Neauport, P. Cormont, L. Lamaignére, C. Ambard, F. Pilon, and H. Bercegol, “Concerning the impact of polishing induced contamination of fused silica optics on the laser-induced damage density at 351 nm,” Opt. Commun. 281(14), 3802–3805 (2008).
[Crossref]

J. Neauport, L. Lamaignere, H. Bercegol, F. Pilon, and J. C. Birolleau, “Polishing-induced contamination of fused silica optics and laser induced damage density at 351 nm,” Opt. Express 13(25), 10163–10171 (2005).
[Crossref] [PubMed]

Pistor, T. V.

Quesnel, D. J.

Y. Zhou, P. D. Funkenbusch, D. J. Quesnel, D. Golini, and A. Lindquist, “Effect of etching and imaging mode on the measurement of subsurface damage in microground optical glasses,” J. Am. Ceram. Soc. 77(12), 3277–3280 (1994).
[Crossref]

Radousky, H. B.

S. G. Demos, A. Burnham, P. Wegner, M. Norton, L. Zeller, M. Runkel, M. R. Kozlowski, M. Staggs, and H. B. Radousky, “Surface defect generation in optical materials under high fluence laser irradiation in vacuum,” Electron. Lett. 36(6), 566–572 (2000).
[Crossref]

Ruffell, S.

M. A. Bolorizadeh, S. Ruffell, I. V. Mitchell, and R. Gwilliam, “Quantitative depth profiling of ultra-shallow phosphorus implants in silicon using time-of-flight secondary ion mass spectrometry and the nuclear reaction 31P(a,p0)34S,” Nucl. Instr. and Meth. in Phys. Res. B 225, 345–352 (2004).

Runkel, M.

S. G. Demos, A. Burnham, P. Wegner, M. Norton, L. Zeller, M. Runkel, M. R. Kozlowski, M. Staggs, and H. B. Radousky, “Surface defect generation in optical materials under high fluence laser irradiation in vacuum,” Electron. Lett. 36(6), 566–572 (2000).
[Crossref]

Salleo, A.

Sheehan, L.

M. R. Kozlowski, J. Carr, I. Hutcheon, R. Torres, L. Sheehan, D. Camp, and M. Yan, “Depth profiling of polishing induced contamination on fused silica surface,” Proc. SPIE 3244, 365–375 (1998).
[Crossref]

Smith, H. L.

H. L. Smith and A. J. Cohen, “Absorption spectra of cations in alkali-silicate glasses of high ultra-violet transmission,” Phys. Chem. Glasses 4(5), 173–187 (1963).

Staggs, M.

Steele, R.

T. Suratwala, L. Wong, P. Miller, M. D. Feit, J. Menapace, R. Steele, P. Davis, and D. Walmer, “Subsurface mechanical damage distributions during grinding of fused silica,” J. Non-Cryst. Solids 352(52-54), 5601–5617 (2006).
[Crossref]

Steele, R. A.

P. E. Miller, T. I. Suratwala, L. L. Wong, M. D. Feit, J. A. Menapace, P. J. Davis, and R. A. Steele, “The Distribution of Subsurface Damage in Fused Silica,” Proc. SPIE 5991, 599101, 599101-25 (2005).
[Crossref]

Steinert, J.

A. Wuttig, J. Steinert, A. Duparre, and H. Truckenbrodt, “Surface roughness and subsurface damage charaacterization of fused silica substrates,” in Proceedings Of The EUROPTO Conference on Topical Fabrication and Testing, Proc. SPIE 3739, 369–376 (1999).
[Crossref]

Stolz, C. J.

E. I. Moses, J. H. Campbell, C. J. Stolz, and C. R. Wuest, “The national ignition facility: the world’s largest optics and laser system,” Proc. SPIE 5001, 1–15 (2003).
[Crossref]

Sui, Z.

H. S. Peng, X. M. Zhang, X. F. Wei, W. G. Zheng, F. Jing, Z. Sui, Q. Zhao, D. Fan, Z. Q. Ling, and J. Q. Zhou, “Design of 60-kJ SG-III laser facility and related technology development,” Proc. SPIE 4424, 98–103 (2001).

Suratwala, T.

T. Suratwala, L. Wong, P. Miller, M. D. Feit, J. Menapace, R. Steele, P. Davis, and D. Walmer, “Subsurface mechanical damage distributions during grinding of fused silica,” J. Non-Cryst. Solids 352(52-54), 5601–5617 (2006).
[Crossref]

Suratwala, T. I.

P. E. Miller, T. I. Suratwala, L. L. Wong, M. D. Feit, J. A. Menapace, P. J. Davis, and R. A. Steele, “The Distribution of Subsurface Damage in Fused Silica,” Proc. SPIE 5991, 599101, 599101-25 (2005).
[Crossref]

Torres, R.

M. R. Kozlowski, J. Carr, I. Hutcheon, R. Torres, L. Sheehan, D. Camp, and M. Yan, “Depth profiling of polishing induced contamination on fused silica surface,” Proc. SPIE 3244, 365–375 (1998).
[Crossref]

Truckenbrodt, H.

A. Wuttig, J. Steinert, A. Duparre, and H. Truckenbrodt, “Surface roughness and subsurface damage charaacterization of fused silica substrates,” in Proceedings Of The EUROPTO Conference on Topical Fabrication and Testing, Proc. SPIE 3739, 369–376 (1999).
[Crossref]

Walmer, D.

T. Suratwala, L. Wong, P. Miller, M. D. Feit, J. Menapace, R. Steele, P. Davis, and D. Walmer, “Subsurface mechanical damage distributions during grinding of fused silica,” J. Non-Cryst. Solids 352(52-54), 5601–5617 (2006).
[Crossref]

Wang, J.

Wang, S. J.

G. Y. Xiao, D. Y. Fan, S. J. Wang, Z. Q. Lin, Y. Gu, J. Q. Zhu, Y. X. Zhen, J. Zhu, F. Q. Liu, S. C. Chen, Q. H. Chen, G. L. Huang, and X. M. Deng, “SG-II solid-state laser ICF system,” Proc. SPIE 3492, 890–895 (1999).
[Crossref]

Wegner, P.

S. G. Demos, A. Burnham, P. Wegner, M. Norton, L. Zeller, M. Runkel, M. R. Kozlowski, M. Staggs, and H. B. Radousky, “Surface defect generation in optical materials under high fluence laser irradiation in vacuum,” Electron. Lett. 36(6), 566–572 (2000).
[Crossref]

Wei, X. F.

H. S. Peng, X. M. Zhang, X. F. Wei, W. G. Zheng, F. Jing, Z. Sui, Q. Zhao, D. Fan, Z. Q. Ling, and J. Q. Zhou, “Design of 60-kJ SG-III laser facility and related technology development,” Proc. SPIE 4424, 98–103 (2001).

Wong, L.

T. Suratwala, L. Wong, P. Miller, M. D. Feit, J. Menapace, R. Steele, P. Davis, and D. Walmer, “Subsurface mechanical damage distributions during grinding of fused silica,” J. Non-Cryst. Solids 352(52-54), 5601–5617 (2006).
[Crossref]

Wong, L. L.

P. E. Miller, T. I. Suratwala, L. L. Wong, M. D. Feit, J. A. Menapace, P. J. Davis, and R. A. Steele, “The Distribution of Subsurface Damage in Fused Silica,” Proc. SPIE 5991, 599101, 599101-25 (2005).
[Crossref]

Wons, T.

Wuest, C. R.

E. I. Moses, J. H. Campbell, C. J. Stolz, and C. R. Wuest, “The national ignition facility: the world’s largest optics and laser system,” Proc. SPIE 5001, 1–15 (2003).
[Crossref]

Wuttig, A.

A. Wuttig, J. Steinert, A. Duparre, and H. Truckenbrodt, “Surface roughness and subsurface damage charaacterization of fused silica substrates,” in Proceedings Of The EUROPTO Conference on Topical Fabrication and Testing, Proc. SPIE 3739, 369–376 (1999).
[Crossref]

Xiao, G. Y.

G. Y. Xiao, D. Y. Fan, S. J. Wang, Z. Q. Lin, Y. Gu, J. Q. Zhu, Y. X. Zhen, J. Zhu, F. Q. Liu, S. C. Chen, Q. H. Chen, G. L. Huang, and X. M. Deng, “SG-II solid-state laser ICF system,” Proc. SPIE 3492, 890–895 (1999).
[Crossref]

Xie, R. Q.

Xu, Q.

Yan, M.

M. R. Kozlowski, J. Carr, I. Hutcheon, R. Torres, L. Sheehan, D. Camp, and M. Yan, “Depth profiling of polishing induced contamination on fused silica surface,” Proc. SPIE 3244, 365–375 (1998).
[Crossref]

Yang, W.

Zeller, L.

S. G. Demos, A. Burnham, P. Wegner, M. Norton, L. Zeller, M. Runkel, M. R. Kozlowski, M. Staggs, and H. B. Radousky, “Surface defect generation in optical materials under high fluence laser irradiation in vacuum,” Electron. Lett. 36(6), 566–572 (2000).
[Crossref]

Zhang, X. M.

H. S. Peng, X. M. Zhang, X. F. Wei, W. G. Zheng, F. Jing, Z. Sui, Q. Zhao, D. Fan, Z. Q. Ling, and J. Q. Zhou, “Design of 60-kJ SG-III laser facility and related technology development,” Proc. SPIE 4424, 98–103 (2001).

Zhao, Q.

H. S. Peng, X. M. Zhang, X. F. Wei, W. G. Zheng, F. Jing, Z. Sui, Q. Zhao, D. Fan, Z. Q. Ling, and J. Q. Zhou, “Design of 60-kJ SG-III laser facility and related technology development,” Proc. SPIE 4424, 98–103 (2001).

Zhen, Y. X.

G. Y. Xiao, D. Y. Fan, S. J. Wang, Z. Q. Lin, Y. Gu, J. Q. Zhu, Y. X. Zhen, J. Zhu, F. Q. Liu, S. C. Chen, Q. H. Chen, G. L. Huang, and X. M. Deng, “SG-II solid-state laser ICF system,” Proc. SPIE 3492, 890–895 (1999).
[Crossref]

Zheng, W. G.

H. S. Peng, X. M. Zhang, X. F. Wei, W. G. Zheng, F. Jing, Z. Sui, Q. Zhao, D. Fan, Z. Q. Ling, and J. Q. Zhou, “Design of 60-kJ SG-III laser facility and related technology development,” Proc. SPIE 4424, 98–103 (2001).

Zhou, J. Q.

H. S. Peng, X. M. Zhang, X. F. Wei, W. G. Zheng, F. Jing, Z. Sui, Q. Zhao, D. Fan, Z. Q. Ling, and J. Q. Zhou, “Design of 60-kJ SG-III laser facility and related technology development,” Proc. SPIE 4424, 98–103 (2001).

Zhou, Y.

Y. Zhou, P. D. Funkenbusch, D. J. Quesnel, D. Golini, and A. Lindquist, “Effect of etching and imaging mode on the measurement of subsurface damage in microground optical glasses,” J. Am. Ceram. Soc. 77(12), 3277–3280 (1994).
[Crossref]

Zhu, J.

G. Y. Xiao, D. Y. Fan, S. J. Wang, Z. Q. Lin, Y. Gu, J. Q. Zhu, Y. X. Zhen, J. Zhu, F. Q. Liu, S. C. Chen, Q. H. Chen, G. L. Huang, and X. M. Deng, “SG-II solid-state laser ICF system,” Proc. SPIE 3492, 890–895 (1999).
[Crossref]

Zhu, J. Q.

G. Y. Xiao, D. Y. Fan, S. J. Wang, Z. Q. Lin, Y. Gu, J. Q. Zhu, Y. X. Zhen, J. Zhu, F. Q. Liu, S. C. Chen, Q. H. Chen, G. L. Huang, and X. M. Deng, “SG-II solid-state laser ICF system,” Proc. SPIE 3492, 890–895 (1999).
[Crossref]

Appl. Opt. (4)

Electron. Lett. (1)

S. G. Demos, A. Burnham, P. Wegner, M. Norton, L. Zeller, M. Runkel, M. R. Kozlowski, M. Staggs, and H. B. Radousky, “Surface defect generation in optical materials under high fluence laser irradiation in vacuum,” Electron. Lett. 36(6), 566–572 (2000).
[Crossref]

J. Am. Ceram. Soc. (1)

Y. Zhou, P. D. Funkenbusch, D. J. Quesnel, D. Golini, and A. Lindquist, “Effect of etching and imaging mode on the measurement of subsurface damage in microground optical glasses,” J. Am. Ceram. Soc. 77(12), 3277–3280 (1994).
[Crossref]

J. Appl. Cryst. (1)

L. Névot and P. Croce, “Sur l’étude des couches superficielles monoatomiques par reflexion rasante (spéculaire ou diffuse) de rayons X par la méthode de l’empilement sandwich,” J. Appl. Cryst. 8(2), 304–314 (1975).
[Crossref]

J. Non-Cryst. Solids (2)

D. Ehrt, P. Ebeling, and U. Natura, “UV transmission and radiation-induced defects in phosphate and fluoride-phosphate glasses,” J. Non-Cryst. Solids 263-264, 240–250 (2000).
[Crossref]

T. Suratwala, L. Wong, P. Miller, M. D. Feit, J. Menapace, R. Steele, P. Davis, and D. Walmer, “Subsurface mechanical damage distributions during grinding of fused silica,” J. Non-Cryst. Solids 352(52-54), 5601–5617 (2006).
[Crossref]

J. Opt. Soc. Am. A (1)

Nucl. Instr. and Meth. in Phys. Res. B (1)

M. A. Bolorizadeh, S. Ruffell, I. V. Mitchell, and R. Gwilliam, “Quantitative depth profiling of ultra-shallow phosphorus implants in silicon using time-of-flight secondary ion mass spectrometry and the nuclear reaction 31P(a,p0)34S,” Nucl. Instr. and Meth. in Phys. Res. B 225, 345–352 (2004).

Opt. Commun. (1)

J. Neauport, P. Cormont, L. Lamaignére, C. Ambard, F. Pilon, and H. Bercegol, “Concerning the impact of polishing induced contamination of fused silica optics on the laser-induced damage density at 351 nm,” Opt. Commun. 281(14), 3802–3805 (2008).
[Crossref]

Opt. Express (3)

Phys. Chem. Glasses (1)

H. L. Smith and A. J. Cohen, “Absorption spectra of cations in alkali-silicate glasses of high ultra-violet transmission,” Phys. Chem. Glasses 4(5), 173–187 (1963).

Proc. SPIE (6)

P. E. Miller, T. I. Suratwala, L. L. Wong, M. D. Feit, J. A. Menapace, P. J. Davis, and R. A. Steele, “The Distribution of Subsurface Damage in Fused Silica,” Proc. SPIE 5991, 599101, 599101-25 (2005).
[Crossref]

M. R. Kozlowski, J. Carr, I. Hutcheon, R. Torres, L. Sheehan, D. Camp, and M. Yan, “Depth profiling of polishing induced contamination on fused silica surface,” Proc. SPIE 3244, 365–375 (1998).
[Crossref]

E. I. Moses, J. H. Campbell, C. J. Stolz, and C. R. Wuest, “The national ignition facility: the world’s largest optics and laser system,” Proc. SPIE 5001, 1–15 (2003).
[Crossref]

E. I. Moses, “National ignition facility: 1.8MJ, 750TW ultraviolet laser,” Proc. SPIE 5341, 13–24 (2004).
[Crossref]

H. S. Peng, X. M. Zhang, X. F. Wei, W. G. Zheng, F. Jing, Z. Sui, Q. Zhao, D. Fan, Z. Q. Ling, and J. Q. Zhou, “Design of 60-kJ SG-III laser facility and related technology development,” Proc. SPIE 4424, 98–103 (2001).

G. Y. Xiao, D. Y. Fan, S. J. Wang, Z. Q. Lin, Y. Gu, J. Q. Zhu, Y. X. Zhen, J. Zhu, F. Q. Liu, S. C. Chen, Q. H. Chen, G. L. Huang, and X. M. Deng, “SG-II solid-state laser ICF system,” Proc. SPIE 3492, 890–895 (1999).
[Crossref]

Proceedings Of The EUROPTO Conference on Topical Fabrication and Testing (1)

A. Wuttig, J. Steinert, A. Duparre, and H. Truckenbrodt, “Surface roughness and subsurface damage charaacterization of fused silica substrates,” in Proceedings Of The EUROPTO Conference on Topical Fabrication and Testing, Proc. SPIE 3739, 369–376 (1999).
[Crossref]

Other (1)

M. L. André, “Status of the LMJ project,” in Solid State Lasers for Application to Inertial Confinement Fusion: Second Annual International Conference, M. L. André, ed., Proc. SPIE 3047, 38–42 (1996).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (16)

Fig. 1
Fig. 1

contamination depth profile of Ce element detected on polished fused silica surfaces by TOF-SIMS.

Fig. 2
Fig. 2

The fluorescence image and bright image of Sample E inspected by confocal fluorescence microscope. (a) Fluorescence image. (b) Bright image.

Fig. 3
Fig. 3

Intensity distribution of optical thermal absorption measured by photo-thermal common-path interferometer in scanning mode for Sample B.

Fig. 4
Fig. 4

The incident pulse graph (a) and the beam distribution image at target (b).

Fig. 5
Fig. 5

Damage densities versus fluence of fused silica samples.

Fig. 6
Fig. 6

Damage densities of fused silica samples at 13.75J/cm2.

Fig. 7
Fig. 7

Effect of Ce content on damage threshold and damage density. The series A, B, C, D, E are for damage threshold, and the boxed series are for damage density.

Fig. 8
Fig. 8

Effect of Fe content on damage threshold and damage density. The series A, B, C, D, E are for damage threshold, and the boxed series are for damage density.

Fig. 9
Fig. 9

Effect of Ca content on damage threshold and damage density. The series A, B, C, D, E are for damage threshold, and the boxed series are for damage density.

Fig. 10
Fig. 10

Effect of Al content on damage threshold and damage density. The series A, B, C, D, E are for damage threshold, and the boxed series are for damage density.

Fig. 11
Fig. 11

Effect of Mg content on damage threshold and damage density. The series A, B, C, D, E are for damage threshold, and the boxed series are for damage density.

Fig. 12
Fig. 12

Effect of K content on damage threshold and damage density. The series A, B, C, D, E are for damage threshold, and the boxed series are for damage density.

Fig. 13
Fig. 13

Effect of SSD on damage threshold and damage density. The series A, B, C, D, E are for damage threshold, and the boxed series are for damage density.

Fig. 14
Fig. 14

Effect of surface absorption on damage threshold and damage density. The series A, B, C, D, E, F are for damage threshold, and the boxed series are for damage density.

Fig. 15
Fig. 15

Effect of surface hardness on damage threshold and damage density. The series A, B, C, D, E are for damage threshold, and the boxed series are for damage density.

Fig. 16
Fig. 16

Gray haze damage morphology: (a) tested by online microscopy, (b) tested by high power microscopy.

Tables (6)

Tables Icon

Table 1 Sample preparation methods

Tables Icon

Table 2 The amount of each element in the subsurface layer of fused silica samples

Tables Icon

Table 3 SSD area percentage of fused silica samples

Tables Icon

Table 4 Surface absorption maximum and hardness of fused silica samples

Tables Icon

Table 5 Damage threshold of fused silica samples

Tables Icon

Table 6 The spearman correlations between defects and damage threshold/damage density

Metrics