Abstract

We demonstrate with realistic numerical simulations that fiber optical parametric chirped pulse amplification is able to amplify ultra-short optical pulses. Such amplifiers driven by two-pump waves can amplify pulse bandwidth twice as large as the one of a single pump configuration. We show that pulses as short as 50 fs can be directly amplified. In addition, we take benefit from the saturation regime to achieve spectral broadening which makes possible to reduce pulse duration down to 15 fs.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. E. Marhic, Fiber Optical Parametric Amplifiers, Oscillators and Related Devices, 1st ed. (Cambridge University Press, 2007).
  2. J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P.-O. Hedekvist, “Fiber-based optical parametric amplifiers and their applications,” IEEE J. Sel. Top. Quantum Electron.8(3), 506–520 (2002).
    [CrossRef]
  3. S. Radic, “Parametric Signal Processing,” IEEE J. Sel. Top. Quantum Electron.18(2), 670–680 (2012).
    [CrossRef]
  4. A. Vedadi, M. Jamshidifar, and M. E. Marhic, “Continuous-wave one-pump fiber optical parametric amplifier with 230 nm gain bandwidth,” paper 1.1.4 in 35th European Conference on Optical Communication (ECOC), p. 1–2 (2009).
  5. R. Stolen, “Phase-matched-stimulated four-photon mixing in silica-fiber waveguides,” IEEE J. Quantum Electron.11(3), 100–103 (1975).
    [CrossRef]
  6. C. J. McKinstrie, S. Radic, and A. R. Chraplyvy, “Parametric amplifiers driven by two pump waves,” IEEE J. Sel. Top. Quantum Electron.8(3), 538–547 (2002).
    [CrossRef]
  7. C. Caucheteur, D. Bigourd, E. Hugonnot, P. Szriftgiser, A. Kudlinski, M. Gonzalez-Herraez, and A. Mussot, “Experimental demonstration of optical parametric chirped pulse amplification in optical fiber,” Opt. Lett.35(11), 1786–1788 (2010).
    [CrossRef] [PubMed]
  8. D. Bigourd, L. Lago, A. Mussot, A. Kudlinski, J.-F. Gleyze, and E. Hugonnot, “High-gain fiber, optical-parametric, chirped-pulse amplification of femtosecond pulses at 1 μm,” Opt. Lett.35(20), 3480–3482 (2010).
    [CrossRef] [PubMed]
  9. D. Bigourd, L. Lago, A. Kudlinski, E. Hugonnot, and A. Mussot, “Dynamics of fiber optical parametric chirped pulse amplifiers,” J. Opt. Soc. Am. B28(11), 2848–2854 (2011).
    [CrossRef]
  10. T. Eidam, J. Rothhardt, F. Stutzki, F. Jansen, S. Hädrich, H. Carstens, C. Jauregui, J. Limpert, and A. Tünnermann, “Fiber chirped-pulse amplification system emitting 3.8 GW peak power,” Opt. Express19(1), 255–260 (2011).
    [CrossRef] [PubMed]
  11. T. Kurita, H. Yoshida, T. Kawashima, and N. Miyanaga, “Generation of sub-7-cycle optical pulses from a mode-locked ytterbium-doped single-mode fiber oscillator pumped by polarization-combined 915 nm laser diodes,” Opt. Lett.37(19), 3972–3974 (2012).
    [CrossRef] [PubMed]
  12. M. E. Fermann and I. Hartl, “Ultrafast Fiber Laser Technology,” IEEE J. Sel. Top. Quantum Electron.15(1), 191–206 (2009).
    [CrossRef]
  13. G. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic Press, 2001).
  14. O. V. Sinkin, R. Holzlöhner, J. Zweck, and C. R. Menyuk, “Optimization of the Split-Step Fourier Method in Modeling Optical-Fiber Communications Systems,” J. Lightwave Technol.21(1), 61–68 (2003).
    [CrossRef]
  15. P. C. Chou, H. A. Haus, and J. F. Brennan, “Reconfigurable time-domain spectral shaping of an optical pulse stretched by a fiber Bragg grating,” Opt. Lett.25(8), 524–526 (2000).
    [CrossRef] [PubMed]
  16. D. J. Richardson, J. Nilsson, and W. A. Clarkson, “High power fiber lasers: current status and future perspectives [Invited],” J. Opt. Soc. Am. B27(11), B63–B92 (2010).
    [CrossRef]
  17. We remind that phase-sensitive and phase-insensitive configurations are commonly differentiated by looking at the input of the amplifier: in the first case, both the idler and the signal are launched with a specific phase relationship, while in the second case, only the signal is launched inside the amplifier.
  18. L. Grüner-Nielsen, D. Jakobsen, K. G. Jespersen, and B. Pálsdóttir, “A stretcher fiber for use in fs chirped pulse Yb amplifiers,” Opt. Express18(4), 3768–3773 (2010).
    [CrossRef] [PubMed]
  19. J. Prawiharjo, N. K. Daga, R. Geng, J. H. Price, D. C. Hanna, D. J. Richardson, and D. P. Shepherd, “High fidelity femtosecond pulses from an ultrafast fiber laser system via adaptive amplitude and phase pre-shaping,” Opt. Express16(19), 15074–15089 (2008).
    [CrossRef] [PubMed]
  20. D. N. Papadopoulos, I. Martial, M. Hanna, F. Druon, and P. Georges, “Active spectral phase control by use of an acousto-optic programmable filter in high-repetition-rate sub-80 fs nonlinear fiber amplifiers,” Opt. Lett.33(13), 1431–1433 (2008).
    [CrossRef] [PubMed]
  21. J. van Howe, G. Zhu, and C. Xu, “Compensation of self-phase modulation in fiber-based chirped-pulse amplification systems,” Opt. Lett.31(11), 1756–1758 (2006).
    [CrossRef] [PubMed]
  22. J. W. Dawson, M. J. Messerly, H. H. Phan, J. K. Crane, R. J. Beach, C. W. Siders, and C. Barty, “High-Energy, Short-Pulse Fiber Injection Lasers at Lawrence Livermore National Laboratory,” IEEE J. Sel. Top. Quantum Electron.15(1), 207–219 (2009).
    [CrossRef]
  23. Y. Zaouter, L. P. Ramirez, D. N. Papadopoulos, C. Hönninger, M. Hanna, F. Druon, E. Mottay, and P. Georges, “Temporal cleaning of a high-energy fiber-based ultrafast laser using cross-polarized wave generation,” Opt. Lett.36(10), 1830–1832 (2011).
    [CrossRef] [PubMed]
  24. A. Mussot, A. Kudlinski, and E. Hugonnot, “Procédé and dispositif d’amplification paramétrique optique d’impulsions à dérive en fréquence, utilisant deux signaux de pompe and permettant l’élargissement de la bande spectrale de gain,” U.S. Patent FR 11 61642 (dec 14, 2011).

2012

2011

2010

2009

M. E. Fermann and I. Hartl, “Ultrafast Fiber Laser Technology,” IEEE J. Sel. Top. Quantum Electron.15(1), 191–206 (2009).
[CrossRef]

J. W. Dawson, M. J. Messerly, H. H. Phan, J. K. Crane, R. J. Beach, C. W. Siders, and C. Barty, “High-Energy, Short-Pulse Fiber Injection Lasers at Lawrence Livermore National Laboratory,” IEEE J. Sel. Top. Quantum Electron.15(1), 207–219 (2009).
[CrossRef]

2008

2006

2003

2002

J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P.-O. Hedekvist, “Fiber-based optical parametric amplifiers and their applications,” IEEE J. Sel. Top. Quantum Electron.8(3), 506–520 (2002).
[CrossRef]

C. J. McKinstrie, S. Radic, and A. R. Chraplyvy, “Parametric amplifiers driven by two pump waves,” IEEE J. Sel. Top. Quantum Electron.8(3), 538–547 (2002).
[CrossRef]

2000

1975

R. Stolen, “Phase-matched-stimulated four-photon mixing in silica-fiber waveguides,” IEEE J. Quantum Electron.11(3), 100–103 (1975).
[CrossRef]

Andrekson, P. A.

J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P.-O. Hedekvist, “Fiber-based optical parametric amplifiers and their applications,” IEEE J. Sel. Top. Quantum Electron.8(3), 506–520 (2002).
[CrossRef]

Barty, C.

J. W. Dawson, M. J. Messerly, H. H. Phan, J. K. Crane, R. J. Beach, C. W. Siders, and C. Barty, “High-Energy, Short-Pulse Fiber Injection Lasers at Lawrence Livermore National Laboratory,” IEEE J. Sel. Top. Quantum Electron.15(1), 207–219 (2009).
[CrossRef]

Beach, R. J.

J. W. Dawson, M. J. Messerly, H. H. Phan, J. K. Crane, R. J. Beach, C. W. Siders, and C. Barty, “High-Energy, Short-Pulse Fiber Injection Lasers at Lawrence Livermore National Laboratory,” IEEE J. Sel. Top. Quantum Electron.15(1), 207–219 (2009).
[CrossRef]

Bigourd, D.

Brennan, J. F.

Carstens, H.

Caucheteur, C.

Chou, P. C.

Chraplyvy, A. R.

C. J. McKinstrie, S. Radic, and A. R. Chraplyvy, “Parametric amplifiers driven by two pump waves,” IEEE J. Sel. Top. Quantum Electron.8(3), 538–547 (2002).
[CrossRef]

Clarkson, W. A.

Crane, J. K.

J. W. Dawson, M. J. Messerly, H. H. Phan, J. K. Crane, R. J. Beach, C. W. Siders, and C. Barty, “High-Energy, Short-Pulse Fiber Injection Lasers at Lawrence Livermore National Laboratory,” IEEE J. Sel. Top. Quantum Electron.15(1), 207–219 (2009).
[CrossRef]

Daga, N. K.

Dawson, J. W.

J. W. Dawson, M. J. Messerly, H. H. Phan, J. K. Crane, R. J. Beach, C. W. Siders, and C. Barty, “High-Energy, Short-Pulse Fiber Injection Lasers at Lawrence Livermore National Laboratory,” IEEE J. Sel. Top. Quantum Electron.15(1), 207–219 (2009).
[CrossRef]

Druon, F.

Eidam, T.

Fermann, M. E.

M. E. Fermann and I. Hartl, “Ultrafast Fiber Laser Technology,” IEEE J. Sel. Top. Quantum Electron.15(1), 191–206 (2009).
[CrossRef]

Geng, R.

Georges, P.

Gleyze, J.-F.

Gonzalez-Herraez, M.

Grüner-Nielsen, L.

Hädrich, S.

Hanna, D. C.

Hanna, M.

Hansryd, J.

J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P.-O. Hedekvist, “Fiber-based optical parametric amplifiers and their applications,” IEEE J. Sel. Top. Quantum Electron.8(3), 506–520 (2002).
[CrossRef]

Hartl, I.

M. E. Fermann and I. Hartl, “Ultrafast Fiber Laser Technology,” IEEE J. Sel. Top. Quantum Electron.15(1), 191–206 (2009).
[CrossRef]

Haus, H. A.

Hedekvist, P.-O.

J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P.-O. Hedekvist, “Fiber-based optical parametric amplifiers and their applications,” IEEE J. Sel. Top. Quantum Electron.8(3), 506–520 (2002).
[CrossRef]

Holzlöhner, R.

Hönninger, C.

Hugonnot, E.

Jakobsen, D.

Jansen, F.

Jauregui, C.

Jespersen, K. G.

Kawashima, T.

Kudlinski, A.

Kurita, T.

Lago, L.

Li, J.

J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P.-O. Hedekvist, “Fiber-based optical parametric amplifiers and their applications,” IEEE J. Sel. Top. Quantum Electron.8(3), 506–520 (2002).
[CrossRef]

Limpert, J.

Martial, I.

McKinstrie, C. J.

C. J. McKinstrie, S. Radic, and A. R. Chraplyvy, “Parametric amplifiers driven by two pump waves,” IEEE J. Sel. Top. Quantum Electron.8(3), 538–547 (2002).
[CrossRef]

Menyuk, C. R.

Messerly, M. J.

J. W. Dawson, M. J. Messerly, H. H. Phan, J. K. Crane, R. J. Beach, C. W. Siders, and C. Barty, “High-Energy, Short-Pulse Fiber Injection Lasers at Lawrence Livermore National Laboratory,” IEEE J. Sel. Top. Quantum Electron.15(1), 207–219 (2009).
[CrossRef]

Miyanaga, N.

Mottay, E.

Mussot, A.

Nilsson, J.

Pálsdóttir, B.

Papadopoulos, D. N.

Phan, H. H.

J. W. Dawson, M. J. Messerly, H. H. Phan, J. K. Crane, R. J. Beach, C. W. Siders, and C. Barty, “High-Energy, Short-Pulse Fiber Injection Lasers at Lawrence Livermore National Laboratory,” IEEE J. Sel. Top. Quantum Electron.15(1), 207–219 (2009).
[CrossRef]

Prawiharjo, J.

Price, J. H.

Radic, S.

S. Radic, “Parametric Signal Processing,” IEEE J. Sel. Top. Quantum Electron.18(2), 670–680 (2012).
[CrossRef]

C. J. McKinstrie, S. Radic, and A. R. Chraplyvy, “Parametric amplifiers driven by two pump waves,” IEEE J. Sel. Top. Quantum Electron.8(3), 538–547 (2002).
[CrossRef]

Ramirez, L. P.

Richardson, D. J.

Rothhardt, J.

Shepherd, D. P.

Siders, C. W.

J. W. Dawson, M. J. Messerly, H. H. Phan, J. K. Crane, R. J. Beach, C. W. Siders, and C. Barty, “High-Energy, Short-Pulse Fiber Injection Lasers at Lawrence Livermore National Laboratory,” IEEE J. Sel. Top. Quantum Electron.15(1), 207–219 (2009).
[CrossRef]

Sinkin, O. V.

Stolen, R.

R. Stolen, “Phase-matched-stimulated four-photon mixing in silica-fiber waveguides,” IEEE J. Quantum Electron.11(3), 100–103 (1975).
[CrossRef]

Stutzki, F.

Szriftgiser, P.

Tünnermann, A.

van Howe, J.

Westlund, M.

J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P.-O. Hedekvist, “Fiber-based optical parametric amplifiers and their applications,” IEEE J. Sel. Top. Quantum Electron.8(3), 506–520 (2002).
[CrossRef]

Xu, C.

Yoshida, H.

Zaouter, Y.

Zhu, G.

Zweck, J.

IEEE J. Quantum Electron.

R. Stolen, “Phase-matched-stimulated four-photon mixing in silica-fiber waveguides,” IEEE J. Quantum Electron.11(3), 100–103 (1975).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

C. J. McKinstrie, S. Radic, and A. R. Chraplyvy, “Parametric amplifiers driven by two pump waves,” IEEE J. Sel. Top. Quantum Electron.8(3), 538–547 (2002).
[CrossRef]

J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P.-O. Hedekvist, “Fiber-based optical parametric amplifiers and their applications,” IEEE J. Sel. Top. Quantum Electron.8(3), 506–520 (2002).
[CrossRef]

S. Radic, “Parametric Signal Processing,” IEEE J. Sel. Top. Quantum Electron.18(2), 670–680 (2012).
[CrossRef]

M. E. Fermann and I. Hartl, “Ultrafast Fiber Laser Technology,” IEEE J. Sel. Top. Quantum Electron.15(1), 191–206 (2009).
[CrossRef]

J. W. Dawson, M. J. Messerly, H. H. Phan, J. K. Crane, R. J. Beach, C. W. Siders, and C. Barty, “High-Energy, Short-Pulse Fiber Injection Lasers at Lawrence Livermore National Laboratory,” IEEE J. Sel. Top. Quantum Electron.15(1), 207–219 (2009).
[CrossRef]

J. Lightwave Technol.

J. Opt. Soc. Am. B

Opt. Express

Opt. Lett.

D. N. Papadopoulos, I. Martial, M. Hanna, F. Druon, and P. Georges, “Active spectral phase control by use of an acousto-optic programmable filter in high-repetition-rate sub-80 fs nonlinear fiber amplifiers,” Opt. Lett.33(13), 1431–1433 (2008).
[CrossRef] [PubMed]

J. van Howe, G. Zhu, and C. Xu, “Compensation of self-phase modulation in fiber-based chirped-pulse amplification systems,” Opt. Lett.31(11), 1756–1758 (2006).
[CrossRef] [PubMed]

P. C. Chou, H. A. Haus, and J. F. Brennan, “Reconfigurable time-domain spectral shaping of an optical pulse stretched by a fiber Bragg grating,” Opt. Lett.25(8), 524–526 (2000).
[CrossRef] [PubMed]

T. Kurita, H. Yoshida, T. Kawashima, and N. Miyanaga, “Generation of sub-7-cycle optical pulses from a mode-locked ytterbium-doped single-mode fiber oscillator pumped by polarization-combined 915 nm laser diodes,” Opt. Lett.37(19), 3972–3974 (2012).
[CrossRef] [PubMed]

C. Caucheteur, D. Bigourd, E. Hugonnot, P. Szriftgiser, A. Kudlinski, M. Gonzalez-Herraez, and A. Mussot, “Experimental demonstration of optical parametric chirped pulse amplification in optical fiber,” Opt. Lett.35(11), 1786–1788 (2010).
[CrossRef] [PubMed]

D. Bigourd, L. Lago, A. Mussot, A. Kudlinski, J.-F. Gleyze, and E. Hugonnot, “High-gain fiber, optical-parametric, chirped-pulse amplification of femtosecond pulses at 1 μm,” Opt. Lett.35(20), 3480–3482 (2010).
[CrossRef] [PubMed]

Y. Zaouter, L. P. Ramirez, D. N. Papadopoulos, C. Hönninger, M. Hanna, F. Druon, E. Mottay, and P. Georges, “Temporal cleaning of a high-energy fiber-based ultrafast laser using cross-polarized wave generation,” Opt. Lett.36(10), 1830–1832 (2011).
[CrossRef] [PubMed]

Other

A. Mussot, A. Kudlinski, and E. Hugonnot, “Procédé and dispositif d’amplification paramétrique optique d’impulsions à dérive en fréquence, utilisant deux signaux de pompe and permettant l’élargissement de la bande spectrale de gain,” U.S. Patent FR 11 61642 (dec 14, 2011).

We remind that phase-sensitive and phase-insensitive configurations are commonly differentiated by looking at the input of the amplifier: in the first case, both the idler and the signal are launched with a specific phase relationship, while in the second case, only the signal is launched inside the amplifier.

M. E. Marhic, Fiber Optical Parametric Amplifiers, Oscillators and Related Devices, 1st ed. (Cambridge University Press, 2007).

A. Vedadi, M. Jamshidifar, and M. E. Marhic, “Continuous-wave one-pump fiber optical parametric amplifier with 230 nm gain bandwidth,” paper 1.1.4 in 35th European Conference on Optical Communication (ECOC), p. 1–2 (2009).

G. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic Press, 2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Input spectrum (red line) and small signal gain curve (dotted black line) calculated from a numerical integration of the nonlinear Schrödinger equation (Eq. (1)). (b) Input temporal characteristics normalized to unity, stretched signal in red and pump in blue.

Fig. 2
Fig. 2

Spectrograms of the signal at the fiber input (a) and at the fiber output (b). The gate duration is 100 ps.

Fig. 3
Fig. 3

(a) Spectrogram of the recompressed signal after parametric amplification. (b) Temporal traces of the recompressed signal at L = 2 m (black dash-dot line) and at L = 4 m (blue solid line)) compared to the initial signal before stretching (red dashed line), normalized to unity. Insets: temporal profile of the recompressed signal in log scale (left inset) and over a larger temporal span (right inset). Data correspond to L = 2 m.

Fig. 4
Fig. 4

(a) Evolution of the FWHM pulse width of recompressed pulses (blue circles, left axis) and of the gain in energy (red dots, right axis) versus fiber length. The horizontal dashed line represents the initial pulse duration. (b)-(d) Output spectra for different fiber lengths (blue lines). For the sake of clarity, input spectrum (red line) and different filter bandwidths (68 nm at −3 dB in black solid line, 137 nm at −3 dB in solid green line and 274 nm at −3 dB in solid pink line) are superimposed in the middle of the picture.

Fig. 5
Fig. 5

(a) Temporal traces of the recompressed signal normalized to unity at L = 4 m for different filter bandwidths represented in Fig. 4(d). We used similar color for the filters and for the extracted pulses. The durations of the pulses at FWHM are 53 fs (black solid line), 24 fs (solid green line) and 15 fs (solid pink line). The initial signal before stretching is superimposed in red dashed line and has 50 fs duration at FWHM.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

E(z,τ) z =i β 2 2 2 E(z,τ) τ 2 + β 3 6 3 E(z,τ) τ 3 +i β 4 24 4 E(z,τ) τ 4 +iγ | E | 2 E(z,τ) +iγ h R (t) | E(z,ττ') | 2 dτ'E(z,τ)

Metrics