Abstract

We present an optical structure, which consists of metal nanoparticles embedded in Fabry-Perot (F-P) cavity, to investigate the Fano resonance, which originates from the interaction between F-P mode and the plasmon modes supported by the nanoparticles. The coupling system is modeled theoretically by coupled-mode theory in time domain and the transmission properties are demonstrated numerically by the finite-difference time-domain method. The charge distribution features of the nanoparticle plasmon modes are further characterized by using boundary integral equation technology. Results show that the F-P modes can be used to active the optical inactive surface plasmon modes by breaking the mode symmetry.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. R. Bułka and P. Stefański, “Fano and Kondo resonance in electronic current through nanodevices,” Phys. Rev. Lett.86(22), 5128–5131 (2001).
    [CrossRef] [PubMed]
  2. K. Kobayashi, H. Aikawa, A. S. Sano, S. Katsumoto, and Y. Iye, “Fano resonance in a quantum wire with a side-coupled quantum dot,” Phys. Rev. B70(3), 035319 (2004).
    [CrossRef]
  3. M. L. Ladron de Guevara, F. Claro, and P. A. Orellana, “Ghost Fano resonance in a double quantum dot molecule attached to leads,” Phys. Rev. B67(19), 195335 (2003).
    [CrossRef]
  4. S. Fan, W. Suh, and J. D. Joannopoulos, “Temporal coupled-mode theory for the Fano resonance in optical resonators,” J. Opt. Soc. Am. A20(3), 569–572 (2003).
    [CrossRef] [PubMed]
  5. M. Kanskar, P. Paddon, V. Pacradouni, R. Morin, A. Busch, J. F. Young, S. R. Johnson, J. MacKenzie, and T. Tiedje, “Observation of leaky slab modes in an air-bridged semiconductor waveguide with a two-dimensional photonic lattice,” Appl. Phys. Lett.70(11), 1438–1440 (1997).
    [CrossRef]
  6. V. N. Astratov, J. S. Culshaw, R. M. Stevenson, D. M. Whittaker, M. S. Skolnick, T. F. Krauss, and R. M. de la Rue, “Resonant coupling of near-infrared radiation to photonic band structure waveguides,” J. Lightwave Technol.17(11), 2050–2057 (1999).
    [CrossRef]
  7. J. B. Lassiter, H. Sobhani, J. A. Fan, J. Kundu, F. Capasso, P. Nordlander, and N. J. Halas, “Fano resonances in plasmonic nanoclusters: geometrical and chemical tunability,” Nano Lett.10(8), 3184–3189 (2010).
    [CrossRef] [PubMed]
  8. N. A. Mirin, K. Bao, and P. Nordlander, “Fano resonances in plasmonic nanoparticle aggregates,” J. Phys. Chem. A113(16), 4028–4034 (2009).
    [CrossRef] [PubMed]
  9. B. Gallinet and O. J. F. Martin, “Influence of electromagnetic interactions on the line shape of plasmonic Fano resonances,” ACS Nano5(11), 8999–9008 (2011).
    [CrossRef] [PubMed]
  10. D. Dregely, M. Hentschel, and H. Giessen, “Excitation and tuning of higher-order Fano resonances in plasmonic oligomer clusters,” ACS Nano5(10), 8202–8211 (2011).
    [CrossRef] [PubMed]
  11. C. Radloff and N. J. Halas, “Plasmonic properties of concentric nanoshells,” Nano Lett.4(7), 1323–1327 (2004).
    [CrossRef]
  12. H. Wang, D. W. Brandl, F. Le, P. Nordlander, and N. J. Halas, “Nanorice: a hybrid plasmonic nanostructure,” Nano Lett.6(4), 827–832 (2006).
    [CrossRef] [PubMed]
  13. F. Hao, C. L. Nehl, J. H. Hafner, and P. Nordlander, “Plasmon resonances of a gold nanostar,” Nano Lett.7(3), 729–732 (2007).
    [CrossRef] [PubMed]
  14. L. Chuntonov and G. Haran, “Trimeric plasmonic molecules: the role of symmetry,” Nano Lett.11(6), 2440–2445 (2011).
    [CrossRef] [PubMed]
  15. H. Wang, Y. Wu, B. Lassiter, C. L. Nehl, J. H. Hafner, P. Nordlander, and N. J. Halas, “Symmetry breaking in individual plasmonic nanoparticles,” Proc. Natl. Acad. Sci. U.S.A.103(29), 10856–10860 (2006).
    [CrossRef] [PubMed]
  16. E. Gómez, K. C. Vernon, and T. J. Davis, “Symmetry effects on the optical coupling between plasmonic nanoparticles with applications to hierarchical structures,” Phys. Rev. B81(7), 075414 (2010).
    [CrossRef]
  17. F. Hao, Y. Sonnefraud, P. V. Dorpe, S. A. Maier, N. J. Halas, and P. Nordlander, “Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance,” Nano Lett.8(11), 3983–3988 (2008).
    [CrossRef] [PubMed]
  18. Y. Cui, J. Zhou, V. A. Tamma, and W. Park, “Dynamic tuning and symmetry lowering of Fano resonance in plasmonic nanostructure,” ACS Nano6(3), 2385–2393 (2012).
    [CrossRef] [PubMed]
  19. J. B. Lassiter, J. Aizpurua, L. I. Hernandez, D. W. Brandl, I. Romero, S. Lal, J. H. Hafner, P. Nordlander, and N. J. Halas, “Close encounters between two nanoshells,” Nano Lett.8(4), 1212–1218 (2008).
    [CrossRef] [PubMed]
  20. W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, “Optical properties of two interacting gold nanoparticles,” Opt. Commun.220(1-3), 137–141 (2003).
    [CrossRef]
  21. R. C. Shiu and Y. C. Lan, “Plasmonic Zener tunneling in metal-dielectric waveguide arrays,” Opt. Lett.36(21), 4179–4181 (2011).
    [CrossRef] [PubMed]
  22. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, 2000).
  23. S. F. Mingaleev, A. E. Miroshnichenko, and Y. S. Kivshar, “Coupled-resonator-induced reflection in photonic-crystal waveguide structures,” Opt. Express16(15), 11647–11659 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-16-15-11647 .
    [CrossRef] [PubMed]
  24. J. Zhou, D. Mu, J. Yang, W. Han, and X. Di, “Coupled-resonator-induced transparency in photonic crystal waveguide resonator systems,” Opt. Express19(6), 4856–4861 (2011), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-19-6-4856 .
    [CrossRef] [PubMed]
  25. I. D. Mayergoyz, D. R. Fredkin, and Z. Zhang, “Electrostatic (plasmon) resonances in nanoparticles,” Phys. Rev. Lett.72, 155412 (2005).
  26. D. R. Fredkin and I. D. Mayergoyz, “Resonant behavior of dielectric objects (electrostatic resonances),” Phys. Rev. Lett.91(25), 253902 (2003).
    [CrossRef] [PubMed]
  27. B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol.15(6), 998–1005 (1997).
    [CrossRef]
  28. J. Zhou, D. Mu, H. Song, X. Leng, Y. Meng, W. Han, J. Yang, X. Di, and Q. Chang, “Plasmon resonances in nanoparticle system consisting of different materials,” Opt. Commun.295, 235–238 (2013).
    [CrossRef]

2013 (1)

J. Zhou, D. Mu, H. Song, X. Leng, Y. Meng, W. Han, J. Yang, X. Di, and Q. Chang, “Plasmon resonances in nanoparticle system consisting of different materials,” Opt. Commun.295, 235–238 (2013).
[CrossRef]

2012 (1)

Y. Cui, J. Zhou, V. A. Tamma, and W. Park, “Dynamic tuning and symmetry lowering of Fano resonance in plasmonic nanostructure,” ACS Nano6(3), 2385–2393 (2012).
[CrossRef] [PubMed]

2011 (5)

R. C. Shiu and Y. C. Lan, “Plasmonic Zener tunneling in metal-dielectric waveguide arrays,” Opt. Lett.36(21), 4179–4181 (2011).
[CrossRef] [PubMed]

J. Zhou, D. Mu, J. Yang, W. Han, and X. Di, “Coupled-resonator-induced transparency in photonic crystal waveguide resonator systems,” Opt. Express19(6), 4856–4861 (2011), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-19-6-4856 .
[CrossRef] [PubMed]

B. Gallinet and O. J. F. Martin, “Influence of electromagnetic interactions on the line shape of plasmonic Fano resonances,” ACS Nano5(11), 8999–9008 (2011).
[CrossRef] [PubMed]

D. Dregely, M. Hentschel, and H. Giessen, “Excitation and tuning of higher-order Fano resonances in plasmonic oligomer clusters,” ACS Nano5(10), 8202–8211 (2011).
[CrossRef] [PubMed]

L. Chuntonov and G. Haran, “Trimeric plasmonic molecules: the role of symmetry,” Nano Lett.11(6), 2440–2445 (2011).
[CrossRef] [PubMed]

2010 (2)

E. Gómez, K. C. Vernon, and T. J. Davis, “Symmetry effects on the optical coupling between plasmonic nanoparticles with applications to hierarchical structures,” Phys. Rev. B81(7), 075414 (2010).
[CrossRef]

J. B. Lassiter, H. Sobhani, J. A. Fan, J. Kundu, F. Capasso, P. Nordlander, and N. J. Halas, “Fano resonances in plasmonic nanoclusters: geometrical and chemical tunability,” Nano Lett.10(8), 3184–3189 (2010).
[CrossRef] [PubMed]

2009 (1)

N. A. Mirin, K. Bao, and P. Nordlander, “Fano resonances in plasmonic nanoparticle aggregates,” J. Phys. Chem. A113(16), 4028–4034 (2009).
[CrossRef] [PubMed]

2008 (3)

F. Hao, Y. Sonnefraud, P. V. Dorpe, S. A. Maier, N. J. Halas, and P. Nordlander, “Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance,” Nano Lett.8(11), 3983–3988 (2008).
[CrossRef] [PubMed]

S. F. Mingaleev, A. E. Miroshnichenko, and Y. S. Kivshar, “Coupled-resonator-induced reflection in photonic-crystal waveguide structures,” Opt. Express16(15), 11647–11659 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-16-15-11647 .
[CrossRef] [PubMed]

J. B. Lassiter, J. Aizpurua, L. I. Hernandez, D. W. Brandl, I. Romero, S. Lal, J. H. Hafner, P. Nordlander, and N. J. Halas, “Close encounters between two nanoshells,” Nano Lett.8(4), 1212–1218 (2008).
[CrossRef] [PubMed]

2007 (1)

F. Hao, C. L. Nehl, J. H. Hafner, and P. Nordlander, “Plasmon resonances of a gold nanostar,” Nano Lett.7(3), 729–732 (2007).
[CrossRef] [PubMed]

2006 (2)

H. Wang, D. W. Brandl, F. Le, P. Nordlander, and N. J. Halas, “Nanorice: a hybrid plasmonic nanostructure,” Nano Lett.6(4), 827–832 (2006).
[CrossRef] [PubMed]

H. Wang, Y. Wu, B. Lassiter, C. L. Nehl, J. H. Hafner, P. Nordlander, and N. J. Halas, “Symmetry breaking in individual plasmonic nanoparticles,” Proc. Natl. Acad. Sci. U.S.A.103(29), 10856–10860 (2006).
[CrossRef] [PubMed]

2005 (1)

I. D. Mayergoyz, D. R. Fredkin, and Z. Zhang, “Electrostatic (plasmon) resonances in nanoparticles,” Phys. Rev. Lett.72, 155412 (2005).

2004 (2)

C. Radloff and N. J. Halas, “Plasmonic properties of concentric nanoshells,” Nano Lett.4(7), 1323–1327 (2004).
[CrossRef]

K. Kobayashi, H. Aikawa, A. S. Sano, S. Katsumoto, and Y. Iye, “Fano resonance in a quantum wire with a side-coupled quantum dot,” Phys. Rev. B70(3), 035319 (2004).
[CrossRef]

2003 (4)

M. L. Ladron de Guevara, F. Claro, and P. A. Orellana, “Ghost Fano resonance in a double quantum dot molecule attached to leads,” Phys. Rev. B67(19), 195335 (2003).
[CrossRef]

S. Fan, W. Suh, and J. D. Joannopoulos, “Temporal coupled-mode theory for the Fano resonance in optical resonators,” J. Opt. Soc. Am. A20(3), 569–572 (2003).
[CrossRef] [PubMed]

D. R. Fredkin and I. D. Mayergoyz, “Resonant behavior of dielectric objects (electrostatic resonances),” Phys. Rev. Lett.91(25), 253902 (2003).
[CrossRef] [PubMed]

W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, “Optical properties of two interacting gold nanoparticles,” Opt. Commun.220(1-3), 137–141 (2003).
[CrossRef]

2001 (1)

B. R. Bułka and P. Stefański, “Fano and Kondo resonance in electronic current through nanodevices,” Phys. Rev. Lett.86(22), 5128–5131 (2001).
[CrossRef] [PubMed]

1999 (1)

1997 (2)

M. Kanskar, P. Paddon, V. Pacradouni, R. Morin, A. Busch, J. F. Young, S. R. Johnson, J. MacKenzie, and T. Tiedje, “Observation of leaky slab modes in an air-bridged semiconductor waveguide with a two-dimensional photonic lattice,” Appl. Phys. Lett.70(11), 1438–1440 (1997).
[CrossRef]

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol.15(6), 998–1005 (1997).
[CrossRef]

Aikawa, H.

K. Kobayashi, H. Aikawa, A. S. Sano, S. Katsumoto, and Y. Iye, “Fano resonance in a quantum wire with a side-coupled quantum dot,” Phys. Rev. B70(3), 035319 (2004).
[CrossRef]

Aizpurua, J.

J. B. Lassiter, J. Aizpurua, L. I. Hernandez, D. W. Brandl, I. Romero, S. Lal, J. H. Hafner, P. Nordlander, and N. J. Halas, “Close encounters between two nanoshells,” Nano Lett.8(4), 1212–1218 (2008).
[CrossRef] [PubMed]

Astratov, V. N.

Aussenegg, F. R.

W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, “Optical properties of two interacting gold nanoparticles,” Opt. Commun.220(1-3), 137–141 (2003).
[CrossRef]

Bao, K.

N. A. Mirin, K. Bao, and P. Nordlander, “Fano resonances in plasmonic nanoparticle aggregates,” J. Phys. Chem. A113(16), 4028–4034 (2009).
[CrossRef] [PubMed]

Brandl, D. W.

J. B. Lassiter, J. Aizpurua, L. I. Hernandez, D. W. Brandl, I. Romero, S. Lal, J. H. Hafner, P. Nordlander, and N. J. Halas, “Close encounters between two nanoshells,” Nano Lett.8(4), 1212–1218 (2008).
[CrossRef] [PubMed]

H. Wang, D. W. Brandl, F. Le, P. Nordlander, and N. J. Halas, “Nanorice: a hybrid plasmonic nanostructure,” Nano Lett.6(4), 827–832 (2006).
[CrossRef] [PubMed]

Bulka, B. R.

B. R. Bułka and P. Stefański, “Fano and Kondo resonance in electronic current through nanodevices,” Phys. Rev. Lett.86(22), 5128–5131 (2001).
[CrossRef] [PubMed]

Busch, A.

M. Kanskar, P. Paddon, V. Pacradouni, R. Morin, A. Busch, J. F. Young, S. R. Johnson, J. MacKenzie, and T. Tiedje, “Observation of leaky slab modes in an air-bridged semiconductor waveguide with a two-dimensional photonic lattice,” Appl. Phys. Lett.70(11), 1438–1440 (1997).
[CrossRef]

Capasso, F.

J. B. Lassiter, H. Sobhani, J. A. Fan, J. Kundu, F. Capasso, P. Nordlander, and N. J. Halas, “Fano resonances in plasmonic nanoclusters: geometrical and chemical tunability,” Nano Lett.10(8), 3184–3189 (2010).
[CrossRef] [PubMed]

Chang, Q.

J. Zhou, D. Mu, H. Song, X. Leng, Y. Meng, W. Han, J. Yang, X. Di, and Q. Chang, “Plasmon resonances in nanoparticle system consisting of different materials,” Opt. Commun.295, 235–238 (2013).
[CrossRef]

Chu, S. T.

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol.15(6), 998–1005 (1997).
[CrossRef]

Chuntonov, L.

L. Chuntonov and G. Haran, “Trimeric plasmonic molecules: the role of symmetry,” Nano Lett.11(6), 2440–2445 (2011).
[CrossRef] [PubMed]

Claro, F.

M. L. Ladron de Guevara, F. Claro, and P. A. Orellana, “Ghost Fano resonance in a double quantum dot molecule attached to leads,” Phys. Rev. B67(19), 195335 (2003).
[CrossRef]

Cui, Y.

Y. Cui, J. Zhou, V. A. Tamma, and W. Park, “Dynamic tuning and symmetry lowering of Fano resonance in plasmonic nanostructure,” ACS Nano6(3), 2385–2393 (2012).
[CrossRef] [PubMed]

Culshaw, J. S.

Davis, T. J.

E. Gómez, K. C. Vernon, and T. J. Davis, “Symmetry effects on the optical coupling between plasmonic nanoparticles with applications to hierarchical structures,” Phys. Rev. B81(7), 075414 (2010).
[CrossRef]

de la Rue, R. M.

Di, X.

J. Zhou, D. Mu, H. Song, X. Leng, Y. Meng, W. Han, J. Yang, X. Di, and Q. Chang, “Plasmon resonances in nanoparticle system consisting of different materials,” Opt. Commun.295, 235–238 (2013).
[CrossRef]

J. Zhou, D. Mu, J. Yang, W. Han, and X. Di, “Coupled-resonator-induced transparency in photonic crystal waveguide resonator systems,” Opt. Express19(6), 4856–4861 (2011), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-19-6-4856 .
[CrossRef] [PubMed]

Dorpe, P. V.

F. Hao, Y. Sonnefraud, P. V. Dorpe, S. A. Maier, N. J. Halas, and P. Nordlander, “Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance,” Nano Lett.8(11), 3983–3988 (2008).
[CrossRef] [PubMed]

Dregely, D.

D. Dregely, M. Hentschel, and H. Giessen, “Excitation and tuning of higher-order Fano resonances in plasmonic oligomer clusters,” ACS Nano5(10), 8202–8211 (2011).
[CrossRef] [PubMed]

Fan, J. A.

J. B. Lassiter, H. Sobhani, J. A. Fan, J. Kundu, F. Capasso, P. Nordlander, and N. J. Halas, “Fano resonances in plasmonic nanoclusters: geometrical and chemical tunability,” Nano Lett.10(8), 3184–3189 (2010).
[CrossRef] [PubMed]

Fan, S.

Foresi, J.

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol.15(6), 998–1005 (1997).
[CrossRef]

Fredkin, D. R.

I. D. Mayergoyz, D. R. Fredkin, and Z. Zhang, “Electrostatic (plasmon) resonances in nanoparticles,” Phys. Rev. Lett.72, 155412 (2005).

D. R. Fredkin and I. D. Mayergoyz, “Resonant behavior of dielectric objects (electrostatic resonances),” Phys. Rev. Lett.91(25), 253902 (2003).
[CrossRef] [PubMed]

Gallinet, B.

B. Gallinet and O. J. F. Martin, “Influence of electromagnetic interactions on the line shape of plasmonic Fano resonances,” ACS Nano5(11), 8999–9008 (2011).
[CrossRef] [PubMed]

Giessen, H.

D. Dregely, M. Hentschel, and H. Giessen, “Excitation and tuning of higher-order Fano resonances in plasmonic oligomer clusters,” ACS Nano5(10), 8202–8211 (2011).
[CrossRef] [PubMed]

Gómez, E.

E. Gómez, K. C. Vernon, and T. J. Davis, “Symmetry effects on the optical coupling between plasmonic nanoparticles with applications to hierarchical structures,” Phys. Rev. B81(7), 075414 (2010).
[CrossRef]

Hafner, J. H.

J. B. Lassiter, J. Aizpurua, L. I. Hernandez, D. W. Brandl, I. Romero, S. Lal, J. H. Hafner, P. Nordlander, and N. J. Halas, “Close encounters between two nanoshells,” Nano Lett.8(4), 1212–1218 (2008).
[CrossRef] [PubMed]

F. Hao, C. L. Nehl, J. H. Hafner, and P. Nordlander, “Plasmon resonances of a gold nanostar,” Nano Lett.7(3), 729–732 (2007).
[CrossRef] [PubMed]

H. Wang, Y. Wu, B. Lassiter, C. L. Nehl, J. H. Hafner, P. Nordlander, and N. J. Halas, “Symmetry breaking in individual plasmonic nanoparticles,” Proc. Natl. Acad. Sci. U.S.A.103(29), 10856–10860 (2006).
[CrossRef] [PubMed]

Halas, N. J.

J. B. Lassiter, H. Sobhani, J. A. Fan, J. Kundu, F. Capasso, P. Nordlander, and N. J. Halas, “Fano resonances in plasmonic nanoclusters: geometrical and chemical tunability,” Nano Lett.10(8), 3184–3189 (2010).
[CrossRef] [PubMed]

J. B. Lassiter, J. Aizpurua, L. I. Hernandez, D. W. Brandl, I. Romero, S. Lal, J. H. Hafner, P. Nordlander, and N. J. Halas, “Close encounters between two nanoshells,” Nano Lett.8(4), 1212–1218 (2008).
[CrossRef] [PubMed]

F. Hao, Y. Sonnefraud, P. V. Dorpe, S. A. Maier, N. J. Halas, and P. Nordlander, “Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance,” Nano Lett.8(11), 3983–3988 (2008).
[CrossRef] [PubMed]

H. Wang, Y. Wu, B. Lassiter, C. L. Nehl, J. H. Hafner, P. Nordlander, and N. J. Halas, “Symmetry breaking in individual plasmonic nanoparticles,” Proc. Natl. Acad. Sci. U.S.A.103(29), 10856–10860 (2006).
[CrossRef] [PubMed]

H. Wang, D. W. Brandl, F. Le, P. Nordlander, and N. J. Halas, “Nanorice: a hybrid plasmonic nanostructure,” Nano Lett.6(4), 827–832 (2006).
[CrossRef] [PubMed]

C. Radloff and N. J. Halas, “Plasmonic properties of concentric nanoshells,” Nano Lett.4(7), 1323–1327 (2004).
[CrossRef]

Han, W.

J. Zhou, D. Mu, H. Song, X. Leng, Y. Meng, W. Han, J. Yang, X. Di, and Q. Chang, “Plasmon resonances in nanoparticle system consisting of different materials,” Opt. Commun.295, 235–238 (2013).
[CrossRef]

J. Zhou, D. Mu, J. Yang, W. Han, and X. Di, “Coupled-resonator-induced transparency in photonic crystal waveguide resonator systems,” Opt. Express19(6), 4856–4861 (2011), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-19-6-4856 .
[CrossRef] [PubMed]

Hao, F.

F. Hao, Y. Sonnefraud, P. V. Dorpe, S. A. Maier, N. J. Halas, and P. Nordlander, “Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance,” Nano Lett.8(11), 3983–3988 (2008).
[CrossRef] [PubMed]

F. Hao, C. L. Nehl, J. H. Hafner, and P. Nordlander, “Plasmon resonances of a gold nanostar,” Nano Lett.7(3), 729–732 (2007).
[CrossRef] [PubMed]

Haran, G.

L. Chuntonov and G. Haran, “Trimeric plasmonic molecules: the role of symmetry,” Nano Lett.11(6), 2440–2445 (2011).
[CrossRef] [PubMed]

Haus, H. A.

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol.15(6), 998–1005 (1997).
[CrossRef]

Hentschel, M.

D. Dregely, M. Hentschel, and H. Giessen, “Excitation and tuning of higher-order Fano resonances in plasmonic oligomer clusters,” ACS Nano5(10), 8202–8211 (2011).
[CrossRef] [PubMed]

Hernandez, L. I.

J. B. Lassiter, J. Aizpurua, L. I. Hernandez, D. W. Brandl, I. Romero, S. Lal, J. H. Hafner, P. Nordlander, and N. J. Halas, “Close encounters between two nanoshells,” Nano Lett.8(4), 1212–1218 (2008).
[CrossRef] [PubMed]

Hohenau, A.

W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, “Optical properties of two interacting gold nanoparticles,” Opt. Commun.220(1-3), 137–141 (2003).
[CrossRef]

Iye, Y.

K. Kobayashi, H. Aikawa, A. S. Sano, S. Katsumoto, and Y. Iye, “Fano resonance in a quantum wire with a side-coupled quantum dot,” Phys. Rev. B70(3), 035319 (2004).
[CrossRef]

Joannopoulos, J. D.

Johnson, S. R.

M. Kanskar, P. Paddon, V. Pacradouni, R. Morin, A. Busch, J. F. Young, S. R. Johnson, J. MacKenzie, and T. Tiedje, “Observation of leaky slab modes in an air-bridged semiconductor waveguide with a two-dimensional photonic lattice,” Appl. Phys. Lett.70(11), 1438–1440 (1997).
[CrossRef]

Kanskar, M.

M. Kanskar, P. Paddon, V. Pacradouni, R. Morin, A. Busch, J. F. Young, S. R. Johnson, J. MacKenzie, and T. Tiedje, “Observation of leaky slab modes in an air-bridged semiconductor waveguide with a two-dimensional photonic lattice,” Appl. Phys. Lett.70(11), 1438–1440 (1997).
[CrossRef]

Katsumoto, S.

K. Kobayashi, H. Aikawa, A. S. Sano, S. Katsumoto, and Y. Iye, “Fano resonance in a quantum wire with a side-coupled quantum dot,” Phys. Rev. B70(3), 035319 (2004).
[CrossRef]

Kivshar, Y. S.

Kobayashi, K.

K. Kobayashi, H. Aikawa, A. S. Sano, S. Katsumoto, and Y. Iye, “Fano resonance in a quantum wire with a side-coupled quantum dot,” Phys. Rev. B70(3), 035319 (2004).
[CrossRef]

Krauss, T. F.

Krenn, J. R.

W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, “Optical properties of two interacting gold nanoparticles,” Opt. Commun.220(1-3), 137–141 (2003).
[CrossRef]

Kundu, J.

J. B. Lassiter, H. Sobhani, J. A. Fan, J. Kundu, F. Capasso, P. Nordlander, and N. J. Halas, “Fano resonances in plasmonic nanoclusters: geometrical and chemical tunability,” Nano Lett.10(8), 3184–3189 (2010).
[CrossRef] [PubMed]

Ladron de Guevara, M. L.

M. L. Ladron de Guevara, F. Claro, and P. A. Orellana, “Ghost Fano resonance in a double quantum dot molecule attached to leads,” Phys. Rev. B67(19), 195335 (2003).
[CrossRef]

Laine, J.

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol.15(6), 998–1005 (1997).
[CrossRef]

Lal, S.

J. B. Lassiter, J. Aizpurua, L. I. Hernandez, D. W. Brandl, I. Romero, S. Lal, J. H. Hafner, P. Nordlander, and N. J. Halas, “Close encounters between two nanoshells,” Nano Lett.8(4), 1212–1218 (2008).
[CrossRef] [PubMed]

Lamprecht, B.

W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, “Optical properties of two interacting gold nanoparticles,” Opt. Commun.220(1-3), 137–141 (2003).
[CrossRef]

Lan, Y. C.

Lassiter, B.

H. Wang, Y. Wu, B. Lassiter, C. L. Nehl, J. H. Hafner, P. Nordlander, and N. J. Halas, “Symmetry breaking in individual plasmonic nanoparticles,” Proc. Natl. Acad. Sci. U.S.A.103(29), 10856–10860 (2006).
[CrossRef] [PubMed]

Lassiter, J. B.

J. B. Lassiter, H. Sobhani, J. A. Fan, J. Kundu, F. Capasso, P. Nordlander, and N. J. Halas, “Fano resonances in plasmonic nanoclusters: geometrical and chemical tunability,” Nano Lett.10(8), 3184–3189 (2010).
[CrossRef] [PubMed]

J. B. Lassiter, J. Aizpurua, L. I. Hernandez, D. W. Brandl, I. Romero, S. Lal, J. H. Hafner, P. Nordlander, and N. J. Halas, “Close encounters between two nanoshells,” Nano Lett.8(4), 1212–1218 (2008).
[CrossRef] [PubMed]

Le, F.

H. Wang, D. W. Brandl, F. Le, P. Nordlander, and N. J. Halas, “Nanorice: a hybrid plasmonic nanostructure,” Nano Lett.6(4), 827–832 (2006).
[CrossRef] [PubMed]

Leitner, A.

W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, “Optical properties of two interacting gold nanoparticles,” Opt. Commun.220(1-3), 137–141 (2003).
[CrossRef]

Leng, X.

J. Zhou, D. Mu, H. Song, X. Leng, Y. Meng, W. Han, J. Yang, X. Di, and Q. Chang, “Plasmon resonances in nanoparticle system consisting of different materials,” Opt. Commun.295, 235–238 (2013).
[CrossRef]

Little, B. E.

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol.15(6), 998–1005 (1997).
[CrossRef]

MacKenzie, J.

M. Kanskar, P. Paddon, V. Pacradouni, R. Morin, A. Busch, J. F. Young, S. R. Johnson, J. MacKenzie, and T. Tiedje, “Observation of leaky slab modes in an air-bridged semiconductor waveguide with a two-dimensional photonic lattice,” Appl. Phys. Lett.70(11), 1438–1440 (1997).
[CrossRef]

Maier, S. A.

F. Hao, Y. Sonnefraud, P. V. Dorpe, S. A. Maier, N. J. Halas, and P. Nordlander, “Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance,” Nano Lett.8(11), 3983–3988 (2008).
[CrossRef] [PubMed]

Martin, O. J. F.

B. Gallinet and O. J. F. Martin, “Influence of electromagnetic interactions on the line shape of plasmonic Fano resonances,” ACS Nano5(11), 8999–9008 (2011).
[CrossRef] [PubMed]

Mayergoyz, I. D.

I. D. Mayergoyz, D. R. Fredkin, and Z. Zhang, “Electrostatic (plasmon) resonances in nanoparticles,” Phys. Rev. Lett.72, 155412 (2005).

D. R. Fredkin and I. D. Mayergoyz, “Resonant behavior of dielectric objects (electrostatic resonances),” Phys. Rev. Lett.91(25), 253902 (2003).
[CrossRef] [PubMed]

Meng, Y.

J. Zhou, D. Mu, H. Song, X. Leng, Y. Meng, W. Han, J. Yang, X. Di, and Q. Chang, “Plasmon resonances in nanoparticle system consisting of different materials,” Opt. Commun.295, 235–238 (2013).
[CrossRef]

Mingaleev, S. F.

Mirin, N. A.

N. A. Mirin, K. Bao, and P. Nordlander, “Fano resonances in plasmonic nanoparticle aggregates,” J. Phys. Chem. A113(16), 4028–4034 (2009).
[CrossRef] [PubMed]

Miroshnichenko, A. E.

Morin, R.

M. Kanskar, P. Paddon, V. Pacradouni, R. Morin, A. Busch, J. F. Young, S. R. Johnson, J. MacKenzie, and T. Tiedje, “Observation of leaky slab modes in an air-bridged semiconductor waveguide with a two-dimensional photonic lattice,” Appl. Phys. Lett.70(11), 1438–1440 (1997).
[CrossRef]

Mu, D.

J. Zhou, D. Mu, H. Song, X. Leng, Y. Meng, W. Han, J. Yang, X. Di, and Q. Chang, “Plasmon resonances in nanoparticle system consisting of different materials,” Opt. Commun.295, 235–238 (2013).
[CrossRef]

J. Zhou, D. Mu, J. Yang, W. Han, and X. Di, “Coupled-resonator-induced transparency in photonic crystal waveguide resonator systems,” Opt. Express19(6), 4856–4861 (2011), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-19-6-4856 .
[CrossRef] [PubMed]

Nehl, C. L.

F. Hao, C. L. Nehl, J. H. Hafner, and P. Nordlander, “Plasmon resonances of a gold nanostar,” Nano Lett.7(3), 729–732 (2007).
[CrossRef] [PubMed]

H. Wang, Y. Wu, B. Lassiter, C. L. Nehl, J. H. Hafner, P. Nordlander, and N. J. Halas, “Symmetry breaking in individual plasmonic nanoparticles,” Proc. Natl. Acad. Sci. U.S.A.103(29), 10856–10860 (2006).
[CrossRef] [PubMed]

Nordlander, P.

J. B. Lassiter, H. Sobhani, J. A. Fan, J. Kundu, F. Capasso, P. Nordlander, and N. J. Halas, “Fano resonances in plasmonic nanoclusters: geometrical and chemical tunability,” Nano Lett.10(8), 3184–3189 (2010).
[CrossRef] [PubMed]

N. A. Mirin, K. Bao, and P. Nordlander, “Fano resonances in plasmonic nanoparticle aggregates,” J. Phys. Chem. A113(16), 4028–4034 (2009).
[CrossRef] [PubMed]

F. Hao, Y. Sonnefraud, P. V. Dorpe, S. A. Maier, N. J. Halas, and P. Nordlander, “Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance,” Nano Lett.8(11), 3983–3988 (2008).
[CrossRef] [PubMed]

J. B. Lassiter, J. Aizpurua, L. I. Hernandez, D. W. Brandl, I. Romero, S. Lal, J. H. Hafner, P. Nordlander, and N. J. Halas, “Close encounters between two nanoshells,” Nano Lett.8(4), 1212–1218 (2008).
[CrossRef] [PubMed]

F. Hao, C. L. Nehl, J. H. Hafner, and P. Nordlander, “Plasmon resonances of a gold nanostar,” Nano Lett.7(3), 729–732 (2007).
[CrossRef] [PubMed]

H. Wang, Y. Wu, B. Lassiter, C. L. Nehl, J. H. Hafner, P. Nordlander, and N. J. Halas, “Symmetry breaking in individual plasmonic nanoparticles,” Proc. Natl. Acad. Sci. U.S.A.103(29), 10856–10860 (2006).
[CrossRef] [PubMed]

H. Wang, D. W. Brandl, F. Le, P. Nordlander, and N. J. Halas, “Nanorice: a hybrid plasmonic nanostructure,” Nano Lett.6(4), 827–832 (2006).
[CrossRef] [PubMed]

Orellana, P. A.

M. L. Ladron de Guevara, F. Claro, and P. A. Orellana, “Ghost Fano resonance in a double quantum dot molecule attached to leads,” Phys. Rev. B67(19), 195335 (2003).
[CrossRef]

Pacradouni, V.

M. Kanskar, P. Paddon, V. Pacradouni, R. Morin, A. Busch, J. F. Young, S. R. Johnson, J. MacKenzie, and T. Tiedje, “Observation of leaky slab modes in an air-bridged semiconductor waveguide with a two-dimensional photonic lattice,” Appl. Phys. Lett.70(11), 1438–1440 (1997).
[CrossRef]

Paddon, P.

M. Kanskar, P. Paddon, V. Pacradouni, R. Morin, A. Busch, J. F. Young, S. R. Johnson, J. MacKenzie, and T. Tiedje, “Observation of leaky slab modes in an air-bridged semiconductor waveguide with a two-dimensional photonic lattice,” Appl. Phys. Lett.70(11), 1438–1440 (1997).
[CrossRef]

Park, W.

Y. Cui, J. Zhou, V. A. Tamma, and W. Park, “Dynamic tuning and symmetry lowering of Fano resonance in plasmonic nanostructure,” ACS Nano6(3), 2385–2393 (2012).
[CrossRef] [PubMed]

Radloff, C.

C. Radloff and N. J. Halas, “Plasmonic properties of concentric nanoshells,” Nano Lett.4(7), 1323–1327 (2004).
[CrossRef]

Rechberger, W.

W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, “Optical properties of two interacting gold nanoparticles,” Opt. Commun.220(1-3), 137–141 (2003).
[CrossRef]

Romero, I.

J. B. Lassiter, J. Aizpurua, L. I. Hernandez, D. W. Brandl, I. Romero, S. Lal, J. H. Hafner, P. Nordlander, and N. J. Halas, “Close encounters between two nanoshells,” Nano Lett.8(4), 1212–1218 (2008).
[CrossRef] [PubMed]

Sano, A. S.

K. Kobayashi, H. Aikawa, A. S. Sano, S. Katsumoto, and Y. Iye, “Fano resonance in a quantum wire with a side-coupled quantum dot,” Phys. Rev. B70(3), 035319 (2004).
[CrossRef]

Shiu, R. C.

Skolnick, M. S.

Sobhani, H.

J. B. Lassiter, H. Sobhani, J. A. Fan, J. Kundu, F. Capasso, P. Nordlander, and N. J. Halas, “Fano resonances in plasmonic nanoclusters: geometrical and chemical tunability,” Nano Lett.10(8), 3184–3189 (2010).
[CrossRef] [PubMed]

Song, H.

J. Zhou, D. Mu, H. Song, X. Leng, Y. Meng, W. Han, J. Yang, X. Di, and Q. Chang, “Plasmon resonances in nanoparticle system consisting of different materials,” Opt. Commun.295, 235–238 (2013).
[CrossRef]

Sonnefraud, Y.

F. Hao, Y. Sonnefraud, P. V. Dorpe, S. A. Maier, N. J. Halas, and P. Nordlander, “Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance,” Nano Lett.8(11), 3983–3988 (2008).
[CrossRef] [PubMed]

Stefanski, P.

B. R. Bułka and P. Stefański, “Fano and Kondo resonance in electronic current through nanodevices,” Phys. Rev. Lett.86(22), 5128–5131 (2001).
[CrossRef] [PubMed]

Stevenson, R. M.

Suh, W.

Tamma, V. A.

Y. Cui, J. Zhou, V. A. Tamma, and W. Park, “Dynamic tuning and symmetry lowering of Fano resonance in plasmonic nanostructure,” ACS Nano6(3), 2385–2393 (2012).
[CrossRef] [PubMed]

Tiedje, T.

M. Kanskar, P. Paddon, V. Pacradouni, R. Morin, A. Busch, J. F. Young, S. R. Johnson, J. MacKenzie, and T. Tiedje, “Observation of leaky slab modes in an air-bridged semiconductor waveguide with a two-dimensional photonic lattice,” Appl. Phys. Lett.70(11), 1438–1440 (1997).
[CrossRef]

Vernon, K. C.

E. Gómez, K. C. Vernon, and T. J. Davis, “Symmetry effects on the optical coupling between plasmonic nanoparticles with applications to hierarchical structures,” Phys. Rev. B81(7), 075414 (2010).
[CrossRef]

Wang, H.

H. Wang, Y. Wu, B. Lassiter, C. L. Nehl, J. H. Hafner, P. Nordlander, and N. J. Halas, “Symmetry breaking in individual plasmonic nanoparticles,” Proc. Natl. Acad. Sci. U.S.A.103(29), 10856–10860 (2006).
[CrossRef] [PubMed]

H. Wang, D. W. Brandl, F. Le, P. Nordlander, and N. J. Halas, “Nanorice: a hybrid plasmonic nanostructure,” Nano Lett.6(4), 827–832 (2006).
[CrossRef] [PubMed]

Whittaker, D. M.

Wu, Y.

H. Wang, Y. Wu, B. Lassiter, C. L. Nehl, J. H. Hafner, P. Nordlander, and N. J. Halas, “Symmetry breaking in individual plasmonic nanoparticles,” Proc. Natl. Acad. Sci. U.S.A.103(29), 10856–10860 (2006).
[CrossRef] [PubMed]

Yang, J.

J. Zhou, D. Mu, H. Song, X. Leng, Y. Meng, W. Han, J. Yang, X. Di, and Q. Chang, “Plasmon resonances in nanoparticle system consisting of different materials,” Opt. Commun.295, 235–238 (2013).
[CrossRef]

J. Zhou, D. Mu, J. Yang, W. Han, and X. Di, “Coupled-resonator-induced transparency in photonic crystal waveguide resonator systems,” Opt. Express19(6), 4856–4861 (2011), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-19-6-4856 .
[CrossRef] [PubMed]

Young, J. F.

M. Kanskar, P. Paddon, V. Pacradouni, R. Morin, A. Busch, J. F. Young, S. R. Johnson, J. MacKenzie, and T. Tiedje, “Observation of leaky slab modes in an air-bridged semiconductor waveguide with a two-dimensional photonic lattice,” Appl. Phys. Lett.70(11), 1438–1440 (1997).
[CrossRef]

Zhang, Z.

I. D. Mayergoyz, D. R. Fredkin, and Z. Zhang, “Electrostatic (plasmon) resonances in nanoparticles,” Phys. Rev. Lett.72, 155412 (2005).

Zhou, J.

J. Zhou, D. Mu, H. Song, X. Leng, Y. Meng, W. Han, J. Yang, X. Di, and Q. Chang, “Plasmon resonances in nanoparticle system consisting of different materials,” Opt. Commun.295, 235–238 (2013).
[CrossRef]

Y. Cui, J. Zhou, V. A. Tamma, and W. Park, “Dynamic tuning and symmetry lowering of Fano resonance in plasmonic nanostructure,” ACS Nano6(3), 2385–2393 (2012).
[CrossRef] [PubMed]

J. Zhou, D. Mu, J. Yang, W. Han, and X. Di, “Coupled-resonator-induced transparency in photonic crystal waveguide resonator systems,” Opt. Express19(6), 4856–4861 (2011), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-19-6-4856 .
[CrossRef] [PubMed]

ACS Nano (3)

B. Gallinet and O. J. F. Martin, “Influence of electromagnetic interactions on the line shape of plasmonic Fano resonances,” ACS Nano5(11), 8999–9008 (2011).
[CrossRef] [PubMed]

D. Dregely, M. Hentschel, and H. Giessen, “Excitation and tuning of higher-order Fano resonances in plasmonic oligomer clusters,” ACS Nano5(10), 8202–8211 (2011).
[CrossRef] [PubMed]

Y. Cui, J. Zhou, V. A. Tamma, and W. Park, “Dynamic tuning and symmetry lowering of Fano resonance in plasmonic nanostructure,” ACS Nano6(3), 2385–2393 (2012).
[CrossRef] [PubMed]

Appl. Phys. Lett. (1)

M. Kanskar, P. Paddon, V. Pacradouni, R. Morin, A. Busch, J. F. Young, S. R. Johnson, J. MacKenzie, and T. Tiedje, “Observation of leaky slab modes in an air-bridged semiconductor waveguide with a two-dimensional photonic lattice,” Appl. Phys. Lett.70(11), 1438–1440 (1997).
[CrossRef]

J. Lightwave Technol. (2)

J. Opt. Soc. Am. A (1)

J. Phys. Chem. A (1)

N. A. Mirin, K. Bao, and P. Nordlander, “Fano resonances in plasmonic nanoparticle aggregates,” J. Phys. Chem. A113(16), 4028–4034 (2009).
[CrossRef] [PubMed]

Nano Lett. (7)

J. B. Lassiter, H. Sobhani, J. A. Fan, J. Kundu, F. Capasso, P. Nordlander, and N. J. Halas, “Fano resonances in plasmonic nanoclusters: geometrical and chemical tunability,” Nano Lett.10(8), 3184–3189 (2010).
[CrossRef] [PubMed]

J. B. Lassiter, J. Aizpurua, L. I. Hernandez, D. W. Brandl, I. Romero, S. Lal, J. H. Hafner, P. Nordlander, and N. J. Halas, “Close encounters between two nanoshells,” Nano Lett.8(4), 1212–1218 (2008).
[CrossRef] [PubMed]

C. Radloff and N. J. Halas, “Plasmonic properties of concentric nanoshells,” Nano Lett.4(7), 1323–1327 (2004).
[CrossRef]

H. Wang, D. W. Brandl, F. Le, P. Nordlander, and N. J. Halas, “Nanorice: a hybrid plasmonic nanostructure,” Nano Lett.6(4), 827–832 (2006).
[CrossRef] [PubMed]

F. Hao, C. L. Nehl, J. H. Hafner, and P. Nordlander, “Plasmon resonances of a gold nanostar,” Nano Lett.7(3), 729–732 (2007).
[CrossRef] [PubMed]

L. Chuntonov and G. Haran, “Trimeric plasmonic molecules: the role of symmetry,” Nano Lett.11(6), 2440–2445 (2011).
[CrossRef] [PubMed]

F. Hao, Y. Sonnefraud, P. V. Dorpe, S. A. Maier, N. J. Halas, and P. Nordlander, “Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance,” Nano Lett.8(11), 3983–3988 (2008).
[CrossRef] [PubMed]

Opt. Commun. (2)

J. Zhou, D. Mu, H. Song, X. Leng, Y. Meng, W. Han, J. Yang, X. Di, and Q. Chang, “Plasmon resonances in nanoparticle system consisting of different materials,” Opt. Commun.295, 235–238 (2013).
[CrossRef]

W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, “Optical properties of two interacting gold nanoparticles,” Opt. Commun.220(1-3), 137–141 (2003).
[CrossRef]

Opt. Express (2)

Opt. Lett. (1)

Phys. Rev. B (3)

E. Gómez, K. C. Vernon, and T. J. Davis, “Symmetry effects on the optical coupling between plasmonic nanoparticles with applications to hierarchical structures,” Phys. Rev. B81(7), 075414 (2010).
[CrossRef]

K. Kobayashi, H. Aikawa, A. S. Sano, S. Katsumoto, and Y. Iye, “Fano resonance in a quantum wire with a side-coupled quantum dot,” Phys. Rev. B70(3), 035319 (2004).
[CrossRef]

M. L. Ladron de Guevara, F. Claro, and P. A. Orellana, “Ghost Fano resonance in a double quantum dot molecule attached to leads,” Phys. Rev. B67(19), 195335 (2003).
[CrossRef]

Phys. Rev. Lett. (3)

B. R. Bułka and P. Stefański, “Fano and Kondo resonance in electronic current through nanodevices,” Phys. Rev. Lett.86(22), 5128–5131 (2001).
[CrossRef] [PubMed]

I. D. Mayergoyz, D. R. Fredkin, and Z. Zhang, “Electrostatic (plasmon) resonances in nanoparticles,” Phys. Rev. Lett.72, 155412 (2005).

D. R. Fredkin and I. D. Mayergoyz, “Resonant behavior of dielectric objects (electrostatic resonances),” Phys. Rev. Lett.91(25), 253902 (2003).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (1)

H. Wang, Y. Wu, B. Lassiter, C. L. Nehl, J. H. Hafner, P. Nordlander, and N. J. Halas, “Symmetry breaking in individual plasmonic nanoparticles,” Proc. Natl. Acad. Sci. U.S.A.103(29), 10856–10860 (2006).
[CrossRef] [PubMed]

Other (1)

A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, 2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Structure of Ag nanoparticles embedded in F-P cavity. The F-P cavity is formed by a dielectric slab with two silver films on both sides. The thicknesses of the slab and the silver film are h and d=20nm , respectively. The embedded silver particles, located in the center of the F-P cavity, consist of a square lattice with period a=200nm and the radii of the particles are 25nm.

Fig. 2
Fig. 2

Transmission of the Fano system with h=300nm . The solid line is obtained by the FDTD method. The dash line is calculated from Eq. (5) with 2/τ =5.18× 10 13 rad/s , 1/ τ 0 =1.73× 10 13 rad/s , 1/ τ 1 =2.16× 10 13 rad/s , ω 0 =3.43× 10 15 rad/s , μ 1 =2.10× 10 13 rad/s , ω 1 =3.40× 10 15 rad/s . Insertion is the charge distribution of nanosphere dipole mode.

Fig. 3
Fig. 3

Illustration of center cavity side-coupled to multi-mode cavity.

Fig. 4
Fig. 4

Steady-state electric field distribution ( E x component at plane y=0 ) at wavelength 554.1nm . The red color indicates the field oscillating to right direction and the blue left direction. For F-P mode stimulation, the uniform slab sandwiched between silver films is with same thickness and with an effective dielectric constant. For the dipole-like mode, the silver nanosphere is embedded in a uniform background dielectric of 6.

Fig. 5
Fig. 5

(a)Transmission of the structure with h=360nm . The solid line is obtained by the FDTD method. The dash curve is calculated from Eq. (5) with 2/τ =4.95× 10 13 rad/s , 1/ τ 0 =6.58× 10 12 rad/s , 1/τ 1 =2.83× 10 13 rad/s , 1/ τ 2 =3.26× 10 13 rad/s ω 0 =3.82× 10 15 rad/s , μ 1 =4.70× 10 13 rad/s , ω 1 =3.79× 10 15 rad/s , μ 2 =3.67× 10 13 rad/s , ω 2 =3.90× 10 15 rad/s . (b) The charge nanosphere distributions of the quadrupole mode. (c) The charge nanosphere distributions of the octopole mode. (d) and (e) Steady-state electric field distributions ( E x component at plane y=0 ). (d) Quadrupole-like plasmon mode at wavelength 497.1nm (e) Octopole-like plasmon mode at wavelength 482.8nm .

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

ε=1 ω p 2 ω 2 +jωγ
d a 0 dt =j ω 0 a 0 ( 2 τ + 1 τ 0 ) a 0 i j μ i a i + S +1 2 τ ,
d a i dt =j ω i a i 1 τ i a i j μ i a 0 , i=1,2,3,
S 2 = S +2 +j 2 τ a 0
T= | S 2 S +1 | 2 = | 2 τ j( ω ω 0 )+ 2 τ + 1 τ 0 + i μ i 2 j( ω ω i )+ 1 τ i | 2 .

Metrics