Abstract

Single-particle interactions hold the promise of nanometer-scale devices in areas such as data communications and storage, nanolithography, waveguides, renewable energy and therapeutics. We propose that the collective electronic properties possessed by noble metal nanoparticles may be exploited for device actuation via the unapparent mechanism of plasmon-assisted heat generation and flux. The temperature dependence of the dielectric function and the thermal transport properties of the particles play the central role in the feasibility of the thermally-actuated system, however the behavior of these thermoplasmonic processes is unclear. We experimentally and computationally analyzed modulation via thermoplasmonic processes on a test system of gold (Au) nano-islands. Modulation and energy transport in discontinuous domains exhibited quantitatively different characteristics compared to thin films. The results have implications for all surface plasmon based nano-devices where inevitable small-scale thermal processes are present.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature424, 824–830 (2003).
    [CrossRef] [PubMed]
  2. E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science311, 189–193 (2006).
    [CrossRef] [PubMed]
  3. A. L. Lereu, “Modulation - plasmons lend a helping hand,” Nature Photon.1, 368–369 (2007).
    [CrossRef]
  4. J. A. Dionne, K. Diest, L. A. Sweatlock, and H. A. Atwater, “Plasmostor: a metal-oxide-si field effect plasmonic modulator,” Nano Lett.9, 897–902 (2009).
    [CrossRef] [PubMed]
  5. K. F. MacDonald, Z. L. Samson, M. I. Stockman, and N. I. Zheludev, “Ultrafast active plasmonics,” Nat. Photonics3, 55–58 (2009).
    [CrossRef]
  6. H. F. Schouten, N. Kuzmin, G. Dubois, T. D. Visser, G. Gbur, P. F. A. Alkemade, H. Blok, G. W. Hooft, D. Lenstra, and E. R. Eliel, “Plasmon-assisted two-slit transmission: Young’s experiment revisited,” Phys. Rev. Lett.94, 053901 (2005).
    [CrossRef] [PubMed]
  7. P. Muhlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science308, 1607–1609 (2005).
    [CrossRef] [PubMed]
  8. D. Pacifici, H. J. Lezec, and H. A. Atwater, “All-optical modulation by plasmonic excitation of CdSe quantum dots,” Nat. Photonics1, 402–406 (2007).
    [CrossRef]
  9. T. Kawazoe, T. Yatsui, and M. Ohtsu, “Nanophotonics using optical near fields,” J. Non-Cryst. Solids352, 2492–2495 (2006).
    [CrossRef]
  10. W. Dickson, G. A. Wurtz, P. R. Evans, R. J. Pollard, and A. V. Zayats, “Electronically controlled surface plasmon dispersion and optical transmission through metallic hole arrays using liquid crystal,” Nano Lett.8, 281–286 (2008).
    [CrossRef]
  11. R. A. Pala, K. T. Shimizu, N. A. Melosh, and M. L. Brongersma, “A nonvolatile plasmonic switch employing photochromic molecules,” Nano Lett.8, 1506–1510 (2008).
    [CrossRef] [PubMed]
  12. E. Hendry, F. J. Garcia-Vidal, L. Martin-Moreno, J. G. Rivas, M. Bonn, A. P. Hibbins, and M. J. Lockyear, “Optical control over surface-plasmon-polariton-assisted THz transmission through a slit aperture,” Phys. Rev. Lett.100, 123901–123904 (2008).
    [CrossRef] [PubMed]
  13. W. Cai, J. S. White, and M. L. Brongersma, “Compact, high-speed and power-efficient electrooptic plasmonic modulators,” Nano Lett.9, 4403–4411 (2009).
    [CrossRef] [PubMed]
  14. C. Min and G. Veronis, “Absorption switches in metal-dielectric-metal plasmonic waveguides,” Opt. Express17, 10757–10766 (2009).
    [CrossRef] [PubMed]
  15. N. Large, M. Abb, J. Aizpurua, and O. L. Muskens, “Photoconductively loaded plasmonic nanoantenna as building block for ultracompact optical switches,” Nano Lett.10, 1741–1746 (2010).
    [CrossRef] [PubMed]
  16. B. E. Sernelius, Surface Modes in Physics (Wiley-VCH Verlag Berlin GmbH, 2001).
    [CrossRef]
  17. A. Passian, A. L. Lereu, R. H. Ritchie, F. Meriaudeau, T. Thundat, and T. L. Ferrell, “Surface plasmon assisted thermal coupling of multiple photon energies,” Thin Solid Films497, 315–320 (2006).
    [CrossRef]
  18. A. L. Lereu, A. Passian, R. H. Farahi, N. F. van Hulst, T. L. Ferrell, and T. Thundat, “Thermoplasmonic shift and dispersion in thin metal films,” J. Vac. Sci. Technol., A26, 836–841 (2008).
    [CrossRef]
  19. A. Passian, S. Zahrai, A. L. Lereu, R. H. Farahi, T. L. Ferrell, and T. Thundat, “Nonradiative surface plasmon assisted microscale Marangoni forces,” Phys. Rev. E73,066311–066316 (2006).
    [CrossRef]
  20. A. L. Lereu, A. Passian, J. P. Goudonnet, T. Thundat, and T. L. Ferrell, “Optical modulation processes in thin films based on thermal effects of surface plasmons,” Appl. Phys. Lett.86, 154101–154103 (2005).
    [CrossRef]
  21. J. Y. Bigot, J. C. Merle, O. Cregut, and A. Daunois, “Electron dynamics in copper metallic nanoparticles probed with femtosecond optical pulses,” Phys. Rev. Lett.75, 4702–4705 (1995).
    [CrossRef] [PubMed]
  22. S. Link and M. A. El-Sayed, “Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods,” J. Phys. Chem. B103, 8410–8426 (1999).
    [CrossRef]
  23. M. Hu and G. V. Hartland, “Heat dissipation for au particles in aqueous solution: relaxation time versus size,” J. Phys. Chem. B106, 7029–7033 (2002).
    [CrossRef]
  24. M. Perner, S. Gresillon, J. Marz, G. von Plessen, J. Feldmann, J. Porstendorfer, K. J. Berg, and G. Berg, “Observation of hot-electron pressure in the vibration dynamics of metal nanoparticles,” Phys. Rev. Lett.85, 792–795 (2000).
    [CrossRef] [PubMed]
  25. L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” PNAS100, 13549–13554 (2003).
    [CrossRef] [PubMed]
  26. D. P. O’Neal, L. R. Hirsch, N. J. Halas, J. D. Payne, and J. L. West, “Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles,” Cancer Lett.209, 171–176 (2004).
    [CrossRef]
  27. D. Pissuwan, S. M. Valenzuela, and M. B. Cortie, “Therapeutic possibilities of plasmonically heated gold nanoparticles,” Trends Biotechnol.24, 62–67 (2006).
    [CrossRef]
  28. J. Z. Zhang, “Biomedical Applications of Shape-Controlled Plasmonic Nanostructures: A Case Study of Hollow Gold Nanospheres for Photothermal Ablation Therapy of Cancer,” J. Phys. Chem. Lett.1, 686–695 (2010).
    [CrossRef]
  29. J. Y. Chen, C. Glaus, R. Laforest, Q. Zhang, M. Yang, M. Gidding, M. J. Welch, and Y. Xia, “Gold nanocages as photothermal transducers for cancer treatment,” Small6, 811–817 (2010).
    [CrossRef] [PubMed]
  30. R. Bardhan, S. Lal, A. Joshi, and N. J. Halas, “Theranostic nanoshells: from probe design to imaging and treatment of cancer,” Acc. Chem. Res.44, 936–946 (2011).
    [CrossRef] [PubMed]
  31. M. Essone Mezeme and C. Brosseau, “Engineering nanostructures with enhanced thermoplasmonic properties for biosensing and selective targeting applications” Phys. Rev. E.87, 012722–012731 (2013).
    [CrossRef]
  32. R. H. Farahi, A. Passian, T. L. Ferrell, and T. Thundat, “Marangoni forces created by surface plasmon decay,” Opt. Lett.30, 616–618 (2005).
    [CrossRef] [PubMed]
  33. R. H. Farahi, A. Passian, S. Zahrai, A. L. Lereu, T. L. Ferrell, and T. Thundat, “Microscale Marangoni actuation: all-optical and all-electrical methods,” Ultramicroscopy106, 815–821 (2006).
    [CrossRef] [PubMed]
  34. A. L. Lereu, A. Passian, R. H. Farahi, S. Zahrai, and T. Thundat, “Plasmonic Marangoni forces,” JEOS:RP1, 06030–06034 (2006).
    [CrossRef]
  35. A. Passian, A. L. Lereu, E. T. Arakawa, A. Wig, T. Thundat, and T. L. Ferrell, “Modulation of multiple photon energies by use of surface plasmons,” Opt. Lett.30, 41–43 (2005).
    [CrossRef] [PubMed]
  36. P. Shankar and N. K. Viswanathan, “All-optical thermo-plasmonic device,” Appl. Opt.50, 5966–5969 (2011).
    [CrossRef] [PubMed]
  37. A. Passian, A. L. Lereu, E. T. Arakawa, R. H. Ritchie, T. Thundat, and T. L. Ferrell, “Opto-electronic versus electro-optic modulation,” Appl. Phys. Lett.85, 2703–2705 (2004).
    [CrossRef]
  38. T. Nikolajsen, K. Leosson, and S. I. Bozhevolnyi, “Surface plasmon polariton based modulators and switches operating at telecom wavelengths,” Appl. Phys. Lett.85, 5833–5835 (2004).
    [CrossRef]
  39. A. Passian, A. L. Lereu, R. H. Farahi, T. L. Ferrell, and T. Thundat, “Thermoplasmonics in thin metal films,” in Trends in solid film researchA. R. Jost, eds. (Nova Science Publishers, Hauppauge NY, 2007), pp. 69–109.
  40. J. Gosciniak, S. I. Bozhevolnyi, T. B. Andersen, V. S. Volkov, J. Kjelstrup-Hansen, L. Markey, and A. Dereux, “Thermo-optic control of dielectric-loaded plasmonic waveguide components,” Opt. Express18, 1207–1216 (2010).
    [CrossRef] [PubMed]
  41. H. Wei, Z. Wang, X. Tian, M. Käll, and H. Xu, “Cascaded logic gates in nanophotonic plasmon networks,” Nat. Commun.2, 387–391 (2011).
    [CrossRef] [PubMed]
  42. S. V. Boriskina and B. M. Reinhard, “Molding the flow of light on the nanoscale: from vortex nanogears to phase-operated plasmonic machinery,” Nanoscale4, 76–90 (2012).
    [CrossRef]
  43. D. Solis, B. Willingham, S. L. Nauert, L. S. Slaughter, J. Olson, P. Swanglap, A. Paul, W-S. Chang, and S. Link, “Electromagnetic energy transport in nanoparticle chains via dark plasmon modes,” Nano Lett.12, 1349–1353 (2012).
    [CrossRef] [PubMed]
  44. A. Passian, A. Wig, A. L. Lereu, P. G. Evans, F. Meriaudeau, T. Thundat, and T. L. Ferrell, “Probing large area surface plasmon interference in thin metal films using photon scanning tunneling microscopy,” Ultramicroscopy100, 429–436 (2004).
    [CrossRef] [PubMed]
  45. A. Passian, A. Wig, A. L. Lereu, F. Meriaudeau, T. Thundat, and T. L. Ferrell, “Photon tunneling via surface plasmon coupling,” Appl. Phys. Lett.85, 3420–3422 (2004).
    [CrossRef]
  46. F. P. Incropera, D. P. Dewitt, T. L. Bergman, and A. S. Lavine, Fundamentals of Heat and Mass Transfer, 6th ed. (John Wiley & Sons, Inc., 2007).
  47. A. Popescu, L. M. Woods, J. Martin, and G. S. Nolas, “Model of transport properties of thermoelectric nanocomposite materials,” Phys. Rev. B79, 205302–205308 (2009).
    [CrossRef]
  48. D. Cederkrantz, N. Farahi, K. A. Borup, B. B. Iversen, M. Nygren, and A. E. C. Palmqvist, “Enhanced thermoelectric properties of mg2si by addition of tio2 nanoparticles,” J. Appl. Phys.111, 023701–023707 (2012).
    [CrossRef]
  49. F. S. Ou, M. Hu, I. Naumov, A. Kim, W. Wu, A. M. Bratkovsky, X. Li, S. R. Williams, and Z. Li, “Hot-spot engineering in polygonal nanofinger assemblies for surface enhanced raman spectroscopy,” Nano Lett.11, 2538–2542 (2011).
    [CrossRef] [PubMed]
  50. J. Ye, F. Wen, H. Sobhani, J. Britt Lassiter, P. Van Dorpe, P. Nordlander, and N. J. Halas, “Plasmonic nanoclusters: near field properties of the fano resonance interrogated with sers,” Nano Lett.12, 1660–1667 (2012).
    [CrossRef] [PubMed]
  51. C. W. Chen, H. P. Chiang, P. T. Leung, and D. P. Tsai, “Temperature dependence of enhanced optical absorption and raman spectroscopy from metallic nanoparticles,” Solid State Commun.148, 413–416 (2008).
    [CrossRef]
  52. S. Yamaguchi, “Optical absorption of heat treated very thin silver films and its dependence on angle of incidence,” J. Phys. Soc. Jpn.17, 1172–1180 (1962).
    [CrossRef]
  53. T. Q. Qiu and C. L. Tien, “Size effects on nonequilibrium laser-heating of metal-films,” J. Heat Trans-T ASME115, 842–847 (1993).
    [CrossRef]
  54. G. Chen and P. Hui, “Thermal conductivities of evaporated gold films on silicon and glass,” Appl. Phys. Lett.74, 2942–2944, (1999).
    [CrossRef]
  55. A. Passian, R. H. Ritchie, A. L. Lereu, T. Thundat, and T. L. Ferrell, “Curvature effects in surface plasmon dispersion and coupling,” Phys. Rev. B71, 115425–115435, (2005).
    [CrossRef]
  56. S. W. Kennerly, J. W. Little, R. J. Warmack, and T. L. Ferrell, “Optical properties of heated Ag films,” Phys. Rev. B29, 2926–2929 (1984).
    [CrossRef]
  57. U. Kreibig and L. Genzel, “Optical-absorption of small metallic particles,” Surf. Sci.156, 678–700 (1985).
    [CrossRef]
  58. G. Gupta, D. Tanaka, Y. Ito, D. Shibata, M. Shimojo, K. Furuya, K. Mitsui, and K. Kajikawa, “Absorption spectroscopy of gold nanoisland films: optical and structural characterization,” Nanotechnol.20, 025703–025711, (2009).
    [CrossRef]
  59. J. Opsal, A. Rosencwaig, and D. L. Willenborg, “Thermal-wave detection and thin-film thickness measurements with laser beam deflection,” Appl. Opt.22, 3169–3176 (1983).
    [CrossRef] [PubMed]
  60. B. Rief, “Thermal-wave transient behaviour,” Can. J. Phys.64, 1303–1306 (1986).
    [CrossRef]
  61. X. Chen, Y. Chen, M. Yan, and M. Qiu, “Nanosecond photothermal effects in plasmonic nanostructures,” ACS Nano6, 2550–2557 (2012).
    [CrossRef] [PubMed]
  62. G. V. Hartland, “Measurements of the material properties of metal nanoparticles by time-resolved spectroscopy,” Phys. Chem. Chem. Phys.6, 5263–5274 (2004).
    [CrossRef]
  63. Z. Ge, Y. Kang, T. A. Taton, P. V. Braun, and D. G. Cahill, “Thermal transport in au-core polymer-shell nanoparticles,” Nano Lett.5, 531–535 (2005).
    [CrossRef] [PubMed]
  64. P. Keblinski, D. G. Cahill, A. Bodapati, C. R. Sullivan, and T. A. Taton, “Limits of localized heating by electromagnetically excited nanoparticles,” J. Appl. Phys.100, 054305–054309 (2006).
    [CrossRef]
  65. C. Cheng, W. Fan, J. Cao, S-G. Ryu, J. Ji, C. P. Grigoropoulos, and J. Wu, “Heat transfer across the interface between nanoscale solids and gas,” ACS Nano5, 10102–10107 (2011).
    [CrossRef] [PubMed]
  66. M. I. Flik, B. I. Choi, and K. E. Goodson, “Heat-transfer regimes in microstructures,” J. Heat Trans-T ASME114, 666–674 (1992).
    [CrossRef]
  67. G. Chen, “Particularities of heat conduction in nanostructures,” J. Nanopart. Res.2, 199–204 (2000).
    [CrossRef]
  68. S. Volz, (Ed.), , “Thermal Nanosystems and Nanomaterials,” in Topics in Applied Physics, 1st ed.118, (Springer-Verlag Berlin, Heidelberger Platz 3, Berlin, Germany, 2010).
  69. E. Gesikowska and W. Nakwaski, “An impact of multi-layered structures of modern optoelectronic devices on their thermal properties,” Opt. Quant. Electron.40, 205–216 (2008).
    [CrossRef]
  70. R. Stana, I. Casian Botez, V. P. Paun, and A. Marcel, “New model for heat transfer in nanostructures,” J. Comput. Theor. Nanos.9, 55–66 (2012).
    [CrossRef]
  71. J. Kou, H. Qian, H. Lu, Y. Liu, Y. Xu, F. Wu, and J. Fan, “Optimizing the design of nanostructures for improved thermal conduction within confined spaces,” Nanoscale Res. Lett.6, 422–429 (2011).
    [CrossRef] [PubMed]
  72. Z. Xu and M. J. Buehler, “Nanoengineering heat transfer performance at carbon nanotube interfaces,” ACS Nano3, 2767–2775 (2009).
    [CrossRef] [PubMed]
  73. Z. Xu and M. J. Buehler, “Hierarchical nanostructures are crucial to mitigate ultrasmall thermal point loads,” Nano Lett.9, 2065–2072 (2009).
    [CrossRef] [PubMed]

2013 (1)

M. Essone Mezeme and C. Brosseau, “Engineering nanostructures with enhanced thermoplasmonic properties for biosensing and selective targeting applications” Phys. Rev. E.87, 012722–012731 (2013).
[CrossRef]

2012 (6)

S. V. Boriskina and B. M. Reinhard, “Molding the flow of light on the nanoscale: from vortex nanogears to phase-operated plasmonic machinery,” Nanoscale4, 76–90 (2012).
[CrossRef]

D. Solis, B. Willingham, S. L. Nauert, L. S. Slaughter, J. Olson, P. Swanglap, A. Paul, W-S. Chang, and S. Link, “Electromagnetic energy transport in nanoparticle chains via dark plasmon modes,” Nano Lett.12, 1349–1353 (2012).
[CrossRef] [PubMed]

D. Cederkrantz, N. Farahi, K. A. Borup, B. B. Iversen, M. Nygren, and A. E. C. Palmqvist, “Enhanced thermoelectric properties of mg2si by addition of tio2 nanoparticles,” J. Appl. Phys.111, 023701–023707 (2012).
[CrossRef]

J. Ye, F. Wen, H. Sobhani, J. Britt Lassiter, P. Van Dorpe, P. Nordlander, and N. J. Halas, “Plasmonic nanoclusters: near field properties of the fano resonance interrogated with sers,” Nano Lett.12, 1660–1667 (2012).
[CrossRef] [PubMed]

X. Chen, Y. Chen, M. Yan, and M. Qiu, “Nanosecond photothermal effects in plasmonic nanostructures,” ACS Nano6, 2550–2557 (2012).
[CrossRef] [PubMed]

R. Stana, I. Casian Botez, V. P. Paun, and A. Marcel, “New model for heat transfer in nanostructures,” J. Comput. Theor. Nanos.9, 55–66 (2012).
[CrossRef]

2011 (6)

J. Kou, H. Qian, H. Lu, Y. Liu, Y. Xu, F. Wu, and J. Fan, “Optimizing the design of nanostructures for improved thermal conduction within confined spaces,” Nanoscale Res. Lett.6, 422–429 (2011).
[CrossRef] [PubMed]

C. Cheng, W. Fan, J. Cao, S-G. Ryu, J. Ji, C. P. Grigoropoulos, and J. Wu, “Heat transfer across the interface between nanoscale solids and gas,” ACS Nano5, 10102–10107 (2011).
[CrossRef] [PubMed]

F. S. Ou, M. Hu, I. Naumov, A. Kim, W. Wu, A. M. Bratkovsky, X. Li, S. R. Williams, and Z. Li, “Hot-spot engineering in polygonal nanofinger assemblies for surface enhanced raman spectroscopy,” Nano Lett.11, 2538–2542 (2011).
[CrossRef] [PubMed]

P. Shankar and N. K. Viswanathan, “All-optical thermo-plasmonic device,” Appl. Opt.50, 5966–5969 (2011).
[CrossRef] [PubMed]

H. Wei, Z. Wang, X. Tian, M. Käll, and H. Xu, “Cascaded logic gates in nanophotonic plasmon networks,” Nat. Commun.2, 387–391 (2011).
[CrossRef] [PubMed]

R. Bardhan, S. Lal, A. Joshi, and N. J. Halas, “Theranostic nanoshells: from probe design to imaging and treatment of cancer,” Acc. Chem. Res.44, 936–946 (2011).
[CrossRef] [PubMed]

2010 (4)

J. Z. Zhang, “Biomedical Applications of Shape-Controlled Plasmonic Nanostructures: A Case Study of Hollow Gold Nanospheres for Photothermal Ablation Therapy of Cancer,” J. Phys. Chem. Lett.1, 686–695 (2010).
[CrossRef]

J. Y. Chen, C. Glaus, R. Laforest, Q. Zhang, M. Yang, M. Gidding, M. J. Welch, and Y. Xia, “Gold nanocages as photothermal transducers for cancer treatment,” Small6, 811–817 (2010).
[CrossRef] [PubMed]

N. Large, M. Abb, J. Aizpurua, and O. L. Muskens, “Photoconductively loaded plasmonic nanoantenna as building block for ultracompact optical switches,” Nano Lett.10, 1741–1746 (2010).
[CrossRef] [PubMed]

J. Gosciniak, S. I. Bozhevolnyi, T. B. Andersen, V. S. Volkov, J. Kjelstrup-Hansen, L. Markey, and A. Dereux, “Thermo-optic control of dielectric-loaded plasmonic waveguide components,” Opt. Express18, 1207–1216 (2010).
[CrossRef] [PubMed]

2009 (8)

A. Popescu, L. M. Woods, J. Martin, and G. S. Nolas, “Model of transport properties of thermoelectric nanocomposite materials,” Phys. Rev. B79, 205302–205308 (2009).
[CrossRef]

Z. Xu and M. J. Buehler, “Nanoengineering heat transfer performance at carbon nanotube interfaces,” ACS Nano3, 2767–2775 (2009).
[CrossRef] [PubMed]

Z. Xu and M. J. Buehler, “Hierarchical nanostructures are crucial to mitigate ultrasmall thermal point loads,” Nano Lett.9, 2065–2072 (2009).
[CrossRef] [PubMed]

G. Gupta, D. Tanaka, Y. Ito, D. Shibata, M. Shimojo, K. Furuya, K. Mitsui, and K. Kajikawa, “Absorption spectroscopy of gold nanoisland films: optical and structural characterization,” Nanotechnol.20, 025703–025711, (2009).
[CrossRef]

J. A. Dionne, K. Diest, L. A. Sweatlock, and H. A. Atwater, “Plasmostor: a metal-oxide-si field effect plasmonic modulator,” Nano Lett.9, 897–902 (2009).
[CrossRef] [PubMed]

K. F. MacDonald, Z. L. Samson, M. I. Stockman, and N. I. Zheludev, “Ultrafast active plasmonics,” Nat. Photonics3, 55–58 (2009).
[CrossRef]

W. Cai, J. S. White, and M. L. Brongersma, “Compact, high-speed and power-efficient electrooptic plasmonic modulators,” Nano Lett.9, 4403–4411 (2009).
[CrossRef] [PubMed]

C. Min and G. Veronis, “Absorption switches in metal-dielectric-metal plasmonic waveguides,” Opt. Express17, 10757–10766 (2009).
[CrossRef] [PubMed]

2008 (6)

W. Dickson, G. A. Wurtz, P. R. Evans, R. J. Pollard, and A. V. Zayats, “Electronically controlled surface plasmon dispersion and optical transmission through metallic hole arrays using liquid crystal,” Nano Lett.8, 281–286 (2008).
[CrossRef]

R. A. Pala, K. T. Shimizu, N. A. Melosh, and M. L. Brongersma, “A nonvolatile plasmonic switch employing photochromic molecules,” Nano Lett.8, 1506–1510 (2008).
[CrossRef] [PubMed]

E. Hendry, F. J. Garcia-Vidal, L. Martin-Moreno, J. G. Rivas, M. Bonn, A. P. Hibbins, and M. J. Lockyear, “Optical control over surface-plasmon-polariton-assisted THz transmission through a slit aperture,” Phys. Rev. Lett.100, 123901–123904 (2008).
[CrossRef] [PubMed]

A. L. Lereu, A. Passian, R. H. Farahi, N. F. van Hulst, T. L. Ferrell, and T. Thundat, “Thermoplasmonic shift and dispersion in thin metal films,” J. Vac. Sci. Technol., A26, 836–841 (2008).
[CrossRef]

C. W. Chen, H. P. Chiang, P. T. Leung, and D. P. Tsai, “Temperature dependence of enhanced optical absorption and raman spectroscopy from metallic nanoparticles,” Solid State Commun.148, 413–416 (2008).
[CrossRef]

E. Gesikowska and W. Nakwaski, “An impact of multi-layered structures of modern optoelectronic devices on their thermal properties,” Opt. Quant. Electron.40, 205–216 (2008).
[CrossRef]

2007 (2)

D. Pacifici, H. J. Lezec, and H. A. Atwater, “All-optical modulation by plasmonic excitation of CdSe quantum dots,” Nat. Photonics1, 402–406 (2007).
[CrossRef]

A. L. Lereu, “Modulation - plasmons lend a helping hand,” Nature Photon.1, 368–369 (2007).
[CrossRef]

2006 (8)

A. Passian, A. L. Lereu, R. H. Ritchie, F. Meriaudeau, T. Thundat, and T. L. Ferrell, “Surface plasmon assisted thermal coupling of multiple photon energies,” Thin Solid Films497, 315–320 (2006).
[CrossRef]

D. Pissuwan, S. M. Valenzuela, and M. B. Cortie, “Therapeutic possibilities of plasmonically heated gold nanoparticles,” Trends Biotechnol.24, 62–67 (2006).
[CrossRef]

R. H. Farahi, A. Passian, S. Zahrai, A. L. Lereu, T. L. Ferrell, and T. Thundat, “Microscale Marangoni actuation: all-optical and all-electrical methods,” Ultramicroscopy106, 815–821 (2006).
[CrossRef] [PubMed]

A. L. Lereu, A. Passian, R. H. Farahi, S. Zahrai, and T. Thundat, “Plasmonic Marangoni forces,” JEOS:RP1, 06030–06034 (2006).
[CrossRef]

T. Kawazoe, T. Yatsui, and M. Ohtsu, “Nanophotonics using optical near fields,” J. Non-Cryst. Solids352, 2492–2495 (2006).
[CrossRef]

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science311, 189–193 (2006).
[CrossRef] [PubMed]

A. Passian, S. Zahrai, A. L. Lereu, R. H. Farahi, T. L. Ferrell, and T. Thundat, “Nonradiative surface plasmon assisted microscale Marangoni forces,” Phys. Rev. E73,066311–066316 (2006).
[CrossRef]

P. Keblinski, D. G. Cahill, A. Bodapati, C. R. Sullivan, and T. A. Taton, “Limits of localized heating by electromagnetically excited nanoparticles,” J. Appl. Phys.100, 054305–054309 (2006).
[CrossRef]

2005 (7)

Z. Ge, Y. Kang, T. A. Taton, P. V. Braun, and D. G. Cahill, “Thermal transport in au-core polymer-shell nanoparticles,” Nano Lett.5, 531–535 (2005).
[CrossRef] [PubMed]

A. Passian, R. H. Ritchie, A. L. Lereu, T. Thundat, and T. L. Ferrell, “Curvature effects in surface plasmon dispersion and coupling,” Phys. Rev. B71, 115425–115435, (2005).
[CrossRef]

A. L. Lereu, A. Passian, J. P. Goudonnet, T. Thundat, and T. L. Ferrell, “Optical modulation processes in thin films based on thermal effects of surface plasmons,” Appl. Phys. Lett.86, 154101–154103 (2005).
[CrossRef]

H. F. Schouten, N. Kuzmin, G. Dubois, T. D. Visser, G. Gbur, P. F. A. Alkemade, H. Blok, G. W. Hooft, D. Lenstra, and E. R. Eliel, “Plasmon-assisted two-slit transmission: Young’s experiment revisited,” Phys. Rev. Lett.94, 053901 (2005).
[CrossRef] [PubMed]

P. Muhlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science308, 1607–1609 (2005).
[CrossRef] [PubMed]

A. Passian, A. L. Lereu, E. T. Arakawa, A. Wig, T. Thundat, and T. L. Ferrell, “Modulation of multiple photon energies by use of surface plasmons,” Opt. Lett.30, 41–43 (2005).
[CrossRef] [PubMed]

R. H. Farahi, A. Passian, T. L. Ferrell, and T. Thundat, “Marangoni forces created by surface plasmon decay,” Opt. Lett.30, 616–618 (2005).
[CrossRef] [PubMed]

2004 (6)

D. P. O’Neal, L. R. Hirsch, N. J. Halas, J. D. Payne, and J. L. West, “Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles,” Cancer Lett.209, 171–176 (2004).
[CrossRef]

A. Passian, A. L. Lereu, E. T. Arakawa, R. H. Ritchie, T. Thundat, and T. L. Ferrell, “Opto-electronic versus electro-optic modulation,” Appl. Phys. Lett.85, 2703–2705 (2004).
[CrossRef]

T. Nikolajsen, K. Leosson, and S. I. Bozhevolnyi, “Surface plasmon polariton based modulators and switches operating at telecom wavelengths,” Appl. Phys. Lett.85, 5833–5835 (2004).
[CrossRef]

A. Passian, A. Wig, A. L. Lereu, P. G. Evans, F. Meriaudeau, T. Thundat, and T. L. Ferrell, “Probing large area surface plasmon interference in thin metal films using photon scanning tunneling microscopy,” Ultramicroscopy100, 429–436 (2004).
[CrossRef] [PubMed]

A. Passian, A. Wig, A. L. Lereu, F. Meriaudeau, T. Thundat, and T. L. Ferrell, “Photon tunneling via surface plasmon coupling,” Appl. Phys. Lett.85, 3420–3422 (2004).
[CrossRef]

G. V. Hartland, “Measurements of the material properties of metal nanoparticles by time-resolved spectroscopy,” Phys. Chem. Chem. Phys.6, 5263–5274 (2004).
[CrossRef]

2003 (2)

L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” PNAS100, 13549–13554 (2003).
[CrossRef] [PubMed]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature424, 824–830 (2003).
[CrossRef] [PubMed]

2002 (1)

M. Hu and G. V. Hartland, “Heat dissipation for au particles in aqueous solution: relaxation time versus size,” J. Phys. Chem. B106, 7029–7033 (2002).
[CrossRef]

2000 (2)

M. Perner, S. Gresillon, J. Marz, G. von Plessen, J. Feldmann, J. Porstendorfer, K. J. Berg, and G. Berg, “Observation of hot-electron pressure in the vibration dynamics of metal nanoparticles,” Phys. Rev. Lett.85, 792–795 (2000).
[CrossRef] [PubMed]

G. Chen, “Particularities of heat conduction in nanostructures,” J. Nanopart. Res.2, 199–204 (2000).
[CrossRef]

1999 (2)

G. Chen and P. Hui, “Thermal conductivities of evaporated gold films on silicon and glass,” Appl. Phys. Lett.74, 2942–2944, (1999).
[CrossRef]

S. Link and M. A. El-Sayed, “Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods,” J. Phys. Chem. B103, 8410–8426 (1999).
[CrossRef]

1995 (1)

J. Y. Bigot, J. C. Merle, O. Cregut, and A. Daunois, “Electron dynamics in copper metallic nanoparticles probed with femtosecond optical pulses,” Phys. Rev. Lett.75, 4702–4705 (1995).
[CrossRef] [PubMed]

1993 (1)

T. Q. Qiu and C. L. Tien, “Size effects on nonequilibrium laser-heating of metal-films,” J. Heat Trans-T ASME115, 842–847 (1993).
[CrossRef]

1992 (1)

M. I. Flik, B. I. Choi, and K. E. Goodson, “Heat-transfer regimes in microstructures,” J. Heat Trans-T ASME114, 666–674 (1992).
[CrossRef]

1986 (1)

B. Rief, “Thermal-wave transient behaviour,” Can. J. Phys.64, 1303–1306 (1986).
[CrossRef]

1985 (1)

U. Kreibig and L. Genzel, “Optical-absorption of small metallic particles,” Surf. Sci.156, 678–700 (1985).
[CrossRef]

1984 (1)

S. W. Kennerly, J. W. Little, R. J. Warmack, and T. L. Ferrell, “Optical properties of heated Ag films,” Phys. Rev. B29, 2926–2929 (1984).
[CrossRef]

1983 (1)

1962 (1)

S. Yamaguchi, “Optical absorption of heat treated very thin silver films and its dependence on angle of incidence,” J. Phys. Soc. Jpn.17, 1172–1180 (1962).
[CrossRef]

Abb, M.

N. Large, M. Abb, J. Aizpurua, and O. L. Muskens, “Photoconductively loaded plasmonic nanoantenna as building block for ultracompact optical switches,” Nano Lett.10, 1741–1746 (2010).
[CrossRef] [PubMed]

Aizpurua, J.

N. Large, M. Abb, J. Aizpurua, and O. L. Muskens, “Photoconductively loaded plasmonic nanoantenna as building block for ultracompact optical switches,” Nano Lett.10, 1741–1746 (2010).
[CrossRef] [PubMed]

Alkemade, P. F. A.

H. F. Schouten, N. Kuzmin, G. Dubois, T. D. Visser, G. Gbur, P. F. A. Alkemade, H. Blok, G. W. Hooft, D. Lenstra, and E. R. Eliel, “Plasmon-assisted two-slit transmission: Young’s experiment revisited,” Phys. Rev. Lett.94, 053901 (2005).
[CrossRef] [PubMed]

Andersen, T. B.

Arakawa, E. T.

A. Passian, A. L. Lereu, E. T. Arakawa, A. Wig, T. Thundat, and T. L. Ferrell, “Modulation of multiple photon energies by use of surface plasmons,” Opt. Lett.30, 41–43 (2005).
[CrossRef] [PubMed]

A. Passian, A. L. Lereu, E. T. Arakawa, R. H. Ritchie, T. Thundat, and T. L. Ferrell, “Opto-electronic versus electro-optic modulation,” Appl. Phys. Lett.85, 2703–2705 (2004).
[CrossRef]

Atwater, H. A.

J. A. Dionne, K. Diest, L. A. Sweatlock, and H. A. Atwater, “Plasmostor: a metal-oxide-si field effect plasmonic modulator,” Nano Lett.9, 897–902 (2009).
[CrossRef] [PubMed]

D. Pacifici, H. J. Lezec, and H. A. Atwater, “All-optical modulation by plasmonic excitation of CdSe quantum dots,” Nat. Photonics1, 402–406 (2007).
[CrossRef]

Bankson, J. A.

L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” PNAS100, 13549–13554 (2003).
[CrossRef] [PubMed]

Bardhan, R.

R. Bardhan, S. Lal, A. Joshi, and N. J. Halas, “Theranostic nanoshells: from probe design to imaging and treatment of cancer,” Acc. Chem. Res.44, 936–946 (2011).
[CrossRef] [PubMed]

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature424, 824–830 (2003).
[CrossRef] [PubMed]

Berg, G.

M. Perner, S. Gresillon, J. Marz, G. von Plessen, J. Feldmann, J. Porstendorfer, K. J. Berg, and G. Berg, “Observation of hot-electron pressure in the vibration dynamics of metal nanoparticles,” Phys. Rev. Lett.85, 792–795 (2000).
[CrossRef] [PubMed]

Berg, K. J.

M. Perner, S. Gresillon, J. Marz, G. von Plessen, J. Feldmann, J. Porstendorfer, K. J. Berg, and G. Berg, “Observation of hot-electron pressure in the vibration dynamics of metal nanoparticles,” Phys. Rev. Lett.85, 792–795 (2000).
[CrossRef] [PubMed]

Bergman, T. L.

F. P. Incropera, D. P. Dewitt, T. L. Bergman, and A. S. Lavine, Fundamentals of Heat and Mass Transfer, 6th ed. (John Wiley & Sons, Inc., 2007).

Bigot, J. Y.

J. Y. Bigot, J. C. Merle, O. Cregut, and A. Daunois, “Electron dynamics in copper metallic nanoparticles probed with femtosecond optical pulses,” Phys. Rev. Lett.75, 4702–4705 (1995).
[CrossRef] [PubMed]

Blok, H.

H. F. Schouten, N. Kuzmin, G. Dubois, T. D. Visser, G. Gbur, P. F. A. Alkemade, H. Blok, G. W. Hooft, D. Lenstra, and E. R. Eliel, “Plasmon-assisted two-slit transmission: Young’s experiment revisited,” Phys. Rev. Lett.94, 053901 (2005).
[CrossRef] [PubMed]

Bodapati, A.

P. Keblinski, D. G. Cahill, A. Bodapati, C. R. Sullivan, and T. A. Taton, “Limits of localized heating by electromagnetically excited nanoparticles,” J. Appl. Phys.100, 054305–054309 (2006).
[CrossRef]

Bonn, M.

E. Hendry, F. J. Garcia-Vidal, L. Martin-Moreno, J. G. Rivas, M. Bonn, A. P. Hibbins, and M. J. Lockyear, “Optical control over surface-plasmon-polariton-assisted THz transmission through a slit aperture,” Phys. Rev. Lett.100, 123901–123904 (2008).
[CrossRef] [PubMed]

Boriskina, S. V.

S. V. Boriskina and B. M. Reinhard, “Molding the flow of light on the nanoscale: from vortex nanogears to phase-operated plasmonic machinery,” Nanoscale4, 76–90 (2012).
[CrossRef]

Borup, K. A.

D. Cederkrantz, N. Farahi, K. A. Borup, B. B. Iversen, M. Nygren, and A. E. C. Palmqvist, “Enhanced thermoelectric properties of mg2si by addition of tio2 nanoparticles,” J. Appl. Phys.111, 023701–023707 (2012).
[CrossRef]

Bozhevolnyi, S. I.

J. Gosciniak, S. I. Bozhevolnyi, T. B. Andersen, V. S. Volkov, J. Kjelstrup-Hansen, L. Markey, and A. Dereux, “Thermo-optic control of dielectric-loaded plasmonic waveguide components,” Opt. Express18, 1207–1216 (2010).
[CrossRef] [PubMed]

T. Nikolajsen, K. Leosson, and S. I. Bozhevolnyi, “Surface plasmon polariton based modulators and switches operating at telecom wavelengths,” Appl. Phys. Lett.85, 5833–5835 (2004).
[CrossRef]

Bratkovsky, A. M.

F. S. Ou, M. Hu, I. Naumov, A. Kim, W. Wu, A. M. Bratkovsky, X. Li, S. R. Williams, and Z. Li, “Hot-spot engineering in polygonal nanofinger assemblies for surface enhanced raman spectroscopy,” Nano Lett.11, 2538–2542 (2011).
[CrossRef] [PubMed]

Braun, P. V.

Z. Ge, Y. Kang, T. A. Taton, P. V. Braun, and D. G. Cahill, “Thermal transport in au-core polymer-shell nanoparticles,” Nano Lett.5, 531–535 (2005).
[CrossRef] [PubMed]

Britt Lassiter, J.

J. Ye, F. Wen, H. Sobhani, J. Britt Lassiter, P. Van Dorpe, P. Nordlander, and N. J. Halas, “Plasmonic nanoclusters: near field properties of the fano resonance interrogated with sers,” Nano Lett.12, 1660–1667 (2012).
[CrossRef] [PubMed]

Brongersma, M. L.

W. Cai, J. S. White, and M. L. Brongersma, “Compact, high-speed and power-efficient electrooptic plasmonic modulators,” Nano Lett.9, 4403–4411 (2009).
[CrossRef] [PubMed]

R. A. Pala, K. T. Shimizu, N. A. Melosh, and M. L. Brongersma, “A nonvolatile plasmonic switch employing photochromic molecules,” Nano Lett.8, 1506–1510 (2008).
[CrossRef] [PubMed]

Brosseau, C.

M. Essone Mezeme and C. Brosseau, “Engineering nanostructures with enhanced thermoplasmonic properties for biosensing and selective targeting applications” Phys. Rev. E.87, 012722–012731 (2013).
[CrossRef]

Buehler, M. J.

Z. Xu and M. J. Buehler, “Nanoengineering heat transfer performance at carbon nanotube interfaces,” ACS Nano3, 2767–2775 (2009).
[CrossRef] [PubMed]

Z. Xu and M. J. Buehler, “Hierarchical nanostructures are crucial to mitigate ultrasmall thermal point loads,” Nano Lett.9, 2065–2072 (2009).
[CrossRef] [PubMed]

Cahill, D. G.

P. Keblinski, D. G. Cahill, A. Bodapati, C. R. Sullivan, and T. A. Taton, “Limits of localized heating by electromagnetically excited nanoparticles,” J. Appl. Phys.100, 054305–054309 (2006).
[CrossRef]

Z. Ge, Y. Kang, T. A. Taton, P. V. Braun, and D. G. Cahill, “Thermal transport in au-core polymer-shell nanoparticles,” Nano Lett.5, 531–535 (2005).
[CrossRef] [PubMed]

Cai, W.

W. Cai, J. S. White, and M. L. Brongersma, “Compact, high-speed and power-efficient electrooptic plasmonic modulators,” Nano Lett.9, 4403–4411 (2009).
[CrossRef] [PubMed]

Cao, J.

C. Cheng, W. Fan, J. Cao, S-G. Ryu, J. Ji, C. P. Grigoropoulos, and J. Wu, “Heat transfer across the interface between nanoscale solids and gas,” ACS Nano5, 10102–10107 (2011).
[CrossRef] [PubMed]

Casian Botez, I.

R. Stana, I. Casian Botez, V. P. Paun, and A. Marcel, “New model for heat transfer in nanostructures,” J. Comput. Theor. Nanos.9, 55–66 (2012).
[CrossRef]

Cederkrantz, D.

D. Cederkrantz, N. Farahi, K. A. Borup, B. B. Iversen, M. Nygren, and A. E. C. Palmqvist, “Enhanced thermoelectric properties of mg2si by addition of tio2 nanoparticles,” J. Appl. Phys.111, 023701–023707 (2012).
[CrossRef]

Chang, W-S.

D. Solis, B. Willingham, S. L. Nauert, L. S. Slaughter, J. Olson, P. Swanglap, A. Paul, W-S. Chang, and S. Link, “Electromagnetic energy transport in nanoparticle chains via dark plasmon modes,” Nano Lett.12, 1349–1353 (2012).
[CrossRef] [PubMed]

Chen, C. W.

C. W. Chen, H. P. Chiang, P. T. Leung, and D. P. Tsai, “Temperature dependence of enhanced optical absorption and raman spectroscopy from metallic nanoparticles,” Solid State Commun.148, 413–416 (2008).
[CrossRef]

Chen, G.

G. Chen, “Particularities of heat conduction in nanostructures,” J. Nanopart. Res.2, 199–204 (2000).
[CrossRef]

G. Chen and P. Hui, “Thermal conductivities of evaporated gold films on silicon and glass,” Appl. Phys. Lett.74, 2942–2944, (1999).
[CrossRef]

Chen, J. Y.

J. Y. Chen, C. Glaus, R. Laforest, Q. Zhang, M. Yang, M. Gidding, M. J. Welch, and Y. Xia, “Gold nanocages as photothermal transducers for cancer treatment,” Small6, 811–817 (2010).
[CrossRef] [PubMed]

Chen, X.

X. Chen, Y. Chen, M. Yan, and M. Qiu, “Nanosecond photothermal effects in plasmonic nanostructures,” ACS Nano6, 2550–2557 (2012).
[CrossRef] [PubMed]

Chen, Y.

X. Chen, Y. Chen, M. Yan, and M. Qiu, “Nanosecond photothermal effects in plasmonic nanostructures,” ACS Nano6, 2550–2557 (2012).
[CrossRef] [PubMed]

Cheng, C.

C. Cheng, W. Fan, J. Cao, S-G. Ryu, J. Ji, C. P. Grigoropoulos, and J. Wu, “Heat transfer across the interface between nanoscale solids and gas,” ACS Nano5, 10102–10107 (2011).
[CrossRef] [PubMed]

Chiang, H. P.

C. W. Chen, H. P. Chiang, P. T. Leung, and D. P. Tsai, “Temperature dependence of enhanced optical absorption and raman spectroscopy from metallic nanoparticles,” Solid State Commun.148, 413–416 (2008).
[CrossRef]

Choi, B. I.

M. I. Flik, B. I. Choi, and K. E. Goodson, “Heat-transfer regimes in microstructures,” J. Heat Trans-T ASME114, 666–674 (1992).
[CrossRef]

Cortie, M. B.

D. Pissuwan, S. M. Valenzuela, and M. B. Cortie, “Therapeutic possibilities of plasmonically heated gold nanoparticles,” Trends Biotechnol.24, 62–67 (2006).
[CrossRef]

Cregut, O.

J. Y. Bigot, J. C. Merle, O. Cregut, and A. Daunois, “Electron dynamics in copper metallic nanoparticles probed with femtosecond optical pulses,” Phys. Rev. Lett.75, 4702–4705 (1995).
[CrossRef] [PubMed]

Daunois, A.

J. Y. Bigot, J. C. Merle, O. Cregut, and A. Daunois, “Electron dynamics in copper metallic nanoparticles probed with femtosecond optical pulses,” Phys. Rev. Lett.75, 4702–4705 (1995).
[CrossRef] [PubMed]

Dereux, A.

Dewitt, D. P.

F. P. Incropera, D. P. Dewitt, T. L. Bergman, and A. S. Lavine, Fundamentals of Heat and Mass Transfer, 6th ed. (John Wiley & Sons, Inc., 2007).

Dickson, W.

W. Dickson, G. A. Wurtz, P. R. Evans, R. J. Pollard, and A. V. Zayats, “Electronically controlled surface plasmon dispersion and optical transmission through metallic hole arrays using liquid crystal,” Nano Lett.8, 281–286 (2008).
[CrossRef]

Diest, K.

J. A. Dionne, K. Diest, L. A. Sweatlock, and H. A. Atwater, “Plasmostor: a metal-oxide-si field effect plasmonic modulator,” Nano Lett.9, 897–902 (2009).
[CrossRef] [PubMed]

Dionne, J. A.

J. A. Dionne, K. Diest, L. A. Sweatlock, and H. A. Atwater, “Plasmostor: a metal-oxide-si field effect plasmonic modulator,” Nano Lett.9, 897–902 (2009).
[CrossRef] [PubMed]

Dubois, G.

H. F. Schouten, N. Kuzmin, G. Dubois, T. D. Visser, G. Gbur, P. F. A. Alkemade, H. Blok, G. W. Hooft, D. Lenstra, and E. R. Eliel, “Plasmon-assisted two-slit transmission: Young’s experiment revisited,” Phys. Rev. Lett.94, 053901 (2005).
[CrossRef] [PubMed]

Ebbesen, T. W.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature424, 824–830 (2003).
[CrossRef] [PubMed]

Eisler, H. J.

P. Muhlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science308, 1607–1609 (2005).
[CrossRef] [PubMed]

Eliel, E. R.

H. F. Schouten, N. Kuzmin, G. Dubois, T. D. Visser, G. Gbur, P. F. A. Alkemade, H. Blok, G. W. Hooft, D. Lenstra, and E. R. Eliel, “Plasmon-assisted two-slit transmission: Young’s experiment revisited,” Phys. Rev. Lett.94, 053901 (2005).
[CrossRef] [PubMed]

El-Sayed, M. A.

S. Link and M. A. El-Sayed, “Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods,” J. Phys. Chem. B103, 8410–8426 (1999).
[CrossRef]

Essone Mezeme, M.

M. Essone Mezeme and C. Brosseau, “Engineering nanostructures with enhanced thermoplasmonic properties for biosensing and selective targeting applications” Phys. Rev. E.87, 012722–012731 (2013).
[CrossRef]

Evans, P. G.

A. Passian, A. Wig, A. L. Lereu, P. G. Evans, F. Meriaudeau, T. Thundat, and T. L. Ferrell, “Probing large area surface plasmon interference in thin metal films using photon scanning tunneling microscopy,” Ultramicroscopy100, 429–436 (2004).
[CrossRef] [PubMed]

Evans, P. R.

W. Dickson, G. A. Wurtz, P. R. Evans, R. J. Pollard, and A. V. Zayats, “Electronically controlled surface plasmon dispersion and optical transmission through metallic hole arrays using liquid crystal,” Nano Lett.8, 281–286 (2008).
[CrossRef]

Fan, J.

J. Kou, H. Qian, H. Lu, Y. Liu, Y. Xu, F. Wu, and J. Fan, “Optimizing the design of nanostructures for improved thermal conduction within confined spaces,” Nanoscale Res. Lett.6, 422–429 (2011).
[CrossRef] [PubMed]

Fan, W.

C. Cheng, W. Fan, J. Cao, S-G. Ryu, J. Ji, C. P. Grigoropoulos, and J. Wu, “Heat transfer across the interface between nanoscale solids and gas,” ACS Nano5, 10102–10107 (2011).
[CrossRef] [PubMed]

Farahi, N.

D. Cederkrantz, N. Farahi, K. A. Borup, B. B. Iversen, M. Nygren, and A. E. C. Palmqvist, “Enhanced thermoelectric properties of mg2si by addition of tio2 nanoparticles,” J. Appl. Phys.111, 023701–023707 (2012).
[CrossRef]

Farahi, R. H.

A. L. Lereu, A. Passian, R. H. Farahi, N. F. van Hulst, T. L. Ferrell, and T. Thundat, “Thermoplasmonic shift and dispersion in thin metal films,” J. Vac. Sci. Technol., A26, 836–841 (2008).
[CrossRef]

R. H. Farahi, A. Passian, S. Zahrai, A. L. Lereu, T. L. Ferrell, and T. Thundat, “Microscale Marangoni actuation: all-optical and all-electrical methods,” Ultramicroscopy106, 815–821 (2006).
[CrossRef] [PubMed]

A. Passian, S. Zahrai, A. L. Lereu, R. H. Farahi, T. L. Ferrell, and T. Thundat, “Nonradiative surface plasmon assisted microscale Marangoni forces,” Phys. Rev. E73,066311–066316 (2006).
[CrossRef]

A. L. Lereu, A. Passian, R. H. Farahi, S. Zahrai, and T. Thundat, “Plasmonic Marangoni forces,” JEOS:RP1, 06030–06034 (2006).
[CrossRef]

R. H. Farahi, A. Passian, T. L. Ferrell, and T. Thundat, “Marangoni forces created by surface plasmon decay,” Opt. Lett.30, 616–618 (2005).
[CrossRef] [PubMed]

A. Passian, A. L. Lereu, R. H. Farahi, T. L. Ferrell, and T. Thundat, “Thermoplasmonics in thin metal films,” in Trends in solid film researchA. R. Jost, eds. (Nova Science Publishers, Hauppauge NY, 2007), pp. 69–109.

Feldmann, J.

M. Perner, S. Gresillon, J. Marz, G. von Plessen, J. Feldmann, J. Porstendorfer, K. J. Berg, and G. Berg, “Observation of hot-electron pressure in the vibration dynamics of metal nanoparticles,” Phys. Rev. Lett.85, 792–795 (2000).
[CrossRef] [PubMed]

Ferrell, T. L.

A. L. Lereu, A. Passian, R. H. Farahi, N. F. van Hulst, T. L. Ferrell, and T. Thundat, “Thermoplasmonic shift and dispersion in thin metal films,” J. Vac. Sci. Technol., A26, 836–841 (2008).
[CrossRef]

A. Passian, A. L. Lereu, R. H. Ritchie, F. Meriaudeau, T. Thundat, and T. L. Ferrell, “Surface plasmon assisted thermal coupling of multiple photon energies,” Thin Solid Films497, 315–320 (2006).
[CrossRef]

A. Passian, S. Zahrai, A. L. Lereu, R. H. Farahi, T. L. Ferrell, and T. Thundat, “Nonradiative surface plasmon assisted microscale Marangoni forces,” Phys. Rev. E73,066311–066316 (2006).
[CrossRef]

R. H. Farahi, A. Passian, S. Zahrai, A. L. Lereu, T. L. Ferrell, and T. Thundat, “Microscale Marangoni actuation: all-optical and all-electrical methods,” Ultramicroscopy106, 815–821 (2006).
[CrossRef] [PubMed]

R. H. Farahi, A. Passian, T. L. Ferrell, and T. Thundat, “Marangoni forces created by surface plasmon decay,” Opt. Lett.30, 616–618 (2005).
[CrossRef] [PubMed]

A. L. Lereu, A. Passian, J. P. Goudonnet, T. Thundat, and T. L. Ferrell, “Optical modulation processes in thin films based on thermal effects of surface plasmons,” Appl. Phys. Lett.86, 154101–154103 (2005).
[CrossRef]

A. Passian, A. L. Lereu, E. T. Arakawa, A. Wig, T. Thundat, and T. L. Ferrell, “Modulation of multiple photon energies by use of surface plasmons,” Opt. Lett.30, 41–43 (2005).
[CrossRef] [PubMed]

A. Passian, R. H. Ritchie, A. L. Lereu, T. Thundat, and T. L. Ferrell, “Curvature effects in surface plasmon dispersion and coupling,” Phys. Rev. B71, 115425–115435, (2005).
[CrossRef]

A. Passian, A. L. Lereu, E. T. Arakawa, R. H. Ritchie, T. Thundat, and T. L. Ferrell, “Opto-electronic versus electro-optic modulation,” Appl. Phys. Lett.85, 2703–2705 (2004).
[CrossRef]

A. Passian, A. Wig, A. L. Lereu, P. G. Evans, F. Meriaudeau, T. Thundat, and T. L. Ferrell, “Probing large area surface plasmon interference in thin metal films using photon scanning tunneling microscopy,” Ultramicroscopy100, 429–436 (2004).
[CrossRef] [PubMed]

A. Passian, A. Wig, A. L. Lereu, F. Meriaudeau, T. Thundat, and T. L. Ferrell, “Photon tunneling via surface plasmon coupling,” Appl. Phys. Lett.85, 3420–3422 (2004).
[CrossRef]

S. W. Kennerly, J. W. Little, R. J. Warmack, and T. L. Ferrell, “Optical properties of heated Ag films,” Phys. Rev. B29, 2926–2929 (1984).
[CrossRef]

A. Passian, A. L. Lereu, R. H. Farahi, T. L. Ferrell, and T. Thundat, “Thermoplasmonics in thin metal films,” in Trends in solid film researchA. R. Jost, eds. (Nova Science Publishers, Hauppauge NY, 2007), pp. 69–109.

Flik, M. I.

M. I. Flik, B. I. Choi, and K. E. Goodson, “Heat-transfer regimes in microstructures,” J. Heat Trans-T ASME114, 666–674 (1992).
[CrossRef]

Furuya, K.

G. Gupta, D. Tanaka, Y. Ito, D. Shibata, M. Shimojo, K. Furuya, K. Mitsui, and K. Kajikawa, “Absorption spectroscopy of gold nanoisland films: optical and structural characterization,” Nanotechnol.20, 025703–025711, (2009).
[CrossRef]

Garcia-Vidal, F. J.

E. Hendry, F. J. Garcia-Vidal, L. Martin-Moreno, J. G. Rivas, M. Bonn, A. P. Hibbins, and M. J. Lockyear, “Optical control over surface-plasmon-polariton-assisted THz transmission through a slit aperture,” Phys. Rev. Lett.100, 123901–123904 (2008).
[CrossRef] [PubMed]

Gbur, G.

H. F. Schouten, N. Kuzmin, G. Dubois, T. D. Visser, G. Gbur, P. F. A. Alkemade, H. Blok, G. W. Hooft, D. Lenstra, and E. R. Eliel, “Plasmon-assisted two-slit transmission: Young’s experiment revisited,” Phys. Rev. Lett.94, 053901 (2005).
[CrossRef] [PubMed]

Ge, Z.

Z. Ge, Y. Kang, T. A. Taton, P. V. Braun, and D. G. Cahill, “Thermal transport in au-core polymer-shell nanoparticles,” Nano Lett.5, 531–535 (2005).
[CrossRef] [PubMed]

Genzel, L.

U. Kreibig and L. Genzel, “Optical-absorption of small metallic particles,” Surf. Sci.156, 678–700 (1985).
[CrossRef]

Gesikowska, E.

E. Gesikowska and W. Nakwaski, “An impact of multi-layered structures of modern optoelectronic devices on their thermal properties,” Opt. Quant. Electron.40, 205–216 (2008).
[CrossRef]

Gidding, M.

J. Y. Chen, C. Glaus, R. Laforest, Q. Zhang, M. Yang, M. Gidding, M. J. Welch, and Y. Xia, “Gold nanocages as photothermal transducers for cancer treatment,” Small6, 811–817 (2010).
[CrossRef] [PubMed]

Glaus, C.

J. Y. Chen, C. Glaus, R. Laforest, Q. Zhang, M. Yang, M. Gidding, M. J. Welch, and Y. Xia, “Gold nanocages as photothermal transducers for cancer treatment,” Small6, 811–817 (2010).
[CrossRef] [PubMed]

Goodson, K. E.

M. I. Flik, B. I. Choi, and K. E. Goodson, “Heat-transfer regimes in microstructures,” J. Heat Trans-T ASME114, 666–674 (1992).
[CrossRef]

Gosciniak, J.

Goudonnet, J. P.

A. L. Lereu, A. Passian, J. P. Goudonnet, T. Thundat, and T. L. Ferrell, “Optical modulation processes in thin films based on thermal effects of surface plasmons,” Appl. Phys. Lett.86, 154101–154103 (2005).
[CrossRef]

Gresillon, S.

M. Perner, S. Gresillon, J. Marz, G. von Plessen, J. Feldmann, J. Porstendorfer, K. J. Berg, and G. Berg, “Observation of hot-electron pressure in the vibration dynamics of metal nanoparticles,” Phys. Rev. Lett.85, 792–795 (2000).
[CrossRef] [PubMed]

Grigoropoulos, C. P.

C. Cheng, W. Fan, J. Cao, S-G. Ryu, J. Ji, C. P. Grigoropoulos, and J. Wu, “Heat transfer across the interface between nanoscale solids and gas,” ACS Nano5, 10102–10107 (2011).
[CrossRef] [PubMed]

Gupta, G.

G. Gupta, D. Tanaka, Y. Ito, D. Shibata, M. Shimojo, K. Furuya, K. Mitsui, and K. Kajikawa, “Absorption spectroscopy of gold nanoisland films: optical and structural characterization,” Nanotechnol.20, 025703–025711, (2009).
[CrossRef]

Halas, N. J.

J. Ye, F. Wen, H. Sobhani, J. Britt Lassiter, P. Van Dorpe, P. Nordlander, and N. J. Halas, “Plasmonic nanoclusters: near field properties of the fano resonance interrogated with sers,” Nano Lett.12, 1660–1667 (2012).
[CrossRef] [PubMed]

R. Bardhan, S. Lal, A. Joshi, and N. J. Halas, “Theranostic nanoshells: from probe design to imaging and treatment of cancer,” Acc. Chem. Res.44, 936–946 (2011).
[CrossRef] [PubMed]

D. P. O’Neal, L. R. Hirsch, N. J. Halas, J. D. Payne, and J. L. West, “Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles,” Cancer Lett.209, 171–176 (2004).
[CrossRef]

L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” PNAS100, 13549–13554 (2003).
[CrossRef] [PubMed]

Hartland, G. V.

G. V. Hartland, “Measurements of the material properties of metal nanoparticles by time-resolved spectroscopy,” Phys. Chem. Chem. Phys.6, 5263–5274 (2004).
[CrossRef]

M. Hu and G. V. Hartland, “Heat dissipation for au particles in aqueous solution: relaxation time versus size,” J. Phys. Chem. B106, 7029–7033 (2002).
[CrossRef]

Hazle, J. D.

L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” PNAS100, 13549–13554 (2003).
[CrossRef] [PubMed]

Hecht, B.

P. Muhlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science308, 1607–1609 (2005).
[CrossRef] [PubMed]

Hendry, E.

E. Hendry, F. J. Garcia-Vidal, L. Martin-Moreno, J. G. Rivas, M. Bonn, A. P. Hibbins, and M. J. Lockyear, “Optical control over surface-plasmon-polariton-assisted THz transmission through a slit aperture,” Phys. Rev. Lett.100, 123901–123904 (2008).
[CrossRef] [PubMed]

Hibbins, A. P.

E. Hendry, F. J. Garcia-Vidal, L. Martin-Moreno, J. G. Rivas, M. Bonn, A. P. Hibbins, and M. J. Lockyear, “Optical control over surface-plasmon-polariton-assisted THz transmission through a slit aperture,” Phys. Rev. Lett.100, 123901–123904 (2008).
[CrossRef] [PubMed]

Hirsch, L. R.

D. P. O’Neal, L. R. Hirsch, N. J. Halas, J. D. Payne, and J. L. West, “Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles,” Cancer Lett.209, 171–176 (2004).
[CrossRef]

L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” PNAS100, 13549–13554 (2003).
[CrossRef] [PubMed]

Hooft, G. W.

H. F. Schouten, N. Kuzmin, G. Dubois, T. D. Visser, G. Gbur, P. F. A. Alkemade, H. Blok, G. W. Hooft, D. Lenstra, and E. R. Eliel, “Plasmon-assisted two-slit transmission: Young’s experiment revisited,” Phys. Rev. Lett.94, 053901 (2005).
[CrossRef] [PubMed]

Hu, M.

F. S. Ou, M. Hu, I. Naumov, A. Kim, W. Wu, A. M. Bratkovsky, X. Li, S. R. Williams, and Z. Li, “Hot-spot engineering in polygonal nanofinger assemblies for surface enhanced raman spectroscopy,” Nano Lett.11, 2538–2542 (2011).
[CrossRef] [PubMed]

M. Hu and G. V. Hartland, “Heat dissipation for au particles in aqueous solution: relaxation time versus size,” J. Phys. Chem. B106, 7029–7033 (2002).
[CrossRef]

Hui, P.

G. Chen and P. Hui, “Thermal conductivities of evaporated gold films on silicon and glass,” Appl. Phys. Lett.74, 2942–2944, (1999).
[CrossRef]

Incropera, F. P.

F. P. Incropera, D. P. Dewitt, T. L. Bergman, and A. S. Lavine, Fundamentals of Heat and Mass Transfer, 6th ed. (John Wiley & Sons, Inc., 2007).

Ito, Y.

G. Gupta, D. Tanaka, Y. Ito, D. Shibata, M. Shimojo, K. Furuya, K. Mitsui, and K. Kajikawa, “Absorption spectroscopy of gold nanoisland films: optical and structural characterization,” Nanotechnol.20, 025703–025711, (2009).
[CrossRef]

Iversen, B. B.

D. Cederkrantz, N. Farahi, K. A. Borup, B. B. Iversen, M. Nygren, and A. E. C. Palmqvist, “Enhanced thermoelectric properties of mg2si by addition of tio2 nanoparticles,” J. Appl. Phys.111, 023701–023707 (2012).
[CrossRef]

Ji, J.

C. Cheng, W. Fan, J. Cao, S-G. Ryu, J. Ji, C. P. Grigoropoulos, and J. Wu, “Heat transfer across the interface between nanoscale solids and gas,” ACS Nano5, 10102–10107 (2011).
[CrossRef] [PubMed]

Joshi, A.

R. Bardhan, S. Lal, A. Joshi, and N. J. Halas, “Theranostic nanoshells: from probe design to imaging and treatment of cancer,” Acc. Chem. Res.44, 936–946 (2011).
[CrossRef] [PubMed]

Kajikawa, K.

G. Gupta, D. Tanaka, Y. Ito, D. Shibata, M. Shimojo, K. Furuya, K. Mitsui, and K. Kajikawa, “Absorption spectroscopy of gold nanoisland films: optical and structural characterization,” Nanotechnol.20, 025703–025711, (2009).
[CrossRef]

Käll, M.

H. Wei, Z. Wang, X. Tian, M. Käll, and H. Xu, “Cascaded logic gates in nanophotonic plasmon networks,” Nat. Commun.2, 387–391 (2011).
[CrossRef] [PubMed]

Kang, Y.

Z. Ge, Y. Kang, T. A. Taton, P. V. Braun, and D. G. Cahill, “Thermal transport in au-core polymer-shell nanoparticles,” Nano Lett.5, 531–535 (2005).
[CrossRef] [PubMed]

Kawazoe, T.

T. Kawazoe, T. Yatsui, and M. Ohtsu, “Nanophotonics using optical near fields,” J. Non-Cryst. Solids352, 2492–2495 (2006).
[CrossRef]

Keblinski, P.

P. Keblinski, D. G. Cahill, A. Bodapati, C. R. Sullivan, and T. A. Taton, “Limits of localized heating by electromagnetically excited nanoparticles,” J. Appl. Phys.100, 054305–054309 (2006).
[CrossRef]

Kennerly, S. W.

S. W. Kennerly, J. W. Little, R. J. Warmack, and T. L. Ferrell, “Optical properties of heated Ag films,” Phys. Rev. B29, 2926–2929 (1984).
[CrossRef]

Kim, A.

F. S. Ou, M. Hu, I. Naumov, A. Kim, W. Wu, A. M. Bratkovsky, X. Li, S. R. Williams, and Z. Li, “Hot-spot engineering in polygonal nanofinger assemblies for surface enhanced raman spectroscopy,” Nano Lett.11, 2538–2542 (2011).
[CrossRef] [PubMed]

Kjelstrup-Hansen, J.

Kou, J.

J. Kou, H. Qian, H. Lu, Y. Liu, Y. Xu, F. Wu, and J. Fan, “Optimizing the design of nanostructures for improved thermal conduction within confined spaces,” Nanoscale Res. Lett.6, 422–429 (2011).
[CrossRef] [PubMed]

Kreibig, U.

U. Kreibig and L. Genzel, “Optical-absorption of small metallic particles,” Surf. Sci.156, 678–700 (1985).
[CrossRef]

Kuzmin, N.

H. F. Schouten, N. Kuzmin, G. Dubois, T. D. Visser, G. Gbur, P. F. A. Alkemade, H. Blok, G. W. Hooft, D. Lenstra, and E. R. Eliel, “Plasmon-assisted two-slit transmission: Young’s experiment revisited,” Phys. Rev. Lett.94, 053901 (2005).
[CrossRef] [PubMed]

Laforest, R.

J. Y. Chen, C. Glaus, R. Laforest, Q. Zhang, M. Yang, M. Gidding, M. J. Welch, and Y. Xia, “Gold nanocages as photothermal transducers for cancer treatment,” Small6, 811–817 (2010).
[CrossRef] [PubMed]

Lal, S.

R. Bardhan, S. Lal, A. Joshi, and N. J. Halas, “Theranostic nanoshells: from probe design to imaging and treatment of cancer,” Acc. Chem. Res.44, 936–946 (2011).
[CrossRef] [PubMed]

Large, N.

N. Large, M. Abb, J. Aizpurua, and O. L. Muskens, “Photoconductively loaded plasmonic nanoantenna as building block for ultracompact optical switches,” Nano Lett.10, 1741–1746 (2010).
[CrossRef] [PubMed]

Lavine, A. S.

F. P. Incropera, D. P. Dewitt, T. L. Bergman, and A. S. Lavine, Fundamentals of Heat and Mass Transfer, 6th ed. (John Wiley & Sons, Inc., 2007).

Lenstra, D.

H. F. Schouten, N. Kuzmin, G. Dubois, T. D. Visser, G. Gbur, P. F. A. Alkemade, H. Blok, G. W. Hooft, D. Lenstra, and E. R. Eliel, “Plasmon-assisted two-slit transmission: Young’s experiment revisited,” Phys. Rev. Lett.94, 053901 (2005).
[CrossRef] [PubMed]

Leosson, K.

T. Nikolajsen, K. Leosson, and S. I. Bozhevolnyi, “Surface plasmon polariton based modulators and switches operating at telecom wavelengths,” Appl. Phys. Lett.85, 5833–5835 (2004).
[CrossRef]

Lereu, A. L.

A. L. Lereu, A. Passian, R. H. Farahi, N. F. van Hulst, T. L. Ferrell, and T. Thundat, “Thermoplasmonic shift and dispersion in thin metal films,” J. Vac. Sci. Technol., A26, 836–841 (2008).
[CrossRef]

A. L. Lereu, “Modulation - plasmons lend a helping hand,” Nature Photon.1, 368–369 (2007).
[CrossRef]

A. Passian, A. L. Lereu, R. H. Ritchie, F. Meriaudeau, T. Thundat, and T. L. Ferrell, “Surface plasmon assisted thermal coupling of multiple photon energies,” Thin Solid Films497, 315–320 (2006).
[CrossRef]

A. L. Lereu, A. Passian, R. H. Farahi, S. Zahrai, and T. Thundat, “Plasmonic Marangoni forces,” JEOS:RP1, 06030–06034 (2006).
[CrossRef]

R. H. Farahi, A. Passian, S. Zahrai, A. L. Lereu, T. L. Ferrell, and T. Thundat, “Microscale Marangoni actuation: all-optical and all-electrical methods,” Ultramicroscopy106, 815–821 (2006).
[CrossRef] [PubMed]

A. Passian, S. Zahrai, A. L. Lereu, R. H. Farahi, T. L. Ferrell, and T. Thundat, “Nonradiative surface plasmon assisted microscale Marangoni forces,” Phys. Rev. E73,066311–066316 (2006).
[CrossRef]

A. L. Lereu, A. Passian, J. P. Goudonnet, T. Thundat, and T. L. Ferrell, “Optical modulation processes in thin films based on thermal effects of surface plasmons,” Appl. Phys. Lett.86, 154101–154103 (2005).
[CrossRef]

A. Passian, A. L. Lereu, E. T. Arakawa, A. Wig, T. Thundat, and T. L. Ferrell, “Modulation of multiple photon energies by use of surface plasmons,” Opt. Lett.30, 41–43 (2005).
[CrossRef] [PubMed]

A. Passian, R. H. Ritchie, A. L. Lereu, T. Thundat, and T. L. Ferrell, “Curvature effects in surface plasmon dispersion and coupling,” Phys. Rev. B71, 115425–115435, (2005).
[CrossRef]

A. Passian, A. L. Lereu, E. T. Arakawa, R. H. Ritchie, T. Thundat, and T. L. Ferrell, “Opto-electronic versus electro-optic modulation,” Appl. Phys. Lett.85, 2703–2705 (2004).
[CrossRef]

A. Passian, A. Wig, A. L. Lereu, F. Meriaudeau, T. Thundat, and T. L. Ferrell, “Photon tunneling via surface plasmon coupling,” Appl. Phys. Lett.85, 3420–3422 (2004).
[CrossRef]

A. Passian, A. Wig, A. L. Lereu, P. G. Evans, F. Meriaudeau, T. Thundat, and T. L. Ferrell, “Probing large area surface plasmon interference in thin metal films using photon scanning tunneling microscopy,” Ultramicroscopy100, 429–436 (2004).
[CrossRef] [PubMed]

A. Passian, A. L. Lereu, R. H. Farahi, T. L. Ferrell, and T. Thundat, “Thermoplasmonics in thin metal films,” in Trends in solid film researchA. R. Jost, eds. (Nova Science Publishers, Hauppauge NY, 2007), pp. 69–109.

Leung, P. T.

C. W. Chen, H. P. Chiang, P. T. Leung, and D. P. Tsai, “Temperature dependence of enhanced optical absorption and raman spectroscopy from metallic nanoparticles,” Solid State Commun.148, 413–416 (2008).
[CrossRef]

Lezec, H. J.

D. Pacifici, H. J. Lezec, and H. A. Atwater, “All-optical modulation by plasmonic excitation of CdSe quantum dots,” Nat. Photonics1, 402–406 (2007).
[CrossRef]

Li, X.

F. S. Ou, M. Hu, I. Naumov, A. Kim, W. Wu, A. M. Bratkovsky, X. Li, S. R. Williams, and Z. Li, “Hot-spot engineering in polygonal nanofinger assemblies for surface enhanced raman spectroscopy,” Nano Lett.11, 2538–2542 (2011).
[CrossRef] [PubMed]

Li, Z.

F. S. Ou, M. Hu, I. Naumov, A. Kim, W. Wu, A. M. Bratkovsky, X. Li, S. R. Williams, and Z. Li, “Hot-spot engineering in polygonal nanofinger assemblies for surface enhanced raman spectroscopy,” Nano Lett.11, 2538–2542 (2011).
[CrossRef] [PubMed]

Link, S.

D. Solis, B. Willingham, S. L. Nauert, L. S. Slaughter, J. Olson, P. Swanglap, A. Paul, W-S. Chang, and S. Link, “Electromagnetic energy transport in nanoparticle chains via dark plasmon modes,” Nano Lett.12, 1349–1353 (2012).
[CrossRef] [PubMed]

S. Link and M. A. El-Sayed, “Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods,” J. Phys. Chem. B103, 8410–8426 (1999).
[CrossRef]

Little, J. W.

S. W. Kennerly, J. W. Little, R. J. Warmack, and T. L. Ferrell, “Optical properties of heated Ag films,” Phys. Rev. B29, 2926–2929 (1984).
[CrossRef]

Liu, Y.

J. Kou, H. Qian, H. Lu, Y. Liu, Y. Xu, F. Wu, and J. Fan, “Optimizing the design of nanostructures for improved thermal conduction within confined spaces,” Nanoscale Res. Lett.6, 422–429 (2011).
[CrossRef] [PubMed]

Lockyear, M. J.

E. Hendry, F. J. Garcia-Vidal, L. Martin-Moreno, J. G. Rivas, M. Bonn, A. P. Hibbins, and M. J. Lockyear, “Optical control over surface-plasmon-polariton-assisted THz transmission through a slit aperture,” Phys. Rev. Lett.100, 123901–123904 (2008).
[CrossRef] [PubMed]

Lu, H.

J. Kou, H. Qian, H. Lu, Y. Liu, Y. Xu, F. Wu, and J. Fan, “Optimizing the design of nanostructures for improved thermal conduction within confined spaces,” Nanoscale Res. Lett.6, 422–429 (2011).
[CrossRef] [PubMed]

MacDonald, K. F.

K. F. MacDonald, Z. L. Samson, M. I. Stockman, and N. I. Zheludev, “Ultrafast active plasmonics,” Nat. Photonics3, 55–58 (2009).
[CrossRef]

Marcel, A.

R. Stana, I. Casian Botez, V. P. Paun, and A. Marcel, “New model for heat transfer in nanostructures,” J. Comput. Theor. Nanos.9, 55–66 (2012).
[CrossRef]

Markey, L.

Martin, J.

A. Popescu, L. M. Woods, J. Martin, and G. S. Nolas, “Model of transport properties of thermoelectric nanocomposite materials,” Phys. Rev. B79, 205302–205308 (2009).
[CrossRef]

Martin, O. J. F.

P. Muhlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science308, 1607–1609 (2005).
[CrossRef] [PubMed]

Martin-Moreno, L.

E. Hendry, F. J. Garcia-Vidal, L. Martin-Moreno, J. G. Rivas, M. Bonn, A. P. Hibbins, and M. J. Lockyear, “Optical control over surface-plasmon-polariton-assisted THz transmission through a slit aperture,” Phys. Rev. Lett.100, 123901–123904 (2008).
[CrossRef] [PubMed]

Marz, J.

M. Perner, S. Gresillon, J. Marz, G. von Plessen, J. Feldmann, J. Porstendorfer, K. J. Berg, and G. Berg, “Observation of hot-electron pressure in the vibration dynamics of metal nanoparticles,” Phys. Rev. Lett.85, 792–795 (2000).
[CrossRef] [PubMed]

Melosh, N. A.

R. A. Pala, K. T. Shimizu, N. A. Melosh, and M. L. Brongersma, “A nonvolatile plasmonic switch employing photochromic molecules,” Nano Lett.8, 1506–1510 (2008).
[CrossRef] [PubMed]

Meriaudeau, F.

A. Passian, A. L. Lereu, R. H. Ritchie, F. Meriaudeau, T. Thundat, and T. L. Ferrell, “Surface plasmon assisted thermal coupling of multiple photon energies,” Thin Solid Films497, 315–320 (2006).
[CrossRef]

A. Passian, A. Wig, A. L. Lereu, F. Meriaudeau, T. Thundat, and T. L. Ferrell, “Photon tunneling via surface plasmon coupling,” Appl. Phys. Lett.85, 3420–3422 (2004).
[CrossRef]

A. Passian, A. Wig, A. L. Lereu, P. G. Evans, F. Meriaudeau, T. Thundat, and T. L. Ferrell, “Probing large area surface plasmon interference in thin metal films using photon scanning tunneling microscopy,” Ultramicroscopy100, 429–436 (2004).
[CrossRef] [PubMed]

Merle, J. C.

J. Y. Bigot, J. C. Merle, O. Cregut, and A. Daunois, “Electron dynamics in copper metallic nanoparticles probed with femtosecond optical pulses,” Phys. Rev. Lett.75, 4702–4705 (1995).
[CrossRef] [PubMed]

Min, C.

Mitsui, K.

G. Gupta, D. Tanaka, Y. Ito, D. Shibata, M. Shimojo, K. Furuya, K. Mitsui, and K. Kajikawa, “Absorption spectroscopy of gold nanoisland films: optical and structural characterization,” Nanotechnol.20, 025703–025711, (2009).
[CrossRef]

Muhlschlegel, P.

P. Muhlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science308, 1607–1609 (2005).
[CrossRef] [PubMed]

Muskens, O. L.

N. Large, M. Abb, J. Aizpurua, and O. L. Muskens, “Photoconductively loaded plasmonic nanoantenna as building block for ultracompact optical switches,” Nano Lett.10, 1741–1746 (2010).
[CrossRef] [PubMed]

Nakwaski, W.

E. Gesikowska and W. Nakwaski, “An impact of multi-layered structures of modern optoelectronic devices on their thermal properties,” Opt. Quant. Electron.40, 205–216 (2008).
[CrossRef]

Nauert, S. L.

D. Solis, B. Willingham, S. L. Nauert, L. S. Slaughter, J. Olson, P. Swanglap, A. Paul, W-S. Chang, and S. Link, “Electromagnetic energy transport in nanoparticle chains via dark plasmon modes,” Nano Lett.12, 1349–1353 (2012).
[CrossRef] [PubMed]

Naumov, I.

F. S. Ou, M. Hu, I. Naumov, A. Kim, W. Wu, A. M. Bratkovsky, X. Li, S. R. Williams, and Z. Li, “Hot-spot engineering in polygonal nanofinger assemblies for surface enhanced raman spectroscopy,” Nano Lett.11, 2538–2542 (2011).
[CrossRef] [PubMed]

Nikolajsen, T.

T. Nikolajsen, K. Leosson, and S. I. Bozhevolnyi, “Surface plasmon polariton based modulators and switches operating at telecom wavelengths,” Appl. Phys. Lett.85, 5833–5835 (2004).
[CrossRef]

Nolas, G. S.

A. Popescu, L. M. Woods, J. Martin, and G. S. Nolas, “Model of transport properties of thermoelectric nanocomposite materials,” Phys. Rev. B79, 205302–205308 (2009).
[CrossRef]

Nordlander, P.

J. Ye, F. Wen, H. Sobhani, J. Britt Lassiter, P. Van Dorpe, P. Nordlander, and N. J. Halas, “Plasmonic nanoclusters: near field properties of the fano resonance interrogated with sers,” Nano Lett.12, 1660–1667 (2012).
[CrossRef] [PubMed]

Nygren, M.

D. Cederkrantz, N. Farahi, K. A. Borup, B. B. Iversen, M. Nygren, and A. E. C. Palmqvist, “Enhanced thermoelectric properties of mg2si by addition of tio2 nanoparticles,” J. Appl. Phys.111, 023701–023707 (2012).
[CrossRef]

O’Neal, D. P.

D. P. O’Neal, L. R. Hirsch, N. J. Halas, J. D. Payne, and J. L. West, “Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles,” Cancer Lett.209, 171–176 (2004).
[CrossRef]

Ohtsu, M.

T. Kawazoe, T. Yatsui, and M. Ohtsu, “Nanophotonics using optical near fields,” J. Non-Cryst. Solids352, 2492–2495 (2006).
[CrossRef]

Olson, J.

D. Solis, B. Willingham, S. L. Nauert, L. S. Slaughter, J. Olson, P. Swanglap, A. Paul, W-S. Chang, and S. Link, “Electromagnetic energy transport in nanoparticle chains via dark plasmon modes,” Nano Lett.12, 1349–1353 (2012).
[CrossRef] [PubMed]

Opsal, J.

Ou, F. S.

F. S. Ou, M. Hu, I. Naumov, A. Kim, W. Wu, A. M. Bratkovsky, X. Li, S. R. Williams, and Z. Li, “Hot-spot engineering in polygonal nanofinger assemblies for surface enhanced raman spectroscopy,” Nano Lett.11, 2538–2542 (2011).
[CrossRef] [PubMed]

Ozbay, E.

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science311, 189–193 (2006).
[CrossRef] [PubMed]

Pacifici, D.

D. Pacifici, H. J. Lezec, and H. A. Atwater, “All-optical modulation by plasmonic excitation of CdSe quantum dots,” Nat. Photonics1, 402–406 (2007).
[CrossRef]

Pala, R. A.

R. A. Pala, K. T. Shimizu, N. A. Melosh, and M. L. Brongersma, “A nonvolatile plasmonic switch employing photochromic molecules,” Nano Lett.8, 1506–1510 (2008).
[CrossRef] [PubMed]

Palmqvist, A. E. C.

D. Cederkrantz, N. Farahi, K. A. Borup, B. B. Iversen, M. Nygren, and A. E. C. Palmqvist, “Enhanced thermoelectric properties of mg2si by addition of tio2 nanoparticles,” J. Appl. Phys.111, 023701–023707 (2012).
[CrossRef]

Passian, A.

A. L. Lereu, A. Passian, R. H. Farahi, N. F. van Hulst, T. L. Ferrell, and T. Thundat, “Thermoplasmonic shift and dispersion in thin metal films,” J. Vac. Sci. Technol., A26, 836–841 (2008).
[CrossRef]

R. H. Farahi, A. Passian, S. Zahrai, A. L. Lereu, T. L. Ferrell, and T. Thundat, “Microscale Marangoni actuation: all-optical and all-electrical methods,” Ultramicroscopy106, 815–821 (2006).
[CrossRef] [PubMed]

A. L. Lereu, A. Passian, R. H. Farahi, S. Zahrai, and T. Thundat, “Plasmonic Marangoni forces,” JEOS:RP1, 06030–06034 (2006).
[CrossRef]

A. Passian, A. L. Lereu, R. H. Ritchie, F. Meriaudeau, T. Thundat, and T. L. Ferrell, “Surface plasmon assisted thermal coupling of multiple photon energies,” Thin Solid Films497, 315–320 (2006).
[CrossRef]

A. Passian, S. Zahrai, A. L. Lereu, R. H. Farahi, T. L. Ferrell, and T. Thundat, “Nonradiative surface plasmon assisted microscale Marangoni forces,” Phys. Rev. E73,066311–066316 (2006).
[CrossRef]

A. L. Lereu, A. Passian, J. P. Goudonnet, T. Thundat, and T. L. Ferrell, “Optical modulation processes in thin films based on thermal effects of surface plasmons,” Appl. Phys. Lett.86, 154101–154103 (2005).
[CrossRef]

R. H. Farahi, A. Passian, T. L. Ferrell, and T. Thundat, “Marangoni forces created by surface plasmon decay,” Opt. Lett.30, 616–618 (2005).
[CrossRef] [PubMed]

A. Passian, R. H. Ritchie, A. L. Lereu, T. Thundat, and T. L. Ferrell, “Curvature effects in surface plasmon dispersion and coupling,” Phys. Rev. B71, 115425–115435, (2005).
[CrossRef]

A. Passian, A. L. Lereu, E. T. Arakawa, A. Wig, T. Thundat, and T. L. Ferrell, “Modulation of multiple photon energies by use of surface plasmons,” Opt. Lett.30, 41–43 (2005).
[CrossRef] [PubMed]

A. Passian, A. L. Lereu, E. T. Arakawa, R. H. Ritchie, T. Thundat, and T. L. Ferrell, “Opto-electronic versus electro-optic modulation,” Appl. Phys. Lett.85, 2703–2705 (2004).
[CrossRef]

A. Passian, A. Wig, A. L. Lereu, P. G. Evans, F. Meriaudeau, T. Thundat, and T. L. Ferrell, “Probing large area surface plasmon interference in thin metal films using photon scanning tunneling microscopy,” Ultramicroscopy100, 429–436 (2004).
[CrossRef] [PubMed]

A. Passian, A. Wig, A. L. Lereu, F. Meriaudeau, T. Thundat, and T. L. Ferrell, “Photon tunneling via surface plasmon coupling,” Appl. Phys. Lett.85, 3420–3422 (2004).
[CrossRef]

A. Passian, A. L. Lereu, R. H. Farahi, T. L. Ferrell, and T. Thundat, “Thermoplasmonics in thin metal films,” in Trends in solid film researchA. R. Jost, eds. (Nova Science Publishers, Hauppauge NY, 2007), pp. 69–109.

Paul, A.

D. Solis, B. Willingham, S. L. Nauert, L. S. Slaughter, J. Olson, P. Swanglap, A. Paul, W-S. Chang, and S. Link, “Electromagnetic energy transport in nanoparticle chains via dark plasmon modes,” Nano Lett.12, 1349–1353 (2012).
[CrossRef] [PubMed]

Paun, V. P.

R. Stana, I. Casian Botez, V. P. Paun, and A. Marcel, “New model for heat transfer in nanostructures,” J. Comput. Theor. Nanos.9, 55–66 (2012).
[CrossRef]

Payne, J. D.

D. P. O’Neal, L. R. Hirsch, N. J. Halas, J. D. Payne, and J. L. West, “Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles,” Cancer Lett.209, 171–176 (2004).
[CrossRef]

Perner, M.

M. Perner, S. Gresillon, J. Marz, G. von Plessen, J. Feldmann, J. Porstendorfer, K. J. Berg, and G. Berg, “Observation of hot-electron pressure in the vibration dynamics of metal nanoparticles,” Phys. Rev. Lett.85, 792–795 (2000).
[CrossRef] [PubMed]

Pissuwan, D.

D. Pissuwan, S. M. Valenzuela, and M. B. Cortie, “Therapeutic possibilities of plasmonically heated gold nanoparticles,” Trends Biotechnol.24, 62–67 (2006).
[CrossRef]

Pohl, D. W.

P. Muhlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science308, 1607–1609 (2005).
[CrossRef] [PubMed]

Pollard, R. J.

W. Dickson, G. A. Wurtz, P. R. Evans, R. J. Pollard, and A. V. Zayats, “Electronically controlled surface plasmon dispersion and optical transmission through metallic hole arrays using liquid crystal,” Nano Lett.8, 281–286 (2008).
[CrossRef]

Popescu, A.

A. Popescu, L. M. Woods, J. Martin, and G. S. Nolas, “Model of transport properties of thermoelectric nanocomposite materials,” Phys. Rev. B79, 205302–205308 (2009).
[CrossRef]

Porstendorfer, J.

M. Perner, S. Gresillon, J. Marz, G. von Plessen, J. Feldmann, J. Porstendorfer, K. J. Berg, and G. Berg, “Observation of hot-electron pressure in the vibration dynamics of metal nanoparticles,” Phys. Rev. Lett.85, 792–795 (2000).
[CrossRef] [PubMed]

Price, R. E.

L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” PNAS100, 13549–13554 (2003).
[CrossRef] [PubMed]

Qian, H.

J. Kou, H. Qian, H. Lu, Y. Liu, Y. Xu, F. Wu, and J. Fan, “Optimizing the design of nanostructures for improved thermal conduction within confined spaces,” Nanoscale Res. Lett.6, 422–429 (2011).
[CrossRef] [PubMed]

Qiu, M.

X. Chen, Y. Chen, M. Yan, and M. Qiu, “Nanosecond photothermal effects in plasmonic nanostructures,” ACS Nano6, 2550–2557 (2012).
[CrossRef] [PubMed]

Qiu, T. Q.

T. Q. Qiu and C. L. Tien, “Size effects on nonequilibrium laser-heating of metal-films,” J. Heat Trans-T ASME115, 842–847 (1993).
[CrossRef]

Reinhard, B. M.

S. V. Boriskina and B. M. Reinhard, “Molding the flow of light on the nanoscale: from vortex nanogears to phase-operated plasmonic machinery,” Nanoscale4, 76–90 (2012).
[CrossRef]

Rief, B.

B. Rief, “Thermal-wave transient behaviour,” Can. J. Phys.64, 1303–1306 (1986).
[CrossRef]

Ritchie, R. H.

A. Passian, A. L. Lereu, R. H. Ritchie, F. Meriaudeau, T. Thundat, and T. L. Ferrell, “Surface plasmon assisted thermal coupling of multiple photon energies,” Thin Solid Films497, 315–320 (2006).
[CrossRef]

A. Passian, R. H. Ritchie, A. L. Lereu, T. Thundat, and T. L. Ferrell, “Curvature effects in surface plasmon dispersion and coupling,” Phys. Rev. B71, 115425–115435, (2005).
[CrossRef]

A. Passian, A. L. Lereu, E. T. Arakawa, R. H. Ritchie, T. Thundat, and T. L. Ferrell, “Opto-electronic versus electro-optic modulation,” Appl. Phys. Lett.85, 2703–2705 (2004).
[CrossRef]

Rivas, J. G.

E. Hendry, F. J. Garcia-Vidal, L. Martin-Moreno, J. G. Rivas, M. Bonn, A. P. Hibbins, and M. J. Lockyear, “Optical control over surface-plasmon-polariton-assisted THz transmission through a slit aperture,” Phys. Rev. Lett.100, 123901–123904 (2008).
[CrossRef] [PubMed]

Rivera, B.

L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” PNAS100, 13549–13554 (2003).
[CrossRef] [PubMed]

Rosencwaig, A.

Ryu, S-G.

C. Cheng, W. Fan, J. Cao, S-G. Ryu, J. Ji, C. P. Grigoropoulos, and J. Wu, “Heat transfer across the interface between nanoscale solids and gas,” ACS Nano5, 10102–10107 (2011).
[CrossRef] [PubMed]

Samson, Z. L.

K. F. MacDonald, Z. L. Samson, M. I. Stockman, and N. I. Zheludev, “Ultrafast active plasmonics,” Nat. Photonics3, 55–58 (2009).
[CrossRef]

Schouten, H. F.

H. F. Schouten, N. Kuzmin, G. Dubois, T. D. Visser, G. Gbur, P. F. A. Alkemade, H. Blok, G. W. Hooft, D. Lenstra, and E. R. Eliel, “Plasmon-assisted two-slit transmission: Young’s experiment revisited,” Phys. Rev. Lett.94, 053901 (2005).
[CrossRef] [PubMed]

Sernelius, B. E.

B. E. Sernelius, Surface Modes in Physics (Wiley-VCH Verlag Berlin GmbH, 2001).
[CrossRef]

Sershen, S. R.

L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” PNAS100, 13549–13554 (2003).
[CrossRef] [PubMed]

Shankar, P.

Shibata, D.

G. Gupta, D. Tanaka, Y. Ito, D. Shibata, M. Shimojo, K. Furuya, K. Mitsui, and K. Kajikawa, “Absorption spectroscopy of gold nanoisland films: optical and structural characterization,” Nanotechnol.20, 025703–025711, (2009).
[CrossRef]

Shimizu, K. T.

R. A. Pala, K. T. Shimizu, N. A. Melosh, and M. L. Brongersma, “A nonvolatile plasmonic switch employing photochromic molecules,” Nano Lett.8, 1506–1510 (2008).
[CrossRef] [PubMed]

Shimojo, M.

G. Gupta, D. Tanaka, Y. Ito, D. Shibata, M. Shimojo, K. Furuya, K. Mitsui, and K. Kajikawa, “Absorption spectroscopy of gold nanoisland films: optical and structural characterization,” Nanotechnol.20, 025703–025711, (2009).
[CrossRef]

Slaughter, L. S.

D. Solis, B. Willingham, S. L. Nauert, L. S. Slaughter, J. Olson, P. Swanglap, A. Paul, W-S. Chang, and S. Link, “Electromagnetic energy transport in nanoparticle chains via dark plasmon modes,” Nano Lett.12, 1349–1353 (2012).
[CrossRef] [PubMed]

Sobhani, H.

J. Ye, F. Wen, H. Sobhani, J. Britt Lassiter, P. Van Dorpe, P. Nordlander, and N. J. Halas, “Plasmonic nanoclusters: near field properties of the fano resonance interrogated with sers,” Nano Lett.12, 1660–1667 (2012).
[CrossRef] [PubMed]

Solis, D.

D. Solis, B. Willingham, S. L. Nauert, L. S. Slaughter, J. Olson, P. Swanglap, A. Paul, W-S. Chang, and S. Link, “Electromagnetic energy transport in nanoparticle chains via dark plasmon modes,” Nano Lett.12, 1349–1353 (2012).
[CrossRef] [PubMed]

Stafford, R. J.

L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” PNAS100, 13549–13554 (2003).
[CrossRef] [PubMed]

Stana, R.

R. Stana, I. Casian Botez, V. P. Paun, and A. Marcel, “New model for heat transfer in nanostructures,” J. Comput. Theor. Nanos.9, 55–66 (2012).
[CrossRef]

Stockman, M. I.

K. F. MacDonald, Z. L. Samson, M. I. Stockman, and N. I. Zheludev, “Ultrafast active plasmonics,” Nat. Photonics3, 55–58 (2009).
[CrossRef]

Sullivan, C. R.

P. Keblinski, D. G. Cahill, A. Bodapati, C. R. Sullivan, and T. A. Taton, “Limits of localized heating by electromagnetically excited nanoparticles,” J. Appl. Phys.100, 054305–054309 (2006).
[CrossRef]

Swanglap, P.

D. Solis, B. Willingham, S. L. Nauert, L. S. Slaughter, J. Olson, P. Swanglap, A. Paul, W-S. Chang, and S. Link, “Electromagnetic energy transport in nanoparticle chains via dark plasmon modes,” Nano Lett.12, 1349–1353 (2012).
[CrossRef] [PubMed]

Sweatlock, L. A.

J. A. Dionne, K. Diest, L. A. Sweatlock, and H. A. Atwater, “Plasmostor: a metal-oxide-si field effect plasmonic modulator,” Nano Lett.9, 897–902 (2009).
[CrossRef] [PubMed]

Tanaka, D.

G. Gupta, D. Tanaka, Y. Ito, D. Shibata, M. Shimojo, K. Furuya, K. Mitsui, and K. Kajikawa, “Absorption spectroscopy of gold nanoisland films: optical and structural characterization,” Nanotechnol.20, 025703–025711, (2009).
[CrossRef]

Taton, T. A.

P. Keblinski, D. G. Cahill, A. Bodapati, C. R. Sullivan, and T. A. Taton, “Limits of localized heating by electromagnetically excited nanoparticles,” J. Appl. Phys.100, 054305–054309 (2006).
[CrossRef]

Z. Ge, Y. Kang, T. A. Taton, P. V. Braun, and D. G. Cahill, “Thermal transport in au-core polymer-shell nanoparticles,” Nano Lett.5, 531–535 (2005).
[CrossRef] [PubMed]

Thundat, T.

A. L. Lereu, A. Passian, R. H. Farahi, N. F. van Hulst, T. L. Ferrell, and T. Thundat, “Thermoplasmonic shift and dispersion in thin metal films,” J. Vac. Sci. Technol., A26, 836–841 (2008).
[CrossRef]

A. Passian, A. L. Lereu, R. H. Ritchie, F. Meriaudeau, T. Thundat, and T. L. Ferrell, “Surface plasmon assisted thermal coupling of multiple photon energies,” Thin Solid Films497, 315–320 (2006).
[CrossRef]

A. Passian, S. Zahrai, A. L. Lereu, R. H. Farahi, T. L. Ferrell, and T. Thundat, “Nonradiative surface plasmon assisted microscale Marangoni forces,” Phys. Rev. E73,066311–066316 (2006).
[CrossRef]

R. H. Farahi, A. Passian, S. Zahrai, A. L. Lereu, T. L. Ferrell, and T. Thundat, “Microscale Marangoni actuation: all-optical and all-electrical methods,” Ultramicroscopy106, 815–821 (2006).
[CrossRef] [PubMed]

A. L. Lereu, A. Passian, R. H. Farahi, S. Zahrai, and T. Thundat, “Plasmonic Marangoni forces,” JEOS:RP1, 06030–06034 (2006).
[CrossRef]

A. Passian, A. L. Lereu, E. T. Arakawa, A. Wig, T. Thundat, and T. L. Ferrell, “Modulation of multiple photon energies by use of surface plasmons,” Opt. Lett.30, 41–43 (2005).
[CrossRef] [PubMed]

A. Passian, R. H. Ritchie, A. L. Lereu, T. Thundat, and T. L. Ferrell, “Curvature effects in surface plasmon dispersion and coupling,” Phys. Rev. B71, 115425–115435, (2005).
[CrossRef]

R. H. Farahi, A. Passian, T. L. Ferrell, and T. Thundat, “Marangoni forces created by surface plasmon decay,” Opt. Lett.30, 616–618 (2005).
[CrossRef] [PubMed]

A. L. Lereu, A. Passian, J. P. Goudonnet, T. Thundat, and T. L. Ferrell, “Optical modulation processes in thin films based on thermal effects of surface plasmons,” Appl. Phys. Lett.86, 154101–154103 (2005).
[CrossRef]

A. Passian, A. L. Lereu, E. T. Arakawa, R. H. Ritchie, T. Thundat, and T. L. Ferrell, “Opto-electronic versus electro-optic modulation,” Appl. Phys. Lett.85, 2703–2705 (2004).
[CrossRef]

A. Passian, A. Wig, A. L. Lereu, P. G. Evans, F. Meriaudeau, T. Thundat, and T. L. Ferrell, “Probing large area surface plasmon interference in thin metal films using photon scanning tunneling microscopy,” Ultramicroscopy100, 429–436 (2004).
[CrossRef] [PubMed]

A. Passian, A. Wig, A. L. Lereu, F. Meriaudeau, T. Thundat, and T. L. Ferrell, “Photon tunneling via surface plasmon coupling,” Appl. Phys. Lett.85, 3420–3422 (2004).
[CrossRef]

A. Passian, A. L. Lereu, R. H. Farahi, T. L. Ferrell, and T. Thundat, “Thermoplasmonics in thin metal films,” in Trends in solid film researchA. R. Jost, eds. (Nova Science Publishers, Hauppauge NY, 2007), pp. 69–109.

Tian, X.

H. Wei, Z. Wang, X. Tian, M. Käll, and H. Xu, “Cascaded logic gates in nanophotonic plasmon networks,” Nat. Commun.2, 387–391 (2011).
[CrossRef] [PubMed]

Tien, C. L.

T. Q. Qiu and C. L. Tien, “Size effects on nonequilibrium laser-heating of metal-films,” J. Heat Trans-T ASME115, 842–847 (1993).
[CrossRef]

Tsai, D. P.

C. W. Chen, H. P. Chiang, P. T. Leung, and D. P. Tsai, “Temperature dependence of enhanced optical absorption and raman spectroscopy from metallic nanoparticles,” Solid State Commun.148, 413–416 (2008).
[CrossRef]

Valenzuela, S. M.

D. Pissuwan, S. M. Valenzuela, and M. B. Cortie, “Therapeutic possibilities of plasmonically heated gold nanoparticles,” Trends Biotechnol.24, 62–67 (2006).
[CrossRef]

Van Dorpe, P.

J. Ye, F. Wen, H. Sobhani, J. Britt Lassiter, P. Van Dorpe, P. Nordlander, and N. J. Halas, “Plasmonic nanoclusters: near field properties of the fano resonance interrogated with sers,” Nano Lett.12, 1660–1667 (2012).
[CrossRef] [PubMed]

van Hulst, N. F.

A. L. Lereu, A. Passian, R. H. Farahi, N. F. van Hulst, T. L. Ferrell, and T. Thundat, “Thermoplasmonic shift and dispersion in thin metal films,” J. Vac. Sci. Technol., A26, 836–841 (2008).
[CrossRef]

Veronis, G.

Visser, T. D.

H. F. Schouten, N. Kuzmin, G. Dubois, T. D. Visser, G. Gbur, P. F. A. Alkemade, H. Blok, G. W. Hooft, D. Lenstra, and E. R. Eliel, “Plasmon-assisted two-slit transmission: Young’s experiment revisited,” Phys. Rev. Lett.94, 053901 (2005).
[CrossRef] [PubMed]

Viswanathan, N. K.

Volkov, V. S.

von Plessen, G.

M. Perner, S. Gresillon, J. Marz, G. von Plessen, J. Feldmann, J. Porstendorfer, K. J. Berg, and G. Berg, “Observation of hot-electron pressure in the vibration dynamics of metal nanoparticles,” Phys. Rev. Lett.85, 792–795 (2000).
[CrossRef] [PubMed]

Wang, Z.

H. Wei, Z. Wang, X. Tian, M. Käll, and H. Xu, “Cascaded logic gates in nanophotonic plasmon networks,” Nat. Commun.2, 387–391 (2011).
[CrossRef] [PubMed]

Warmack, R. J.

S. W. Kennerly, J. W. Little, R. J. Warmack, and T. L. Ferrell, “Optical properties of heated Ag films,” Phys. Rev. B29, 2926–2929 (1984).
[CrossRef]

Wei, H.

H. Wei, Z. Wang, X. Tian, M. Käll, and H. Xu, “Cascaded logic gates in nanophotonic plasmon networks,” Nat. Commun.2, 387–391 (2011).
[CrossRef] [PubMed]

Welch, M. J.

J. Y. Chen, C. Glaus, R. Laforest, Q. Zhang, M. Yang, M. Gidding, M. J. Welch, and Y. Xia, “Gold nanocages as photothermal transducers for cancer treatment,” Small6, 811–817 (2010).
[CrossRef] [PubMed]

Wen, F.

J. Ye, F. Wen, H. Sobhani, J. Britt Lassiter, P. Van Dorpe, P. Nordlander, and N. J. Halas, “Plasmonic nanoclusters: near field properties of the fano resonance interrogated with sers,” Nano Lett.12, 1660–1667 (2012).
[CrossRef] [PubMed]

West, J. L.

D. P. O’Neal, L. R. Hirsch, N. J. Halas, J. D. Payne, and J. L. West, “Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles,” Cancer Lett.209, 171–176 (2004).
[CrossRef]

L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” PNAS100, 13549–13554 (2003).
[CrossRef] [PubMed]

White, J. S.

W. Cai, J. S. White, and M. L. Brongersma, “Compact, high-speed and power-efficient electrooptic plasmonic modulators,” Nano Lett.9, 4403–4411 (2009).
[CrossRef] [PubMed]

Wig, A.

A. Passian, A. L. Lereu, E. T. Arakawa, A. Wig, T. Thundat, and T. L. Ferrell, “Modulation of multiple photon energies by use of surface plasmons,” Opt. Lett.30, 41–43 (2005).
[CrossRef] [PubMed]

A. Passian, A. Wig, A. L. Lereu, F. Meriaudeau, T. Thundat, and T. L. Ferrell, “Photon tunneling via surface plasmon coupling,” Appl. Phys. Lett.85, 3420–3422 (2004).
[CrossRef]

A. Passian, A. Wig, A. L. Lereu, P. G. Evans, F. Meriaudeau, T. Thundat, and T. L. Ferrell, “Probing large area surface plasmon interference in thin metal films using photon scanning tunneling microscopy,” Ultramicroscopy100, 429–436 (2004).
[CrossRef] [PubMed]

Willenborg, D. L.

Williams, S. R.

F. S. Ou, M. Hu, I. Naumov, A. Kim, W. Wu, A. M. Bratkovsky, X. Li, S. R. Williams, and Z. Li, “Hot-spot engineering in polygonal nanofinger assemblies for surface enhanced raman spectroscopy,” Nano Lett.11, 2538–2542 (2011).
[CrossRef] [PubMed]

Willingham, B.

D. Solis, B. Willingham, S. L. Nauert, L. S. Slaughter, J. Olson, P. Swanglap, A. Paul, W-S. Chang, and S. Link, “Electromagnetic energy transport in nanoparticle chains via dark plasmon modes,” Nano Lett.12, 1349–1353 (2012).
[CrossRef] [PubMed]

Woods, L. M.

A. Popescu, L. M. Woods, J. Martin, and G. S. Nolas, “Model of transport properties of thermoelectric nanocomposite materials,” Phys. Rev. B79, 205302–205308 (2009).
[CrossRef]

Wu, F.

J. Kou, H. Qian, H. Lu, Y. Liu, Y. Xu, F. Wu, and J. Fan, “Optimizing the design of nanostructures for improved thermal conduction within confined spaces,” Nanoscale Res. Lett.6, 422–429 (2011).
[CrossRef] [PubMed]

Wu, J.

C. Cheng, W. Fan, J. Cao, S-G. Ryu, J. Ji, C. P. Grigoropoulos, and J. Wu, “Heat transfer across the interface between nanoscale solids and gas,” ACS Nano5, 10102–10107 (2011).
[CrossRef] [PubMed]

Wu, W.

F. S. Ou, M. Hu, I. Naumov, A. Kim, W. Wu, A. M. Bratkovsky, X. Li, S. R. Williams, and Z. Li, “Hot-spot engineering in polygonal nanofinger assemblies for surface enhanced raman spectroscopy,” Nano Lett.11, 2538–2542 (2011).
[CrossRef] [PubMed]

Wurtz, G. A.

W. Dickson, G. A. Wurtz, P. R. Evans, R. J. Pollard, and A. V. Zayats, “Electronically controlled surface plasmon dispersion and optical transmission through metallic hole arrays using liquid crystal,” Nano Lett.8, 281–286 (2008).
[CrossRef]

Xia, Y.

J. Y. Chen, C. Glaus, R. Laforest, Q. Zhang, M. Yang, M. Gidding, M. J. Welch, and Y. Xia, “Gold nanocages as photothermal transducers for cancer treatment,” Small6, 811–817 (2010).
[CrossRef] [PubMed]

Xu, H.

H. Wei, Z. Wang, X. Tian, M. Käll, and H. Xu, “Cascaded logic gates in nanophotonic plasmon networks,” Nat. Commun.2, 387–391 (2011).
[CrossRef] [PubMed]

Xu, Y.

J. Kou, H. Qian, H. Lu, Y. Liu, Y. Xu, F. Wu, and J. Fan, “Optimizing the design of nanostructures for improved thermal conduction within confined spaces,” Nanoscale Res. Lett.6, 422–429 (2011).
[CrossRef] [PubMed]

Xu, Z.

Z. Xu and M. J. Buehler, “Nanoengineering heat transfer performance at carbon nanotube interfaces,” ACS Nano3, 2767–2775 (2009).
[CrossRef] [PubMed]

Z. Xu and M. J. Buehler, “Hierarchical nanostructures are crucial to mitigate ultrasmall thermal point loads,” Nano Lett.9, 2065–2072 (2009).
[CrossRef] [PubMed]

Yamaguchi, S.

S. Yamaguchi, “Optical absorption of heat treated very thin silver films and its dependence on angle of incidence,” J. Phys. Soc. Jpn.17, 1172–1180 (1962).
[CrossRef]

Yan, M.

X. Chen, Y. Chen, M. Yan, and M. Qiu, “Nanosecond photothermal effects in plasmonic nanostructures,” ACS Nano6, 2550–2557 (2012).
[CrossRef] [PubMed]

Yang, M.

J. Y. Chen, C. Glaus, R. Laforest, Q. Zhang, M. Yang, M. Gidding, M. J. Welch, and Y. Xia, “Gold nanocages as photothermal transducers for cancer treatment,” Small6, 811–817 (2010).
[CrossRef] [PubMed]

Yatsui, T.

T. Kawazoe, T. Yatsui, and M. Ohtsu, “Nanophotonics using optical near fields,” J. Non-Cryst. Solids352, 2492–2495 (2006).
[CrossRef]

Ye, J.

J. Ye, F. Wen, H. Sobhani, J. Britt Lassiter, P. Van Dorpe, P. Nordlander, and N. J. Halas, “Plasmonic nanoclusters: near field properties of the fano resonance interrogated with sers,” Nano Lett.12, 1660–1667 (2012).
[CrossRef] [PubMed]

Zahrai, S.

A. L. Lereu, A. Passian, R. H. Farahi, S. Zahrai, and T. Thundat, “Plasmonic Marangoni forces,” JEOS:RP1, 06030–06034 (2006).
[CrossRef]

R. H. Farahi, A. Passian, S. Zahrai, A. L. Lereu, T. L. Ferrell, and T. Thundat, “Microscale Marangoni actuation: all-optical and all-electrical methods,” Ultramicroscopy106, 815–821 (2006).
[CrossRef] [PubMed]

A. Passian, S. Zahrai, A. L. Lereu, R. H. Farahi, T. L. Ferrell, and T. Thundat, “Nonradiative surface plasmon assisted microscale Marangoni forces,” Phys. Rev. E73,066311–066316 (2006).
[CrossRef]

Zayats, A. V.

W. Dickson, G. A. Wurtz, P. R. Evans, R. J. Pollard, and A. V. Zayats, “Electronically controlled surface plasmon dispersion and optical transmission through metallic hole arrays using liquid crystal,” Nano Lett.8, 281–286 (2008).
[CrossRef]

Zhang, J. Z.

J. Z. Zhang, “Biomedical Applications of Shape-Controlled Plasmonic Nanostructures: A Case Study of Hollow Gold Nanospheres for Photothermal Ablation Therapy of Cancer,” J. Phys. Chem. Lett.1, 686–695 (2010).
[CrossRef]

Zhang, Q.

J. Y. Chen, C. Glaus, R. Laforest, Q. Zhang, M. Yang, M. Gidding, M. J. Welch, and Y. Xia, “Gold nanocages as photothermal transducers for cancer treatment,” Small6, 811–817 (2010).
[CrossRef] [PubMed]

Zheludev, N. I.

K. F. MacDonald, Z. L. Samson, M. I. Stockman, and N. I. Zheludev, “Ultrafast active plasmonics,” Nat. Photonics3, 55–58 (2009).
[CrossRef]

Acc. Chem. Res. (1)

R. Bardhan, S. Lal, A. Joshi, and N. J. Halas, “Theranostic nanoshells: from probe design to imaging and treatment of cancer,” Acc. Chem. Res.44, 936–946 (2011).
[CrossRef] [PubMed]

ACS Nano (3)

X. Chen, Y. Chen, M. Yan, and M. Qiu, “Nanosecond photothermal effects in plasmonic nanostructures,” ACS Nano6, 2550–2557 (2012).
[CrossRef] [PubMed]

C. Cheng, W. Fan, J. Cao, S-G. Ryu, J. Ji, C. P. Grigoropoulos, and J. Wu, “Heat transfer across the interface between nanoscale solids and gas,” ACS Nano5, 10102–10107 (2011).
[CrossRef] [PubMed]

Z. Xu and M. J. Buehler, “Nanoengineering heat transfer performance at carbon nanotube interfaces,” ACS Nano3, 2767–2775 (2009).
[CrossRef] [PubMed]

Appl. Opt. (2)

Appl. Phys. Lett. (5)

A. Passian, A. L. Lereu, E. T. Arakawa, R. H. Ritchie, T. Thundat, and T. L. Ferrell, “Opto-electronic versus electro-optic modulation,” Appl. Phys. Lett.85, 2703–2705 (2004).
[CrossRef]

T. Nikolajsen, K. Leosson, and S. I. Bozhevolnyi, “Surface plasmon polariton based modulators and switches operating at telecom wavelengths,” Appl. Phys. Lett.85, 5833–5835 (2004).
[CrossRef]

A. Passian, A. Wig, A. L. Lereu, F. Meriaudeau, T. Thundat, and T. L. Ferrell, “Photon tunneling via surface plasmon coupling,” Appl. Phys. Lett.85, 3420–3422 (2004).
[CrossRef]

G. Chen and P. Hui, “Thermal conductivities of evaporated gold films on silicon and glass,” Appl. Phys. Lett.74, 2942–2944, (1999).
[CrossRef]

A. L. Lereu, A. Passian, J. P. Goudonnet, T. Thundat, and T. L. Ferrell, “Optical modulation processes in thin films based on thermal effects of surface plasmons,” Appl. Phys. Lett.86, 154101–154103 (2005).
[CrossRef]

Can. J. Phys. (1)

B. Rief, “Thermal-wave transient behaviour,” Can. J. Phys.64, 1303–1306 (1986).
[CrossRef]

Cancer Lett. (1)

D. P. O’Neal, L. R. Hirsch, N. J. Halas, J. D. Payne, and J. L. West, “Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles,” Cancer Lett.209, 171–176 (2004).
[CrossRef]

J. Appl. Phys. (2)

P. Keblinski, D. G. Cahill, A. Bodapati, C. R. Sullivan, and T. A. Taton, “Limits of localized heating by electromagnetically excited nanoparticles,” J. Appl. Phys.100, 054305–054309 (2006).
[CrossRef]

D. Cederkrantz, N. Farahi, K. A. Borup, B. B. Iversen, M. Nygren, and A. E. C. Palmqvist, “Enhanced thermoelectric properties of mg2si by addition of tio2 nanoparticles,” J. Appl. Phys.111, 023701–023707 (2012).
[CrossRef]

J. Comput. Theor. Nanos. (1)

R. Stana, I. Casian Botez, V. P. Paun, and A. Marcel, “New model for heat transfer in nanostructures,” J. Comput. Theor. Nanos.9, 55–66 (2012).
[CrossRef]

J. Heat Trans-T ASME (2)

M. I. Flik, B. I. Choi, and K. E. Goodson, “Heat-transfer regimes in microstructures,” J. Heat Trans-T ASME114, 666–674 (1992).
[CrossRef]

T. Q. Qiu and C. L. Tien, “Size effects on nonequilibrium laser-heating of metal-films,” J. Heat Trans-T ASME115, 842–847 (1993).
[CrossRef]

J. Nanopart. Res. (1)

G. Chen, “Particularities of heat conduction in nanostructures,” J. Nanopart. Res.2, 199–204 (2000).
[CrossRef]

J. Non-Cryst. Solids (1)

T. Kawazoe, T. Yatsui, and M. Ohtsu, “Nanophotonics using optical near fields,” J. Non-Cryst. Solids352, 2492–2495 (2006).
[CrossRef]

J. Phys. Chem. B (2)

S. Link and M. A. El-Sayed, “Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods,” J. Phys. Chem. B103, 8410–8426 (1999).
[CrossRef]

M. Hu and G. V. Hartland, “Heat dissipation for au particles in aqueous solution: relaxation time versus size,” J. Phys. Chem. B106, 7029–7033 (2002).
[CrossRef]

J. Phys. Chem. Lett. (1)

J. Z. Zhang, “Biomedical Applications of Shape-Controlled Plasmonic Nanostructures: A Case Study of Hollow Gold Nanospheres for Photothermal Ablation Therapy of Cancer,” J. Phys. Chem. Lett.1, 686–695 (2010).
[CrossRef]

J. Phys. Soc. Jpn. (1)

S. Yamaguchi, “Optical absorption of heat treated very thin silver films and its dependence on angle of incidence,” J. Phys. Soc. Jpn.17, 1172–1180 (1962).
[CrossRef]

J. Vac. Sci. Technol., A (1)

A. L. Lereu, A. Passian, R. H. Farahi, N. F. van Hulst, T. L. Ferrell, and T. Thundat, “Thermoplasmonic shift and dispersion in thin metal films,” J. Vac. Sci. Technol., A26, 836–841 (2008).
[CrossRef]

JEOS:RP (1)

A. L. Lereu, A. Passian, R. H. Farahi, S. Zahrai, and T. Thundat, “Plasmonic Marangoni forces,” JEOS:RP1, 06030–06034 (2006).
[CrossRef]

Nano Lett. (10)

F. S. Ou, M. Hu, I. Naumov, A. Kim, W. Wu, A. M. Bratkovsky, X. Li, S. R. Williams, and Z. Li, “Hot-spot engineering in polygonal nanofinger assemblies for surface enhanced raman spectroscopy,” Nano Lett.11, 2538–2542 (2011).
[CrossRef] [PubMed]

J. Ye, F. Wen, H. Sobhani, J. Britt Lassiter, P. Van Dorpe, P. Nordlander, and N. J. Halas, “Plasmonic nanoclusters: near field properties of the fano resonance interrogated with sers,” Nano Lett.12, 1660–1667 (2012).
[CrossRef] [PubMed]

D. Solis, B. Willingham, S. L. Nauert, L. S. Slaughter, J. Olson, P. Swanglap, A. Paul, W-S. Chang, and S. Link, “Electromagnetic energy transport in nanoparticle chains via dark plasmon modes,” Nano Lett.12, 1349–1353 (2012).
[CrossRef] [PubMed]

Z. Ge, Y. Kang, T. A. Taton, P. V. Braun, and D. G. Cahill, “Thermal transport in au-core polymer-shell nanoparticles,” Nano Lett.5, 531–535 (2005).
[CrossRef] [PubMed]

W. Dickson, G. A. Wurtz, P. R. Evans, R. J. Pollard, and A. V. Zayats, “Electronically controlled surface plasmon dispersion and optical transmission through metallic hole arrays using liquid crystal,” Nano Lett.8, 281–286 (2008).
[CrossRef]

R. A. Pala, K. T. Shimizu, N. A. Melosh, and M. L. Brongersma, “A nonvolatile plasmonic switch employing photochromic molecules,” Nano Lett.8, 1506–1510 (2008).
[CrossRef] [PubMed]

W. Cai, J. S. White, and M. L. Brongersma, “Compact, high-speed and power-efficient electrooptic plasmonic modulators,” Nano Lett.9, 4403–4411 (2009).
[CrossRef] [PubMed]

N. Large, M. Abb, J. Aizpurua, and O. L. Muskens, “Photoconductively loaded plasmonic nanoantenna as building block for ultracompact optical switches,” Nano Lett.10, 1741–1746 (2010).
[CrossRef] [PubMed]

J. A. Dionne, K. Diest, L. A. Sweatlock, and H. A. Atwater, “Plasmostor: a metal-oxide-si field effect plasmonic modulator,” Nano Lett.9, 897–902 (2009).
[CrossRef] [PubMed]

Z. Xu and M. J. Buehler, “Hierarchical nanostructures are crucial to mitigate ultrasmall thermal point loads,” Nano Lett.9, 2065–2072 (2009).
[CrossRef] [PubMed]

Nanoscale (1)

S. V. Boriskina and B. M. Reinhard, “Molding the flow of light on the nanoscale: from vortex nanogears to phase-operated plasmonic machinery,” Nanoscale4, 76–90 (2012).
[CrossRef]

Nanoscale Res. Lett. (1)

J. Kou, H. Qian, H. Lu, Y. Liu, Y. Xu, F. Wu, and J. Fan, “Optimizing the design of nanostructures for improved thermal conduction within confined spaces,” Nanoscale Res. Lett.6, 422–429 (2011).
[CrossRef] [PubMed]

Nanotechnol. (1)

G. Gupta, D. Tanaka, Y. Ito, D. Shibata, M. Shimojo, K. Furuya, K. Mitsui, and K. Kajikawa, “Absorption spectroscopy of gold nanoisland films: optical and structural characterization,” Nanotechnol.20, 025703–025711, (2009).
[CrossRef]

Nat. Commun. (1)

H. Wei, Z. Wang, X. Tian, M. Käll, and H. Xu, “Cascaded logic gates in nanophotonic plasmon networks,” Nat. Commun.2, 387–391 (2011).
[CrossRef] [PubMed]

Nat. Photonics (2)

K. F. MacDonald, Z. L. Samson, M. I. Stockman, and N. I. Zheludev, “Ultrafast active plasmonics,” Nat. Photonics3, 55–58 (2009).
[CrossRef]

D. Pacifici, H. J. Lezec, and H. A. Atwater, “All-optical modulation by plasmonic excitation of CdSe quantum dots,” Nat. Photonics1, 402–406 (2007).
[CrossRef]

Nature (1)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature424, 824–830 (2003).
[CrossRef] [PubMed]

Nature Photon. (1)

A. L. Lereu, “Modulation - plasmons lend a helping hand,” Nature Photon.1, 368–369 (2007).
[CrossRef]

Opt. Express (2)

Opt. Lett. (2)

Opt. Quant. Electron. (1)

E. Gesikowska and W. Nakwaski, “An impact of multi-layered structures of modern optoelectronic devices on their thermal properties,” Opt. Quant. Electron.40, 205–216 (2008).
[CrossRef]

Phys. Chem. Chem. Phys. (1)

G. V. Hartland, “Measurements of the material properties of metal nanoparticles by time-resolved spectroscopy,” Phys. Chem. Chem. Phys.6, 5263–5274 (2004).
[CrossRef]

Phys. Rev. B (3)

A. Popescu, L. M. Woods, J. Martin, and G. S. Nolas, “Model of transport properties of thermoelectric nanocomposite materials,” Phys. Rev. B79, 205302–205308 (2009).
[CrossRef]

A. Passian, R. H. Ritchie, A. L. Lereu, T. Thundat, and T. L. Ferrell, “Curvature effects in surface plasmon dispersion and coupling,” Phys. Rev. B71, 115425–115435, (2005).
[CrossRef]

S. W. Kennerly, J. W. Little, R. J. Warmack, and T. L. Ferrell, “Optical properties of heated Ag films,” Phys. Rev. B29, 2926–2929 (1984).
[CrossRef]

Phys. Rev. E (1)

A. Passian, S. Zahrai, A. L. Lereu, R. H. Farahi, T. L. Ferrell, and T. Thundat, “Nonradiative surface plasmon assisted microscale Marangoni forces,” Phys. Rev. E73,066311–066316 (2006).
[CrossRef]

Phys. Rev. E. (1)

M. Essone Mezeme and C. Brosseau, “Engineering nanostructures with enhanced thermoplasmonic properties for biosensing and selective targeting applications” Phys. Rev. E.87, 012722–012731 (2013).
[CrossRef]

Phys. Rev. Lett. (4)

J. Y. Bigot, J. C. Merle, O. Cregut, and A. Daunois, “Electron dynamics in copper metallic nanoparticles probed with femtosecond optical pulses,” Phys. Rev. Lett.75, 4702–4705 (1995).
[CrossRef] [PubMed]

M. Perner, S. Gresillon, J. Marz, G. von Plessen, J. Feldmann, J. Porstendorfer, K. J. Berg, and G. Berg, “Observation of hot-electron pressure in the vibration dynamics of metal nanoparticles,” Phys. Rev. Lett.85, 792–795 (2000).
[CrossRef] [PubMed]

E. Hendry, F. J. Garcia-Vidal, L. Martin-Moreno, J. G. Rivas, M. Bonn, A. P. Hibbins, and M. J. Lockyear, “Optical control over surface-plasmon-polariton-assisted THz transmission through a slit aperture,” Phys. Rev. Lett.100, 123901–123904 (2008).
[CrossRef] [PubMed]

H. F. Schouten, N. Kuzmin, G. Dubois, T. D. Visser, G. Gbur, P. F. A. Alkemade, H. Blok, G. W. Hooft, D. Lenstra, and E. R. Eliel, “Plasmon-assisted two-slit transmission: Young’s experiment revisited,” Phys. Rev. Lett.94, 053901 (2005).
[CrossRef] [PubMed]

PNAS (1)

L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” PNAS100, 13549–13554 (2003).
[CrossRef] [PubMed]

Science (2)

P. Muhlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science308, 1607–1609 (2005).
[CrossRef] [PubMed]

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science311, 189–193 (2006).
[CrossRef] [PubMed]

Small (1)

J. Y. Chen, C. Glaus, R. Laforest, Q. Zhang, M. Yang, M. Gidding, M. J. Welch, and Y. Xia, “Gold nanocages as photothermal transducers for cancer treatment,” Small6, 811–817 (2010).
[CrossRef] [PubMed]

Solid State Commun. (1)

C. W. Chen, H. P. Chiang, P. T. Leung, and D. P. Tsai, “Temperature dependence of enhanced optical absorption and raman spectroscopy from metallic nanoparticles,” Solid State Commun.148, 413–416 (2008).
[CrossRef]

Surf. Sci. (1)

U. Kreibig and L. Genzel, “Optical-absorption of small metallic particles,” Surf. Sci.156, 678–700 (1985).
[CrossRef]

Thin Solid Films (1)

A. Passian, A. L. Lereu, R. H. Ritchie, F. Meriaudeau, T. Thundat, and T. L. Ferrell, “Surface plasmon assisted thermal coupling of multiple photon energies,” Thin Solid Films497, 315–320 (2006).
[CrossRef]

Trends Biotechnol. (1)

D. Pissuwan, S. M. Valenzuela, and M. B. Cortie, “Therapeutic possibilities of plasmonically heated gold nanoparticles,” Trends Biotechnol.24, 62–67 (2006).
[CrossRef]

Ultramicroscopy (2)

R. H. Farahi, A. Passian, S. Zahrai, A. L. Lereu, T. L. Ferrell, and T. Thundat, “Microscale Marangoni actuation: all-optical and all-electrical methods,” Ultramicroscopy106, 815–821 (2006).
[CrossRef] [PubMed]

A. Passian, A. Wig, A. L. Lereu, P. G. Evans, F. Meriaudeau, T. Thundat, and T. L. Ferrell, “Probing large area surface plasmon interference in thin metal films using photon scanning tunneling microscopy,” Ultramicroscopy100, 429–436 (2004).
[CrossRef] [PubMed]

Other (4)

A. Passian, A. L. Lereu, R. H. Farahi, T. L. Ferrell, and T. Thundat, “Thermoplasmonics in thin metal films,” in Trends in solid film researchA. R. Jost, eds. (Nova Science Publishers, Hauppauge NY, 2007), pp. 69–109.

F. P. Incropera, D. P. Dewitt, T. L. Bergman, and A. S. Lavine, Fundamentals of Heat and Mass Transfer, 6th ed. (John Wiley & Sons, Inc., 2007).

B. E. Sernelius, Surface Modes in Physics (Wiley-VCH Verlag Berlin GmbH, 2001).
[CrossRef]

S. Volz, (Ed.), , “Thermal Nanosystems and Nanomaterials,” in Topics in Applied Physics, 1st ed.118, (Springer-Verlag Berlin, Heidelberger Platz 3, Berlin, Germany, 2010).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

The simplest plasmonic device may be a system of one or two gold nanoparticles. (a) Nanoparticles are optically excited with a pump beam having wavelength λp and may be probed with a number of beams having wavelengths λn, n = 1, 2, 3,... for optical, electronic and mechanical changes. (b) A two-particle system with separation distance dλ where the interaction may be direct plasmon coupling in addition to thermal effects. Geometric dependencies such as cross-sectional area a and roundness factor s affect absorption efficiency and coupling.

Fig. 2
Fig. 2

Analysis of the test system of non-annealed (a,c,e) and annealed (b,d,f) Au islands. SEM images (a,b) of the synthesized islands, where islands, to be geometrically extracted for further computational analysis, are marked in colors. The histograms of the size (c,d) and roundness (e,f) distributions of the entire SEM image are Gaussian fitted (red). Annealing reduced the number and increased the size of the islands through coalescence. The roundness factor was higher in the annealed case (smax = 0.834) than in the non-annealed case (smax = 0.752).

Fig. 3
Fig. 3

The 3D computation of the electric field distribution of the non-annealed (a,c) and annealed (b,d) Au islands designated in the SEM images from Figs. 2(a) and 2(b). (a,b) The cross sectional visualization of the distribution of the maximum near-field root-mean-square modulus exhibited by the four isolated gold islands outlined in yellow due to scattering with polarized light. (c,d) The field distribution taking into account adjacent islands outlined in purple and blue. The inclusion of adjacent islands have altered the field distribution and enhancement of the inner four islands. Since the field distribution in the center did not appreciably change after a threshold number of adjacent islands were taken into consideration, the simulation was restricted to this selection (spanning 75 nm radius). The color scale varies from min 8.6 × 10−4 V/m to max 15.1 V/m.

Fig. 4
Fig. 4

Test results from the measurement of the probe beam having wavelength λ1 = 532 nm due to a modulated excitation of wavelength λp = 808 nm on Au nano-islands and a continuous Au film. (a) Linescans (normalized in inset) across the λp excitation region centered at x = 0. (b) The absorption spectra for the two samples, non-annealed (blue) and annealed (red). (c) Frequency responses at Pp = 150 mW and x = 0. (d) Power responses at fp = 200 Hz and x = 0.

Fig. 5
Fig. 5

AFM characterization of non-annealed islands before (left) and after (right) excitation with a pump laser. The deformation observed on the right in the excitation region is consistent with the profiles obtained by the laser probe measurements in Fig. 4(a). The scan sizes are chosen to image the nanoparticles (1 μm×1 μm) and the deformation over a wide area (70.3 μm×70.3 μm) adapted to the illumination region.

Fig. 6
Fig. 6

Computational determination of the transient temperature distribution T(z, t) for (a) Al, (b) silica, and (c) half-Al (lower) half-silica (upper) microrods. With an initial condition of T(z, 0) = 300 K, the application of the boundary condition of T(0, t) = 320 K allows the study of the heat diffusion throughout the structure. Top section: T(L) in the first microsecond and an instantaneous temperature map of the structure at t = 1μs. Middle section: T(z) at selected time intervals. Bottom section: temperature gradient ∇T(z) at selected time intervals.

Fig. 7
Fig. 7

Computational determination of the transient surface temperature distribution T (x,y,t) shows high thermoplasmonic modulation rates are possible for the annealed islands freestanding in vacuum. Temperature distributions are shown at various times t after an initial condition of T(x,y,0) = 300 K and the application of the boundary condition of T (xci, yci, t) = 320 K on the center island. (a) t = 0.1 ns, (b) t = 1.0 ns, (c) t = 1.5 ns, and (d) t = 15 ns.

Fig. 8
Fig. 8

NSOM characterization of Au nanorods to demonstrate volumetric changes from plasmonic events induced by a secondary Ar laser. (a) Cross sections of the simultaneous optical and topographical signals. (b) Topographic image with Ar off (blocked). (c) Topographic image with Ar on (unblocked). The horizontal line on the images indicate the location where cross sections were taken. Changes in topography show possible thermal expansion due to additional thermoplasmonic processes created by the Ar excitation. The non-changing optical signal let assume that the distance probe-sample is unchanged wether the Ar laser is on or off.

Metrics