Abstract

Based on several nano-scale groove models, we propose a new technique to simultaneously determine the azimuthal and polar surface anchoring strengths of nematic liquid crystal (LC). The optical analysis of LCs on a grooved surface made by nanoimprinting lithography was performed on special alignment material, using a typical rubbing process. In our approach, using a polarizing microscope, we can determine the LC alignment exactly as it is in a parallel state, rather than a twisted state. This simple proposed method gives an accurate value of the surface LC anchoring of various surfaces, as well as simultaneously measuring the azimuthal and polar anchoring energy.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. M. Gibbons, P. J. Shannon, S. T. Sun, and B. J. Swetlin, “Surface-mediated alignment of nematic liquid crystals with polarized laser light,” Nature 351(6321), 49–50 (1991).
    [CrossRef]
  2. N. Kawatsuki, T. Yamamoto, and H. Ono, “Photoinduced alignment control of photoreactive side-chain polymer liquid crystal by linearly polarized ultraviolet light,” Appl. Phys. Lett. 74(7), 935–937 (1999).
    [CrossRef]
  3. J.-H. Kim, S. Kumar, and S.-D. Lee, “Alignment of liquid crystals on polyimide films exposed to ultraviolet light,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 57(5), 5644–5650 (1998).
    [CrossRef]
  4. M. Schadt, H. Seiberle, and A. Schuster, “Optical patterning of multi-domain liquid-crystal displays with wide viewing angles,” Nature 381(6579), 212–215 (1996).
    [CrossRef]
  5. P. Chaudhari, J. Lacey, J. Doyle, E. Galligan, S. C. Lien, A. Callegari, G. Hougham, N. D. Lang, P. S. Andry, R. John, K. H. Yang, M. Lu, C. Cai, J. Speidell, S. Purushothaman, J. Ritsko, M. Samant, J. Stöhr, Y. Nakagawa, Y. Katoh, Y. Saitoh, K. Sakai, H. Satoh, S. Odahara, H. Nakano, J. Nakagaki, and Y. Shiota, “Atomic-beam alignment of inorganic materials for liquid-crystal displays,” Nature 411(6833), 56–59 (2001).
    [CrossRef] [PubMed]
  6. J.-H. Kim, M. Yoneya, and H. Yokoyama, “Tristable nematic liquid-crystal device using micropatterned surface alignment,” Nature 420(6912), 159–162 (2002).
    [CrossRef] [PubMed]
  7. J. L. Janning, “Thin film surface orientation for liquid crystals,” Appl. Phys. Lett. 21(4), 173–174 (1972).
    [CrossRef]
  8. P. G. de Gennes and J. Prost, The Physics of Liquid Crystals (Oxford University Press, Oxford, 1974), 75–85.
  9. H. Yokoyama, Handbook of Liquid Crystal Research, P. J. Collings and J. S. Patel, ed. (Oxford University Press, Oxford, 1997), Chap. 6.
  10. K. H. Yang, “Freedericksz transition of twisted nematic cells,” Appl. Phys. Lett. 43(2), 171–173 (1983).
    [CrossRef]
  11. M. Rüetschi, P. Grütter, J. Fünfschilling, and H.-J. Güntherodt, “Creation of Liquid Crystal Waveguides with Scanning Force Microscopy,” Science 265, 512–514 (1994).
    [CrossRef] [PubMed]
  12. B. Zhang, F. K. Lee, O. K. C. Tsui, and P. Sheng, “Liquid crystal orientation transition on microtextured substrates,” Phys. Rev. Lett. 91(21), 215501 (2003).
    [CrossRef] [PubMed]
  13. F. K. Lee, B. Zhang, P. Sheng, H. S. Kwok, and O. K. C. Tsui, “Continuous liquid crystal pretilt control through textured substrates,” Appl. Phys. Lett. 85(23), 5556–5558 (2004).
    [CrossRef]
  14. K. H. Yang, “Weak boundary storage effect in homogeneous liquid crystal cells,” Jpn. J. Appl. Phys. 22(Part 1), 389–393 (1983).
    [CrossRef]
  15. M. E. Becker, J. Nehring, and T. J. Scheffer, “Theory of twisted nematic layers with weak boundary,” J. Appl. Phys. 57(10), 4539–4542 (1985).
    [CrossRef]
  16. A. Sugimura, G. R. Luckhurst, and O.-Y. Zhong-can, “Director deformation of a twisted chiral nematic liquid crystal cell with weak anchoring boundaries,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 52(1), 681–689 (1995).
    [CrossRef] [PubMed]
  17. H. Yokoyama and H. A. van Sprang, “A novel method for determining the anchoring energy function at a nematic liquid crystal-wall interface from director distortions at high,” J. Appl. Phys. 1985, 57, 4520 (1985).
  18. K. H. Yang and C. Rosenblatt, “Determination of the anisotropic potential at the nematic liquid crystal –to-wall interface,” Appl. Phys. Lett. 43(1), 62 (1983).
    [CrossRef]
  19. C. Rosenblatt, “Temperature dependence of the anchoring strength coefficient at a nematic liquid crystal-wall,” J. Phys. France 45(6), 1087–1091 (1984).
    [CrossRef]
  20. G. Porte, “Tilted alignment of MBBA induced by short-chain surfactants,” J. Phys. France 37(10), 1245–1252 (1976).
    [CrossRef]
  21. Yu. A. Nastishin, R. D. Polak, S. V. Shiyanovskii, and O. D. Lavrentovich, “Determination of nematic polar anchoring from retardation versus voltage measurements,” Appl. Phys. Lett. 75(2), 202–204 (1999).
    [CrossRef]
  22. Y. Iimura, N. Kobayashi, and S. Kobayashi, “A new method for measuring the azimuthal anchoring energy of a nematic liquid crystal,” Jpn. J. Appl. Phys. 33(Part 1), L434–L436 (1994).
    [CrossRef]
  23. J. S. Gwag, S. J. Kim, J. G. You, J. Y. Lee, J. C. Kim, and T.-H. Yoon, “Surface-anchoring properties related to the distribution of polyimide chains in a twisted nematic liquid-crystal cell,” Opt. Lett. 30(11), 1387–1389 (2005).
    [CrossRef] [PubMed]
  24. J. S. Gwag, J. Yi, and J. H. Kwon, “Determination of actual surface azimuthal anchoring strength using a wedge-shaped liquid crystal cell,” Opt. Lett. 35(4), 456–458 (2010).
    [CrossRef] [PubMed]
  25. F. Yang and J. R. Sambles, “The influence of surface reflectivities on measurement of the torsional anchoring strength of nematic liquid crystals,” Jpn. J. Appl. Phys. 37(Part 1), 3998–4007 (1998).
    [CrossRef]
  26. D. Berreman, “Solid Surface Shape and the Alignment of an Adjacent Nematic Liquid Crystal,” Phys. Rev. Lett. 28(26), 1683–1686 (1972).
    [CrossRef]
  27. J. Fukuda, M. Yoneya, and H. Yokoyama, “Surface-Groove-Induced Azimuthal Anchoring of a Nematic Liquid Crystal: Berreman’s Model Reexamined,” Phys. Rev. Lett. 98(18), 187803 (2007).
    [CrossRef] [PubMed]
  28. J. I. Fukuda, J. S. Gwag, M. Yoneya, and H. Yokoyama, “Theory of anchoring on a two-dimensionally grooved surface,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 77(1), 011702 (2008).
    [CrossRef] [PubMed]
  29. J. S. Gwag, J. Fukuda, M. Yoneya, and H. Yokoyama, “In-plane bistable nematic liquid crystal devices based on nanoimprinted surface relief,” Appl. Phys. Lett. 91(7), 073504 (2007).
    [CrossRef]
  30. J. S. Gwag, J.-H. Kim, M. Yoneya, and H. Yokoyama, “Surface nematic bistability at nanoimprinted topography,” Appl. Phys. Lett. 92(15), 153110 (2008).
    [CrossRef]
  31. J. S. Gwag, J. H. Kwon, M. Oh-e, J. Niitsuma, M. Yoneya, and H. Yokoyama, “Higher-order surface free energy in azimuthal nematic anchoring on nanopatterned grooves,” Appl. Phys. Lett. 95(10), 103101 (2009).
    [CrossRef]
  32. M. Cui and J. R. Kelly, “Temperature dependence of visco-elastic properties of 5CB,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 331(1), 49–57 (1999).
    [CrossRef]
  33. J. Nehring and A. Saupe, “On the Elastic Theory of Uniaxial Liquid Crystals,” J. Chem. Phys. 54(1), 337–343 (1971).
    [CrossRef]
  34. S. Faetti, “Azimuthal anchoring energy of a nematic liquid crystal at a grooved interface,” Phys. Rev. A 36(1), 408–410 (1987).
    [CrossRef] [PubMed]
  35. J. S. Gwag, M. Oh-e, M. Yoneya, H. Yokoyama, H. Satou, and S. Itami, “Advanced nanoimprint lithography using a graded functional imprinting material tailored for liquid crystal alignment,” J. Appl. Phys. 102(6), 063501 (2007).
    [CrossRef]

2010 (1)

2009 (1)

J. S. Gwag, J. H. Kwon, M. Oh-e, J. Niitsuma, M. Yoneya, and H. Yokoyama, “Higher-order surface free energy in azimuthal nematic anchoring on nanopatterned grooves,” Appl. Phys. Lett. 95(10), 103101 (2009).
[CrossRef]

2008 (2)

J. I. Fukuda, J. S. Gwag, M. Yoneya, and H. Yokoyama, “Theory of anchoring on a two-dimensionally grooved surface,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 77(1), 011702 (2008).
[CrossRef] [PubMed]

J. S. Gwag, J.-H. Kim, M. Yoneya, and H. Yokoyama, “Surface nematic bistability at nanoimprinted topography,” Appl. Phys. Lett. 92(15), 153110 (2008).
[CrossRef]

2007 (3)

J. Fukuda, M. Yoneya, and H. Yokoyama, “Surface-Groove-Induced Azimuthal Anchoring of a Nematic Liquid Crystal: Berreman’s Model Reexamined,” Phys. Rev. Lett. 98(18), 187803 (2007).
[CrossRef] [PubMed]

J. S. Gwag, J. Fukuda, M. Yoneya, and H. Yokoyama, “In-plane bistable nematic liquid crystal devices based on nanoimprinted surface relief,” Appl. Phys. Lett. 91(7), 073504 (2007).
[CrossRef]

J. S. Gwag, M. Oh-e, M. Yoneya, H. Yokoyama, H. Satou, and S. Itami, “Advanced nanoimprint lithography using a graded functional imprinting material tailored for liquid crystal alignment,” J. Appl. Phys. 102(6), 063501 (2007).
[CrossRef]

2005 (1)

2004 (1)

F. K. Lee, B. Zhang, P. Sheng, H. S. Kwok, and O. K. C. Tsui, “Continuous liquid crystal pretilt control through textured substrates,” Appl. Phys. Lett. 85(23), 5556–5558 (2004).
[CrossRef]

2003 (1)

B. Zhang, F. K. Lee, O. K. C. Tsui, and P. Sheng, “Liquid crystal orientation transition on microtextured substrates,” Phys. Rev. Lett. 91(21), 215501 (2003).
[CrossRef] [PubMed]

2002 (1)

J.-H. Kim, M. Yoneya, and H. Yokoyama, “Tristable nematic liquid-crystal device using micropatterned surface alignment,” Nature 420(6912), 159–162 (2002).
[CrossRef] [PubMed]

2001 (1)

P. Chaudhari, J. Lacey, J. Doyle, E. Galligan, S. C. Lien, A. Callegari, G. Hougham, N. D. Lang, P. S. Andry, R. John, K. H. Yang, M. Lu, C. Cai, J. Speidell, S. Purushothaman, J. Ritsko, M. Samant, J. Stöhr, Y. Nakagawa, Y. Katoh, Y. Saitoh, K. Sakai, H. Satoh, S. Odahara, H. Nakano, J. Nakagaki, and Y. Shiota, “Atomic-beam alignment of inorganic materials for liquid-crystal displays,” Nature 411(6833), 56–59 (2001).
[CrossRef] [PubMed]

1999 (3)

N. Kawatsuki, T. Yamamoto, and H. Ono, “Photoinduced alignment control of photoreactive side-chain polymer liquid crystal by linearly polarized ultraviolet light,” Appl. Phys. Lett. 74(7), 935–937 (1999).
[CrossRef]

M. Cui and J. R. Kelly, “Temperature dependence of visco-elastic properties of 5CB,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 331(1), 49–57 (1999).
[CrossRef]

Yu. A. Nastishin, R. D. Polak, S. V. Shiyanovskii, and O. D. Lavrentovich, “Determination of nematic polar anchoring from retardation versus voltage measurements,” Appl. Phys. Lett. 75(2), 202–204 (1999).
[CrossRef]

1998 (2)

F. Yang and J. R. Sambles, “The influence of surface reflectivities on measurement of the torsional anchoring strength of nematic liquid crystals,” Jpn. J. Appl. Phys. 37(Part 1), 3998–4007 (1998).
[CrossRef]

J.-H. Kim, S. Kumar, and S.-D. Lee, “Alignment of liquid crystals on polyimide films exposed to ultraviolet light,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 57(5), 5644–5650 (1998).
[CrossRef]

1996 (1)

M. Schadt, H. Seiberle, and A. Schuster, “Optical patterning of multi-domain liquid-crystal displays with wide viewing angles,” Nature 381(6579), 212–215 (1996).
[CrossRef]

1995 (1)

A. Sugimura, G. R. Luckhurst, and O.-Y. Zhong-can, “Director deformation of a twisted chiral nematic liquid crystal cell with weak anchoring boundaries,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 52(1), 681–689 (1995).
[CrossRef] [PubMed]

1994 (2)

M. Rüetschi, P. Grütter, J. Fünfschilling, and H.-J. Güntherodt, “Creation of Liquid Crystal Waveguides with Scanning Force Microscopy,” Science 265, 512–514 (1994).
[CrossRef] [PubMed]

Y. Iimura, N. Kobayashi, and S. Kobayashi, “A new method for measuring the azimuthal anchoring energy of a nematic liquid crystal,” Jpn. J. Appl. Phys. 33(Part 1), L434–L436 (1994).
[CrossRef]

1991 (1)

W. M. Gibbons, P. J. Shannon, S. T. Sun, and B. J. Swetlin, “Surface-mediated alignment of nematic liquid crystals with polarized laser light,” Nature 351(6321), 49–50 (1991).
[CrossRef]

1987 (1)

S. Faetti, “Azimuthal anchoring energy of a nematic liquid crystal at a grooved interface,” Phys. Rev. A 36(1), 408–410 (1987).
[CrossRef] [PubMed]

1985 (2)

H. Yokoyama and H. A. van Sprang, “A novel method for determining the anchoring energy function at a nematic liquid crystal-wall interface from director distortions at high,” J. Appl. Phys. 1985, 57, 4520 (1985).

M. E. Becker, J. Nehring, and T. J. Scheffer, “Theory of twisted nematic layers with weak boundary,” J. Appl. Phys. 57(10), 4539–4542 (1985).
[CrossRef]

1984 (1)

C. Rosenblatt, “Temperature dependence of the anchoring strength coefficient at a nematic liquid crystal-wall,” J. Phys. France 45(6), 1087–1091 (1984).
[CrossRef]

1983 (3)

K. H. Yang and C. Rosenblatt, “Determination of the anisotropic potential at the nematic liquid crystal –to-wall interface,” Appl. Phys. Lett. 43(1), 62 (1983).
[CrossRef]

K. H. Yang, “Weak boundary storage effect in homogeneous liquid crystal cells,” Jpn. J. Appl. Phys. 22(Part 1), 389–393 (1983).
[CrossRef]

K. H. Yang, “Freedericksz transition of twisted nematic cells,” Appl. Phys. Lett. 43(2), 171–173 (1983).
[CrossRef]

1976 (1)

G. Porte, “Tilted alignment of MBBA induced by short-chain surfactants,” J. Phys. France 37(10), 1245–1252 (1976).
[CrossRef]

1972 (2)

J. L. Janning, “Thin film surface orientation for liquid crystals,” Appl. Phys. Lett. 21(4), 173–174 (1972).
[CrossRef]

D. Berreman, “Solid Surface Shape and the Alignment of an Adjacent Nematic Liquid Crystal,” Phys. Rev. Lett. 28(26), 1683–1686 (1972).
[CrossRef]

1971 (1)

J. Nehring and A. Saupe, “On the Elastic Theory of Uniaxial Liquid Crystals,” J. Chem. Phys. 54(1), 337–343 (1971).
[CrossRef]

Andry, P. S.

P. Chaudhari, J. Lacey, J. Doyle, E. Galligan, S. C. Lien, A. Callegari, G. Hougham, N. D. Lang, P. S. Andry, R. John, K. H. Yang, M. Lu, C. Cai, J. Speidell, S. Purushothaman, J. Ritsko, M. Samant, J. Stöhr, Y. Nakagawa, Y. Katoh, Y. Saitoh, K. Sakai, H. Satoh, S. Odahara, H. Nakano, J. Nakagaki, and Y. Shiota, “Atomic-beam alignment of inorganic materials for liquid-crystal displays,” Nature 411(6833), 56–59 (2001).
[CrossRef] [PubMed]

Becker, M. E.

M. E. Becker, J. Nehring, and T. J. Scheffer, “Theory of twisted nematic layers with weak boundary,” J. Appl. Phys. 57(10), 4539–4542 (1985).
[CrossRef]

Berreman, D.

D. Berreman, “Solid Surface Shape and the Alignment of an Adjacent Nematic Liquid Crystal,” Phys. Rev. Lett. 28(26), 1683–1686 (1972).
[CrossRef]

Cai, C.

P. Chaudhari, J. Lacey, J. Doyle, E. Galligan, S. C. Lien, A. Callegari, G. Hougham, N. D. Lang, P. S. Andry, R. John, K. H. Yang, M. Lu, C. Cai, J. Speidell, S. Purushothaman, J. Ritsko, M. Samant, J. Stöhr, Y. Nakagawa, Y. Katoh, Y. Saitoh, K. Sakai, H. Satoh, S. Odahara, H. Nakano, J. Nakagaki, and Y. Shiota, “Atomic-beam alignment of inorganic materials for liquid-crystal displays,” Nature 411(6833), 56–59 (2001).
[CrossRef] [PubMed]

Callegari, A.

P. Chaudhari, J. Lacey, J. Doyle, E. Galligan, S. C. Lien, A. Callegari, G. Hougham, N. D. Lang, P. S. Andry, R. John, K. H. Yang, M. Lu, C. Cai, J. Speidell, S. Purushothaman, J. Ritsko, M. Samant, J. Stöhr, Y. Nakagawa, Y. Katoh, Y. Saitoh, K. Sakai, H. Satoh, S. Odahara, H. Nakano, J. Nakagaki, and Y. Shiota, “Atomic-beam alignment of inorganic materials for liquid-crystal displays,” Nature 411(6833), 56–59 (2001).
[CrossRef] [PubMed]

Chaudhari, P.

P. Chaudhari, J. Lacey, J. Doyle, E. Galligan, S. C. Lien, A. Callegari, G. Hougham, N. D. Lang, P. S. Andry, R. John, K. H. Yang, M. Lu, C. Cai, J. Speidell, S. Purushothaman, J. Ritsko, M. Samant, J. Stöhr, Y. Nakagawa, Y. Katoh, Y. Saitoh, K. Sakai, H. Satoh, S. Odahara, H. Nakano, J. Nakagaki, and Y. Shiota, “Atomic-beam alignment of inorganic materials for liquid-crystal displays,” Nature 411(6833), 56–59 (2001).
[CrossRef] [PubMed]

Cui, M.

M. Cui and J. R. Kelly, “Temperature dependence of visco-elastic properties of 5CB,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 331(1), 49–57 (1999).
[CrossRef]

Doyle, J.

P. Chaudhari, J. Lacey, J. Doyle, E. Galligan, S. C. Lien, A. Callegari, G. Hougham, N. D. Lang, P. S. Andry, R. John, K. H. Yang, M. Lu, C. Cai, J. Speidell, S. Purushothaman, J. Ritsko, M. Samant, J. Stöhr, Y. Nakagawa, Y. Katoh, Y. Saitoh, K. Sakai, H. Satoh, S. Odahara, H. Nakano, J. Nakagaki, and Y. Shiota, “Atomic-beam alignment of inorganic materials for liquid-crystal displays,” Nature 411(6833), 56–59 (2001).
[CrossRef] [PubMed]

Faetti, S.

S. Faetti, “Azimuthal anchoring energy of a nematic liquid crystal at a grooved interface,” Phys. Rev. A 36(1), 408–410 (1987).
[CrossRef] [PubMed]

Fukuda, J.

J. Fukuda, M. Yoneya, and H. Yokoyama, “Surface-Groove-Induced Azimuthal Anchoring of a Nematic Liquid Crystal: Berreman’s Model Reexamined,” Phys. Rev. Lett. 98(18), 187803 (2007).
[CrossRef] [PubMed]

J. S. Gwag, J. Fukuda, M. Yoneya, and H. Yokoyama, “In-plane bistable nematic liquid crystal devices based on nanoimprinted surface relief,” Appl. Phys. Lett. 91(7), 073504 (2007).
[CrossRef]

Fukuda, J. I.

J. I. Fukuda, J. S. Gwag, M. Yoneya, and H. Yokoyama, “Theory of anchoring on a two-dimensionally grooved surface,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 77(1), 011702 (2008).
[CrossRef] [PubMed]

Fünfschilling, J.

M. Rüetschi, P. Grütter, J. Fünfschilling, and H.-J. Güntherodt, “Creation of Liquid Crystal Waveguides with Scanning Force Microscopy,” Science 265, 512–514 (1994).
[CrossRef] [PubMed]

Galligan, E.

P. Chaudhari, J. Lacey, J. Doyle, E. Galligan, S. C. Lien, A. Callegari, G. Hougham, N. D. Lang, P. S. Andry, R. John, K. H. Yang, M. Lu, C. Cai, J. Speidell, S. Purushothaman, J. Ritsko, M. Samant, J. Stöhr, Y. Nakagawa, Y. Katoh, Y. Saitoh, K. Sakai, H. Satoh, S. Odahara, H. Nakano, J. Nakagaki, and Y. Shiota, “Atomic-beam alignment of inorganic materials for liquid-crystal displays,” Nature 411(6833), 56–59 (2001).
[CrossRef] [PubMed]

Gibbons, W. M.

W. M. Gibbons, P. J. Shannon, S. T. Sun, and B. J. Swetlin, “Surface-mediated alignment of nematic liquid crystals with polarized laser light,” Nature 351(6321), 49–50 (1991).
[CrossRef]

Grütter, P.

M. Rüetschi, P. Grütter, J. Fünfschilling, and H.-J. Güntherodt, “Creation of Liquid Crystal Waveguides with Scanning Force Microscopy,” Science 265, 512–514 (1994).
[CrossRef] [PubMed]

Güntherodt, H.-J.

M. Rüetschi, P. Grütter, J. Fünfschilling, and H.-J. Güntherodt, “Creation of Liquid Crystal Waveguides with Scanning Force Microscopy,” Science 265, 512–514 (1994).
[CrossRef] [PubMed]

Gwag, J. S.

J. S. Gwag, J. Yi, and J. H. Kwon, “Determination of actual surface azimuthal anchoring strength using a wedge-shaped liquid crystal cell,” Opt. Lett. 35(4), 456–458 (2010).
[CrossRef] [PubMed]

J. S. Gwag, J. H. Kwon, M. Oh-e, J. Niitsuma, M. Yoneya, and H. Yokoyama, “Higher-order surface free energy in azimuthal nematic anchoring on nanopatterned grooves,” Appl. Phys. Lett. 95(10), 103101 (2009).
[CrossRef]

J. S. Gwag, J.-H. Kim, M. Yoneya, and H. Yokoyama, “Surface nematic bistability at nanoimprinted topography,” Appl. Phys. Lett. 92(15), 153110 (2008).
[CrossRef]

J. I. Fukuda, J. S. Gwag, M. Yoneya, and H. Yokoyama, “Theory of anchoring on a two-dimensionally grooved surface,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 77(1), 011702 (2008).
[CrossRef] [PubMed]

J. S. Gwag, J. Fukuda, M. Yoneya, and H. Yokoyama, “In-plane bistable nematic liquid crystal devices based on nanoimprinted surface relief,” Appl. Phys. Lett. 91(7), 073504 (2007).
[CrossRef]

J. S. Gwag, M. Oh-e, M. Yoneya, H. Yokoyama, H. Satou, and S. Itami, “Advanced nanoimprint lithography using a graded functional imprinting material tailored for liquid crystal alignment,” J. Appl. Phys. 102(6), 063501 (2007).
[CrossRef]

J. S. Gwag, S. J. Kim, J. G. You, J. Y. Lee, J. C. Kim, and T.-H. Yoon, “Surface-anchoring properties related to the distribution of polyimide chains in a twisted nematic liquid-crystal cell,” Opt. Lett. 30(11), 1387–1389 (2005).
[CrossRef] [PubMed]

Hougham, G.

P. Chaudhari, J. Lacey, J. Doyle, E. Galligan, S. C. Lien, A. Callegari, G. Hougham, N. D. Lang, P. S. Andry, R. John, K. H. Yang, M. Lu, C. Cai, J. Speidell, S. Purushothaman, J. Ritsko, M. Samant, J. Stöhr, Y. Nakagawa, Y. Katoh, Y. Saitoh, K. Sakai, H. Satoh, S. Odahara, H. Nakano, J. Nakagaki, and Y. Shiota, “Atomic-beam alignment of inorganic materials for liquid-crystal displays,” Nature 411(6833), 56–59 (2001).
[CrossRef] [PubMed]

Iimura, Y.

Y. Iimura, N. Kobayashi, and S. Kobayashi, “A new method for measuring the azimuthal anchoring energy of a nematic liquid crystal,” Jpn. J. Appl. Phys. 33(Part 1), L434–L436 (1994).
[CrossRef]

Itami, S.

J. S. Gwag, M. Oh-e, M. Yoneya, H. Yokoyama, H. Satou, and S. Itami, “Advanced nanoimprint lithography using a graded functional imprinting material tailored for liquid crystal alignment,” J. Appl. Phys. 102(6), 063501 (2007).
[CrossRef]

Janning, J. L.

J. L. Janning, “Thin film surface orientation for liquid crystals,” Appl. Phys. Lett. 21(4), 173–174 (1972).
[CrossRef]

John, R.

P. Chaudhari, J. Lacey, J. Doyle, E. Galligan, S. C. Lien, A. Callegari, G. Hougham, N. D. Lang, P. S. Andry, R. John, K. H. Yang, M. Lu, C. Cai, J. Speidell, S. Purushothaman, J. Ritsko, M. Samant, J. Stöhr, Y. Nakagawa, Y. Katoh, Y. Saitoh, K. Sakai, H. Satoh, S. Odahara, H. Nakano, J. Nakagaki, and Y. Shiota, “Atomic-beam alignment of inorganic materials for liquid-crystal displays,” Nature 411(6833), 56–59 (2001).
[CrossRef] [PubMed]

Katoh, Y.

P. Chaudhari, J. Lacey, J. Doyle, E. Galligan, S. C. Lien, A. Callegari, G. Hougham, N. D. Lang, P. S. Andry, R. John, K. H. Yang, M. Lu, C. Cai, J. Speidell, S. Purushothaman, J. Ritsko, M. Samant, J. Stöhr, Y. Nakagawa, Y. Katoh, Y. Saitoh, K. Sakai, H. Satoh, S. Odahara, H. Nakano, J. Nakagaki, and Y. Shiota, “Atomic-beam alignment of inorganic materials for liquid-crystal displays,” Nature 411(6833), 56–59 (2001).
[CrossRef] [PubMed]

Kawatsuki, N.

N. Kawatsuki, T. Yamamoto, and H. Ono, “Photoinduced alignment control of photoreactive side-chain polymer liquid crystal by linearly polarized ultraviolet light,” Appl. Phys. Lett. 74(7), 935–937 (1999).
[CrossRef]

Kelly, J. R.

M. Cui and J. R. Kelly, “Temperature dependence of visco-elastic properties of 5CB,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 331(1), 49–57 (1999).
[CrossRef]

Kim, J. C.

Kim, J.-H.

J. S. Gwag, J.-H. Kim, M. Yoneya, and H. Yokoyama, “Surface nematic bistability at nanoimprinted topography,” Appl. Phys. Lett. 92(15), 153110 (2008).
[CrossRef]

J.-H. Kim, M. Yoneya, and H. Yokoyama, “Tristable nematic liquid-crystal device using micropatterned surface alignment,” Nature 420(6912), 159–162 (2002).
[CrossRef] [PubMed]

J.-H. Kim, S. Kumar, and S.-D. Lee, “Alignment of liquid crystals on polyimide films exposed to ultraviolet light,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 57(5), 5644–5650 (1998).
[CrossRef]

Kim, S. J.

Kobayashi, N.

Y. Iimura, N. Kobayashi, and S. Kobayashi, “A new method for measuring the azimuthal anchoring energy of a nematic liquid crystal,” Jpn. J. Appl. Phys. 33(Part 1), L434–L436 (1994).
[CrossRef]

Kobayashi, S.

Y. Iimura, N. Kobayashi, and S. Kobayashi, “A new method for measuring the azimuthal anchoring energy of a nematic liquid crystal,” Jpn. J. Appl. Phys. 33(Part 1), L434–L436 (1994).
[CrossRef]

Kumar, S.

J.-H. Kim, S. Kumar, and S.-D. Lee, “Alignment of liquid crystals on polyimide films exposed to ultraviolet light,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 57(5), 5644–5650 (1998).
[CrossRef]

Kwok, H. S.

F. K. Lee, B. Zhang, P. Sheng, H. S. Kwok, and O. K. C. Tsui, “Continuous liquid crystal pretilt control through textured substrates,” Appl. Phys. Lett. 85(23), 5556–5558 (2004).
[CrossRef]

Kwon, J. H.

J. S. Gwag, J. Yi, and J. H. Kwon, “Determination of actual surface azimuthal anchoring strength using a wedge-shaped liquid crystal cell,” Opt. Lett. 35(4), 456–458 (2010).
[CrossRef] [PubMed]

J. S. Gwag, J. H. Kwon, M. Oh-e, J. Niitsuma, M. Yoneya, and H. Yokoyama, “Higher-order surface free energy in azimuthal nematic anchoring on nanopatterned grooves,” Appl. Phys. Lett. 95(10), 103101 (2009).
[CrossRef]

Lacey, J.

P. Chaudhari, J. Lacey, J. Doyle, E. Galligan, S. C. Lien, A. Callegari, G. Hougham, N. D. Lang, P. S. Andry, R. John, K. H. Yang, M. Lu, C. Cai, J. Speidell, S. Purushothaman, J. Ritsko, M. Samant, J. Stöhr, Y. Nakagawa, Y. Katoh, Y. Saitoh, K. Sakai, H. Satoh, S. Odahara, H. Nakano, J. Nakagaki, and Y. Shiota, “Atomic-beam alignment of inorganic materials for liquid-crystal displays,” Nature 411(6833), 56–59 (2001).
[CrossRef] [PubMed]

Lang, N. D.

P. Chaudhari, J. Lacey, J. Doyle, E. Galligan, S. C. Lien, A. Callegari, G. Hougham, N. D. Lang, P. S. Andry, R. John, K. H. Yang, M. Lu, C. Cai, J. Speidell, S. Purushothaman, J. Ritsko, M. Samant, J. Stöhr, Y. Nakagawa, Y. Katoh, Y. Saitoh, K. Sakai, H. Satoh, S. Odahara, H. Nakano, J. Nakagaki, and Y. Shiota, “Atomic-beam alignment of inorganic materials for liquid-crystal displays,” Nature 411(6833), 56–59 (2001).
[CrossRef] [PubMed]

Lavrentovich, O. D.

Yu. A. Nastishin, R. D. Polak, S. V. Shiyanovskii, and O. D. Lavrentovich, “Determination of nematic polar anchoring from retardation versus voltage measurements,” Appl. Phys. Lett. 75(2), 202–204 (1999).
[CrossRef]

Lee, F. K.

F. K. Lee, B. Zhang, P. Sheng, H. S. Kwok, and O. K. C. Tsui, “Continuous liquid crystal pretilt control through textured substrates,” Appl. Phys. Lett. 85(23), 5556–5558 (2004).
[CrossRef]

B. Zhang, F. K. Lee, O. K. C. Tsui, and P. Sheng, “Liquid crystal orientation transition on microtextured substrates,” Phys. Rev. Lett. 91(21), 215501 (2003).
[CrossRef] [PubMed]

Lee, J. Y.

Lee, S.-D.

J.-H. Kim, S. Kumar, and S.-D. Lee, “Alignment of liquid crystals on polyimide films exposed to ultraviolet light,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 57(5), 5644–5650 (1998).
[CrossRef]

Lien, S. C.

P. Chaudhari, J. Lacey, J. Doyle, E. Galligan, S. C. Lien, A. Callegari, G. Hougham, N. D. Lang, P. S. Andry, R. John, K. H. Yang, M. Lu, C. Cai, J. Speidell, S. Purushothaman, J. Ritsko, M. Samant, J. Stöhr, Y. Nakagawa, Y. Katoh, Y. Saitoh, K. Sakai, H. Satoh, S. Odahara, H. Nakano, J. Nakagaki, and Y. Shiota, “Atomic-beam alignment of inorganic materials for liquid-crystal displays,” Nature 411(6833), 56–59 (2001).
[CrossRef] [PubMed]

Lu, M.

P. Chaudhari, J. Lacey, J. Doyle, E. Galligan, S. C. Lien, A. Callegari, G. Hougham, N. D. Lang, P. S. Andry, R. John, K. H. Yang, M. Lu, C. Cai, J. Speidell, S. Purushothaman, J. Ritsko, M. Samant, J. Stöhr, Y. Nakagawa, Y. Katoh, Y. Saitoh, K. Sakai, H. Satoh, S. Odahara, H. Nakano, J. Nakagaki, and Y. Shiota, “Atomic-beam alignment of inorganic materials for liquid-crystal displays,” Nature 411(6833), 56–59 (2001).
[CrossRef] [PubMed]

Luckhurst, G. R.

A. Sugimura, G. R. Luckhurst, and O.-Y. Zhong-can, “Director deformation of a twisted chiral nematic liquid crystal cell with weak anchoring boundaries,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 52(1), 681–689 (1995).
[CrossRef] [PubMed]

Nakagaki, J.

P. Chaudhari, J. Lacey, J. Doyle, E. Galligan, S. C. Lien, A. Callegari, G. Hougham, N. D. Lang, P. S. Andry, R. John, K. H. Yang, M. Lu, C. Cai, J. Speidell, S. Purushothaman, J. Ritsko, M. Samant, J. Stöhr, Y. Nakagawa, Y. Katoh, Y. Saitoh, K. Sakai, H. Satoh, S. Odahara, H. Nakano, J. Nakagaki, and Y. Shiota, “Atomic-beam alignment of inorganic materials for liquid-crystal displays,” Nature 411(6833), 56–59 (2001).
[CrossRef] [PubMed]

Nakagawa, Y.

P. Chaudhari, J. Lacey, J. Doyle, E. Galligan, S. C. Lien, A. Callegari, G. Hougham, N. D. Lang, P. S. Andry, R. John, K. H. Yang, M. Lu, C. Cai, J. Speidell, S. Purushothaman, J. Ritsko, M. Samant, J. Stöhr, Y. Nakagawa, Y. Katoh, Y. Saitoh, K. Sakai, H. Satoh, S. Odahara, H. Nakano, J. Nakagaki, and Y. Shiota, “Atomic-beam alignment of inorganic materials for liquid-crystal displays,” Nature 411(6833), 56–59 (2001).
[CrossRef] [PubMed]

Nakano, H.

P. Chaudhari, J. Lacey, J. Doyle, E. Galligan, S. C. Lien, A. Callegari, G. Hougham, N. D. Lang, P. S. Andry, R. John, K. H. Yang, M. Lu, C. Cai, J. Speidell, S. Purushothaman, J. Ritsko, M. Samant, J. Stöhr, Y. Nakagawa, Y. Katoh, Y. Saitoh, K. Sakai, H. Satoh, S. Odahara, H. Nakano, J. Nakagaki, and Y. Shiota, “Atomic-beam alignment of inorganic materials for liquid-crystal displays,” Nature 411(6833), 56–59 (2001).
[CrossRef] [PubMed]

Nastishin, Yu. A.

Yu. A. Nastishin, R. D. Polak, S. V. Shiyanovskii, and O. D. Lavrentovich, “Determination of nematic polar anchoring from retardation versus voltage measurements,” Appl. Phys. Lett. 75(2), 202–204 (1999).
[CrossRef]

Nehring, J.

M. E. Becker, J. Nehring, and T. J. Scheffer, “Theory of twisted nematic layers with weak boundary,” J. Appl. Phys. 57(10), 4539–4542 (1985).
[CrossRef]

J. Nehring and A. Saupe, “On the Elastic Theory of Uniaxial Liquid Crystals,” J. Chem. Phys. 54(1), 337–343 (1971).
[CrossRef]

Niitsuma, J.

J. S. Gwag, J. H. Kwon, M. Oh-e, J. Niitsuma, M. Yoneya, and H. Yokoyama, “Higher-order surface free energy in azimuthal nematic anchoring on nanopatterned grooves,” Appl. Phys. Lett. 95(10), 103101 (2009).
[CrossRef]

Odahara, S.

P. Chaudhari, J. Lacey, J. Doyle, E. Galligan, S. C. Lien, A. Callegari, G. Hougham, N. D. Lang, P. S. Andry, R. John, K. H. Yang, M. Lu, C. Cai, J. Speidell, S. Purushothaman, J. Ritsko, M. Samant, J. Stöhr, Y. Nakagawa, Y. Katoh, Y. Saitoh, K. Sakai, H. Satoh, S. Odahara, H. Nakano, J. Nakagaki, and Y. Shiota, “Atomic-beam alignment of inorganic materials for liquid-crystal displays,” Nature 411(6833), 56–59 (2001).
[CrossRef] [PubMed]

Oh-e, M.

J. S. Gwag, J. H. Kwon, M. Oh-e, J. Niitsuma, M. Yoneya, and H. Yokoyama, “Higher-order surface free energy in azimuthal nematic anchoring on nanopatterned grooves,” Appl. Phys. Lett. 95(10), 103101 (2009).
[CrossRef]

J. S. Gwag, M. Oh-e, M. Yoneya, H. Yokoyama, H. Satou, and S. Itami, “Advanced nanoimprint lithography using a graded functional imprinting material tailored for liquid crystal alignment,” J. Appl. Phys. 102(6), 063501 (2007).
[CrossRef]

Ono, H.

N. Kawatsuki, T. Yamamoto, and H. Ono, “Photoinduced alignment control of photoreactive side-chain polymer liquid crystal by linearly polarized ultraviolet light,” Appl. Phys. Lett. 74(7), 935–937 (1999).
[CrossRef]

Polak, R. D.

Yu. A. Nastishin, R. D. Polak, S. V. Shiyanovskii, and O. D. Lavrentovich, “Determination of nematic polar anchoring from retardation versus voltage measurements,” Appl. Phys. Lett. 75(2), 202–204 (1999).
[CrossRef]

Porte, G.

G. Porte, “Tilted alignment of MBBA induced by short-chain surfactants,” J. Phys. France 37(10), 1245–1252 (1976).
[CrossRef]

Purushothaman, S.

P. Chaudhari, J. Lacey, J. Doyle, E. Galligan, S. C. Lien, A. Callegari, G. Hougham, N. D. Lang, P. S. Andry, R. John, K. H. Yang, M. Lu, C. Cai, J. Speidell, S. Purushothaman, J. Ritsko, M. Samant, J. Stöhr, Y. Nakagawa, Y. Katoh, Y. Saitoh, K. Sakai, H. Satoh, S. Odahara, H. Nakano, J. Nakagaki, and Y. Shiota, “Atomic-beam alignment of inorganic materials for liquid-crystal displays,” Nature 411(6833), 56–59 (2001).
[CrossRef] [PubMed]

Ritsko, J.

P. Chaudhari, J. Lacey, J. Doyle, E. Galligan, S. C. Lien, A. Callegari, G. Hougham, N. D. Lang, P. S. Andry, R. John, K. H. Yang, M. Lu, C. Cai, J. Speidell, S. Purushothaman, J. Ritsko, M. Samant, J. Stöhr, Y. Nakagawa, Y. Katoh, Y. Saitoh, K. Sakai, H. Satoh, S. Odahara, H. Nakano, J. Nakagaki, and Y. Shiota, “Atomic-beam alignment of inorganic materials for liquid-crystal displays,” Nature 411(6833), 56–59 (2001).
[CrossRef] [PubMed]

Rosenblatt, C.

C. Rosenblatt, “Temperature dependence of the anchoring strength coefficient at a nematic liquid crystal-wall,” J. Phys. France 45(6), 1087–1091 (1984).
[CrossRef]

K. H. Yang and C. Rosenblatt, “Determination of the anisotropic potential at the nematic liquid crystal –to-wall interface,” Appl. Phys. Lett. 43(1), 62 (1983).
[CrossRef]

Rüetschi, M.

M. Rüetschi, P. Grütter, J. Fünfschilling, and H.-J. Güntherodt, “Creation of Liquid Crystal Waveguides with Scanning Force Microscopy,” Science 265, 512–514 (1994).
[CrossRef] [PubMed]

Saitoh, Y.

P. Chaudhari, J. Lacey, J. Doyle, E. Galligan, S. C. Lien, A. Callegari, G. Hougham, N. D. Lang, P. S. Andry, R. John, K. H. Yang, M. Lu, C. Cai, J. Speidell, S. Purushothaman, J. Ritsko, M. Samant, J. Stöhr, Y. Nakagawa, Y. Katoh, Y. Saitoh, K. Sakai, H. Satoh, S. Odahara, H. Nakano, J. Nakagaki, and Y. Shiota, “Atomic-beam alignment of inorganic materials for liquid-crystal displays,” Nature 411(6833), 56–59 (2001).
[CrossRef] [PubMed]

Sakai, K.

P. Chaudhari, J. Lacey, J. Doyle, E. Galligan, S. C. Lien, A. Callegari, G. Hougham, N. D. Lang, P. S. Andry, R. John, K. H. Yang, M. Lu, C. Cai, J. Speidell, S. Purushothaman, J. Ritsko, M. Samant, J. Stöhr, Y. Nakagawa, Y. Katoh, Y. Saitoh, K. Sakai, H. Satoh, S. Odahara, H. Nakano, J. Nakagaki, and Y. Shiota, “Atomic-beam alignment of inorganic materials for liquid-crystal displays,” Nature 411(6833), 56–59 (2001).
[CrossRef] [PubMed]

Samant, M.

P. Chaudhari, J. Lacey, J. Doyle, E. Galligan, S. C. Lien, A. Callegari, G. Hougham, N. D. Lang, P. S. Andry, R. John, K. H. Yang, M. Lu, C. Cai, J. Speidell, S. Purushothaman, J. Ritsko, M. Samant, J. Stöhr, Y. Nakagawa, Y. Katoh, Y. Saitoh, K. Sakai, H. Satoh, S. Odahara, H. Nakano, J. Nakagaki, and Y. Shiota, “Atomic-beam alignment of inorganic materials for liquid-crystal displays,” Nature 411(6833), 56–59 (2001).
[CrossRef] [PubMed]

Sambles, J. R.

F. Yang and J. R. Sambles, “The influence of surface reflectivities on measurement of the torsional anchoring strength of nematic liquid crystals,” Jpn. J. Appl. Phys. 37(Part 1), 3998–4007 (1998).
[CrossRef]

Satoh, H.

P. Chaudhari, J. Lacey, J. Doyle, E. Galligan, S. C. Lien, A. Callegari, G. Hougham, N. D. Lang, P. S. Andry, R. John, K. H. Yang, M. Lu, C. Cai, J. Speidell, S. Purushothaman, J. Ritsko, M. Samant, J. Stöhr, Y. Nakagawa, Y. Katoh, Y. Saitoh, K. Sakai, H. Satoh, S. Odahara, H. Nakano, J. Nakagaki, and Y. Shiota, “Atomic-beam alignment of inorganic materials for liquid-crystal displays,” Nature 411(6833), 56–59 (2001).
[CrossRef] [PubMed]

Satou, H.

J. S. Gwag, M. Oh-e, M. Yoneya, H. Yokoyama, H. Satou, and S. Itami, “Advanced nanoimprint lithography using a graded functional imprinting material tailored for liquid crystal alignment,” J. Appl. Phys. 102(6), 063501 (2007).
[CrossRef]

Saupe, A.

J. Nehring and A. Saupe, “On the Elastic Theory of Uniaxial Liquid Crystals,” J. Chem. Phys. 54(1), 337–343 (1971).
[CrossRef]

Schadt, M.

M. Schadt, H. Seiberle, and A. Schuster, “Optical patterning of multi-domain liquid-crystal displays with wide viewing angles,” Nature 381(6579), 212–215 (1996).
[CrossRef]

Scheffer, T. J.

M. E. Becker, J. Nehring, and T. J. Scheffer, “Theory of twisted nematic layers with weak boundary,” J. Appl. Phys. 57(10), 4539–4542 (1985).
[CrossRef]

Schuster, A.

M. Schadt, H. Seiberle, and A. Schuster, “Optical patterning of multi-domain liquid-crystal displays with wide viewing angles,” Nature 381(6579), 212–215 (1996).
[CrossRef]

Seiberle, H.

M. Schadt, H. Seiberle, and A. Schuster, “Optical patterning of multi-domain liquid-crystal displays with wide viewing angles,” Nature 381(6579), 212–215 (1996).
[CrossRef]

Shannon, P. J.

W. M. Gibbons, P. J. Shannon, S. T. Sun, and B. J. Swetlin, “Surface-mediated alignment of nematic liquid crystals with polarized laser light,” Nature 351(6321), 49–50 (1991).
[CrossRef]

Sheng, P.

F. K. Lee, B. Zhang, P. Sheng, H. S. Kwok, and O. K. C. Tsui, “Continuous liquid crystal pretilt control through textured substrates,” Appl. Phys. Lett. 85(23), 5556–5558 (2004).
[CrossRef]

B. Zhang, F. K. Lee, O. K. C. Tsui, and P. Sheng, “Liquid crystal orientation transition on microtextured substrates,” Phys. Rev. Lett. 91(21), 215501 (2003).
[CrossRef] [PubMed]

Shiota, Y.

P. Chaudhari, J. Lacey, J. Doyle, E. Galligan, S. C. Lien, A. Callegari, G. Hougham, N. D. Lang, P. S. Andry, R. John, K. H. Yang, M. Lu, C. Cai, J. Speidell, S. Purushothaman, J. Ritsko, M. Samant, J. Stöhr, Y. Nakagawa, Y. Katoh, Y. Saitoh, K. Sakai, H. Satoh, S. Odahara, H. Nakano, J. Nakagaki, and Y. Shiota, “Atomic-beam alignment of inorganic materials for liquid-crystal displays,” Nature 411(6833), 56–59 (2001).
[CrossRef] [PubMed]

Shiyanovskii, S. V.

Yu. A. Nastishin, R. D. Polak, S. V. Shiyanovskii, and O. D. Lavrentovich, “Determination of nematic polar anchoring from retardation versus voltage measurements,” Appl. Phys. Lett. 75(2), 202–204 (1999).
[CrossRef]

Speidell, J.

P. Chaudhari, J. Lacey, J. Doyle, E. Galligan, S. C. Lien, A. Callegari, G. Hougham, N. D. Lang, P. S. Andry, R. John, K. H. Yang, M. Lu, C. Cai, J. Speidell, S. Purushothaman, J. Ritsko, M. Samant, J. Stöhr, Y. Nakagawa, Y. Katoh, Y. Saitoh, K. Sakai, H. Satoh, S. Odahara, H. Nakano, J. Nakagaki, and Y. Shiota, “Atomic-beam alignment of inorganic materials for liquid-crystal displays,” Nature 411(6833), 56–59 (2001).
[CrossRef] [PubMed]

Stöhr, J.

P. Chaudhari, J. Lacey, J. Doyle, E. Galligan, S. C. Lien, A. Callegari, G. Hougham, N. D. Lang, P. S. Andry, R. John, K. H. Yang, M. Lu, C. Cai, J. Speidell, S. Purushothaman, J. Ritsko, M. Samant, J. Stöhr, Y. Nakagawa, Y. Katoh, Y. Saitoh, K. Sakai, H. Satoh, S. Odahara, H. Nakano, J. Nakagaki, and Y. Shiota, “Atomic-beam alignment of inorganic materials for liquid-crystal displays,” Nature 411(6833), 56–59 (2001).
[CrossRef] [PubMed]

Sugimura, A.

A. Sugimura, G. R. Luckhurst, and O.-Y. Zhong-can, “Director deformation of a twisted chiral nematic liquid crystal cell with weak anchoring boundaries,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 52(1), 681–689 (1995).
[CrossRef] [PubMed]

Sun, S. T.

W. M. Gibbons, P. J. Shannon, S. T. Sun, and B. J. Swetlin, “Surface-mediated alignment of nematic liquid crystals with polarized laser light,” Nature 351(6321), 49–50 (1991).
[CrossRef]

Swetlin, B. J.

W. M. Gibbons, P. J. Shannon, S. T. Sun, and B. J. Swetlin, “Surface-mediated alignment of nematic liquid crystals with polarized laser light,” Nature 351(6321), 49–50 (1991).
[CrossRef]

Tsui, O. K. C.

F. K. Lee, B. Zhang, P. Sheng, H. S. Kwok, and O. K. C. Tsui, “Continuous liquid crystal pretilt control through textured substrates,” Appl. Phys. Lett. 85(23), 5556–5558 (2004).
[CrossRef]

B. Zhang, F. K. Lee, O. K. C. Tsui, and P. Sheng, “Liquid crystal orientation transition on microtextured substrates,” Phys. Rev. Lett. 91(21), 215501 (2003).
[CrossRef] [PubMed]

van Sprang, H. A.

H. Yokoyama and H. A. van Sprang, “A novel method for determining the anchoring energy function at a nematic liquid crystal-wall interface from director distortions at high,” J. Appl. Phys. 1985, 57, 4520 (1985).

Yamamoto, T.

N. Kawatsuki, T. Yamamoto, and H. Ono, “Photoinduced alignment control of photoreactive side-chain polymer liquid crystal by linearly polarized ultraviolet light,” Appl. Phys. Lett. 74(7), 935–937 (1999).
[CrossRef]

Yang, F.

F. Yang and J. R. Sambles, “The influence of surface reflectivities on measurement of the torsional anchoring strength of nematic liquid crystals,” Jpn. J. Appl. Phys. 37(Part 1), 3998–4007 (1998).
[CrossRef]

Yang, K. H.

P. Chaudhari, J. Lacey, J. Doyle, E. Galligan, S. C. Lien, A. Callegari, G. Hougham, N. D. Lang, P. S. Andry, R. John, K. H. Yang, M. Lu, C. Cai, J. Speidell, S. Purushothaman, J. Ritsko, M. Samant, J. Stöhr, Y. Nakagawa, Y. Katoh, Y. Saitoh, K. Sakai, H. Satoh, S. Odahara, H. Nakano, J. Nakagaki, and Y. Shiota, “Atomic-beam alignment of inorganic materials for liquid-crystal displays,” Nature 411(6833), 56–59 (2001).
[CrossRef] [PubMed]

K. H. Yang and C. Rosenblatt, “Determination of the anisotropic potential at the nematic liquid crystal –to-wall interface,” Appl. Phys. Lett. 43(1), 62 (1983).
[CrossRef]

K. H. Yang, “Weak boundary storage effect in homogeneous liquid crystal cells,” Jpn. J. Appl. Phys. 22(Part 1), 389–393 (1983).
[CrossRef]

K. H. Yang, “Freedericksz transition of twisted nematic cells,” Appl. Phys. Lett. 43(2), 171–173 (1983).
[CrossRef]

Yi, J.

Yokoyama, H.

J. S. Gwag, J. H. Kwon, M. Oh-e, J. Niitsuma, M. Yoneya, and H. Yokoyama, “Higher-order surface free energy in azimuthal nematic anchoring on nanopatterned grooves,” Appl. Phys. Lett. 95(10), 103101 (2009).
[CrossRef]

J. S. Gwag, J.-H. Kim, M. Yoneya, and H. Yokoyama, “Surface nematic bistability at nanoimprinted topography,” Appl. Phys. Lett. 92(15), 153110 (2008).
[CrossRef]

J. I. Fukuda, J. S. Gwag, M. Yoneya, and H. Yokoyama, “Theory of anchoring on a two-dimensionally grooved surface,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 77(1), 011702 (2008).
[CrossRef] [PubMed]

J. Fukuda, M. Yoneya, and H. Yokoyama, “Surface-Groove-Induced Azimuthal Anchoring of a Nematic Liquid Crystal: Berreman’s Model Reexamined,” Phys. Rev. Lett. 98(18), 187803 (2007).
[CrossRef] [PubMed]

J. S. Gwag, J. Fukuda, M. Yoneya, and H. Yokoyama, “In-plane bistable nematic liquid crystal devices based on nanoimprinted surface relief,” Appl. Phys. Lett. 91(7), 073504 (2007).
[CrossRef]

J. S. Gwag, M. Oh-e, M. Yoneya, H. Yokoyama, H. Satou, and S. Itami, “Advanced nanoimprint lithography using a graded functional imprinting material tailored for liquid crystal alignment,” J. Appl. Phys. 102(6), 063501 (2007).
[CrossRef]

J.-H. Kim, M. Yoneya, and H. Yokoyama, “Tristable nematic liquid-crystal device using micropatterned surface alignment,” Nature 420(6912), 159–162 (2002).
[CrossRef] [PubMed]

H. Yokoyama and H. A. van Sprang, “A novel method for determining the anchoring energy function at a nematic liquid crystal-wall interface from director distortions at high,” J. Appl. Phys. 1985, 57, 4520 (1985).

Yoneya, M.

J. S. Gwag, J. H. Kwon, M. Oh-e, J. Niitsuma, M. Yoneya, and H. Yokoyama, “Higher-order surface free energy in azimuthal nematic anchoring on nanopatterned grooves,” Appl. Phys. Lett. 95(10), 103101 (2009).
[CrossRef]

J. S. Gwag, J.-H. Kim, M. Yoneya, and H. Yokoyama, “Surface nematic bistability at nanoimprinted topography,” Appl. Phys. Lett. 92(15), 153110 (2008).
[CrossRef]

J. I. Fukuda, J. S. Gwag, M. Yoneya, and H. Yokoyama, “Theory of anchoring on a two-dimensionally grooved surface,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 77(1), 011702 (2008).
[CrossRef] [PubMed]

J. Fukuda, M. Yoneya, and H. Yokoyama, “Surface-Groove-Induced Azimuthal Anchoring of a Nematic Liquid Crystal: Berreman’s Model Reexamined,” Phys. Rev. Lett. 98(18), 187803 (2007).
[CrossRef] [PubMed]

J. S. Gwag, J. Fukuda, M. Yoneya, and H. Yokoyama, “In-plane bistable nematic liquid crystal devices based on nanoimprinted surface relief,” Appl. Phys. Lett. 91(7), 073504 (2007).
[CrossRef]

J. S. Gwag, M. Oh-e, M. Yoneya, H. Yokoyama, H. Satou, and S. Itami, “Advanced nanoimprint lithography using a graded functional imprinting material tailored for liquid crystal alignment,” J. Appl. Phys. 102(6), 063501 (2007).
[CrossRef]

J.-H. Kim, M. Yoneya, and H. Yokoyama, “Tristable nematic liquid-crystal device using micropatterned surface alignment,” Nature 420(6912), 159–162 (2002).
[CrossRef] [PubMed]

Yoon, T.-H.

You, J. G.

Zhang, B.

F. K. Lee, B. Zhang, P. Sheng, H. S. Kwok, and O. K. C. Tsui, “Continuous liquid crystal pretilt control through textured substrates,” Appl. Phys. Lett. 85(23), 5556–5558 (2004).
[CrossRef]

B. Zhang, F. K. Lee, O. K. C. Tsui, and P. Sheng, “Liquid crystal orientation transition on microtextured substrates,” Phys. Rev. Lett. 91(21), 215501 (2003).
[CrossRef] [PubMed]

Zhong-can, O.-Y.

A. Sugimura, G. R. Luckhurst, and O.-Y. Zhong-can, “Director deformation of a twisted chiral nematic liquid crystal cell with weak anchoring boundaries,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 52(1), 681–689 (1995).
[CrossRef] [PubMed]

Appl. Phys. Lett. (9)

N. Kawatsuki, T. Yamamoto, and H. Ono, “Photoinduced alignment control of photoreactive side-chain polymer liquid crystal by linearly polarized ultraviolet light,” Appl. Phys. Lett. 74(7), 935–937 (1999).
[CrossRef]

J. L. Janning, “Thin film surface orientation for liquid crystals,” Appl. Phys. Lett. 21(4), 173–174 (1972).
[CrossRef]

K. H. Yang, “Freedericksz transition of twisted nematic cells,” Appl. Phys. Lett. 43(2), 171–173 (1983).
[CrossRef]

F. K. Lee, B. Zhang, P. Sheng, H. S. Kwok, and O. K. C. Tsui, “Continuous liquid crystal pretilt control through textured substrates,” Appl. Phys. Lett. 85(23), 5556–5558 (2004).
[CrossRef]

K. H. Yang and C. Rosenblatt, “Determination of the anisotropic potential at the nematic liquid crystal –to-wall interface,” Appl. Phys. Lett. 43(1), 62 (1983).
[CrossRef]

Yu. A. Nastishin, R. D. Polak, S. V. Shiyanovskii, and O. D. Lavrentovich, “Determination of nematic polar anchoring from retardation versus voltage measurements,” Appl. Phys. Lett. 75(2), 202–204 (1999).
[CrossRef]

J. S. Gwag, J. Fukuda, M. Yoneya, and H. Yokoyama, “In-plane bistable nematic liquid crystal devices based on nanoimprinted surface relief,” Appl. Phys. Lett. 91(7), 073504 (2007).
[CrossRef]

J. S. Gwag, J.-H. Kim, M. Yoneya, and H. Yokoyama, “Surface nematic bistability at nanoimprinted topography,” Appl. Phys. Lett. 92(15), 153110 (2008).
[CrossRef]

J. S. Gwag, J. H. Kwon, M. Oh-e, J. Niitsuma, M. Yoneya, and H. Yokoyama, “Higher-order surface free energy in azimuthal nematic anchoring on nanopatterned grooves,” Appl. Phys. Lett. 95(10), 103101 (2009).
[CrossRef]

J. Appl. Phys. (2)

J. S. Gwag, M. Oh-e, M. Yoneya, H. Yokoyama, H. Satou, and S. Itami, “Advanced nanoimprint lithography using a graded functional imprinting material tailored for liquid crystal alignment,” J. Appl. Phys. 102(6), 063501 (2007).
[CrossRef]

M. E. Becker, J. Nehring, and T. J. Scheffer, “Theory of twisted nematic layers with weak boundary,” J. Appl. Phys. 57(10), 4539–4542 (1985).
[CrossRef]

J. Chem. Phys. (1)

J. Nehring and A. Saupe, “On the Elastic Theory of Uniaxial Liquid Crystals,” J. Chem. Phys. 54(1), 337–343 (1971).
[CrossRef]

J. Phys. France (2)

C. Rosenblatt, “Temperature dependence of the anchoring strength coefficient at a nematic liquid crystal-wall,” J. Phys. France 45(6), 1087–1091 (1984).
[CrossRef]

G. Porte, “Tilted alignment of MBBA induced by short-chain surfactants,” J. Phys. France 37(10), 1245–1252 (1976).
[CrossRef]

Jpn. J. Appl. Phys. (3)

K. H. Yang, “Weak boundary storage effect in homogeneous liquid crystal cells,” Jpn. J. Appl. Phys. 22(Part 1), 389–393 (1983).
[CrossRef]

F. Yang and J. R. Sambles, “The influence of surface reflectivities on measurement of the torsional anchoring strength of nematic liquid crystals,” Jpn. J. Appl. Phys. 37(Part 1), 3998–4007 (1998).
[CrossRef]

Y. Iimura, N. Kobayashi, and S. Kobayashi, “A new method for measuring the azimuthal anchoring energy of a nematic liquid crystal,” Jpn. J. Appl. Phys. 33(Part 1), L434–L436 (1994).
[CrossRef]

Mol. Cryst. Liq. Cryst. (Phila. Pa.) (1)

M. Cui and J. R. Kelly, “Temperature dependence of visco-elastic properties of 5CB,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 331(1), 49–57 (1999).
[CrossRef]

Nature (4)

W. M. Gibbons, P. J. Shannon, S. T. Sun, and B. J. Swetlin, “Surface-mediated alignment of nematic liquid crystals with polarized laser light,” Nature 351(6321), 49–50 (1991).
[CrossRef]

M. Schadt, H. Seiberle, and A. Schuster, “Optical patterning of multi-domain liquid-crystal displays with wide viewing angles,” Nature 381(6579), 212–215 (1996).
[CrossRef]

P. Chaudhari, J. Lacey, J. Doyle, E. Galligan, S. C. Lien, A. Callegari, G. Hougham, N. D. Lang, P. S. Andry, R. John, K. H. Yang, M. Lu, C. Cai, J. Speidell, S. Purushothaman, J. Ritsko, M. Samant, J. Stöhr, Y. Nakagawa, Y. Katoh, Y. Saitoh, K. Sakai, H. Satoh, S. Odahara, H. Nakano, J. Nakagaki, and Y. Shiota, “Atomic-beam alignment of inorganic materials for liquid-crystal displays,” Nature 411(6833), 56–59 (2001).
[CrossRef] [PubMed]

J.-H. Kim, M. Yoneya, and H. Yokoyama, “Tristable nematic liquid-crystal device using micropatterned surface alignment,” Nature 420(6912), 159–162 (2002).
[CrossRef] [PubMed]

Opt. Lett. (2)

Phys. Rev. A (1)

S. Faetti, “Azimuthal anchoring energy of a nematic liquid crystal at a grooved interface,” Phys. Rev. A 36(1), 408–410 (1987).
[CrossRef] [PubMed]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

J. I. Fukuda, J. S. Gwag, M. Yoneya, and H. Yokoyama, “Theory of anchoring on a two-dimensionally grooved surface,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 77(1), 011702 (2008).
[CrossRef] [PubMed]

Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics (2)

J.-H. Kim, S. Kumar, and S.-D. Lee, “Alignment of liquid crystals on polyimide films exposed to ultraviolet light,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 57(5), 5644–5650 (1998).
[CrossRef]

A. Sugimura, G. R. Luckhurst, and O.-Y. Zhong-can, “Director deformation of a twisted chiral nematic liquid crystal cell with weak anchoring boundaries,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 52(1), 681–689 (1995).
[CrossRef] [PubMed]

Phys. Rev. Lett. (3)

B. Zhang, F. K. Lee, O. K. C. Tsui, and P. Sheng, “Liquid crystal orientation transition on microtextured substrates,” Phys. Rev. Lett. 91(21), 215501 (2003).
[CrossRef] [PubMed]

D. Berreman, “Solid Surface Shape and the Alignment of an Adjacent Nematic Liquid Crystal,” Phys. Rev. Lett. 28(26), 1683–1686 (1972).
[CrossRef]

J. Fukuda, M. Yoneya, and H. Yokoyama, “Surface-Groove-Induced Azimuthal Anchoring of a Nematic Liquid Crystal: Berreman’s Model Reexamined,” Phys. Rev. Lett. 98(18), 187803 (2007).
[CrossRef] [PubMed]

Science (1)

M. Rüetschi, P. Grütter, J. Fünfschilling, and H.-J. Güntherodt, “Creation of Liquid Crystal Waveguides with Scanning Force Microscopy,” Science 265, 512–514 (1994).
[CrossRef] [PubMed]

Other (3)

P. G. de Gennes and J. Prost, The Physics of Liquid Crystals (Oxford University Press, Oxford, 1974), 75–85.

H. Yokoyama, Handbook of Liquid Crystal Research, P. J. Collings and J. S. Patel, ed. (Oxford University Press, Oxford, 1997), Chap. 6.

H. Yokoyama and H. A. van Sprang, “A novel method for determining the anchoring energy function at a nematic liquid crystal-wall interface from director distortions at high,” J. Appl. Phys. 1985, 57, 4520 (1985).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematics showing LC alignment produced by anchoring competition driven from a groove pattern and mechanical rubbing having mutually orthogonal surface anchoring directions. By decreasing the pitch, the LC alignment moves toward the groove direction due to the dominance of the groove contribution over the rubbing-induced anchoring.

Fig. 2
Fig. 2

Plotting results of the azimuthal surface anchoring strength, WA, as a function of the stable orientations ϕ using Eq. (8).

Fig. 3
Fig. 3

Plotting results of the azimuthal surface anchoring strength WA as a function of the stable orientations ϕ using Eq. (9) with Eq. (10). (a) According to changes in polar anchoring strength WP. (b) According to change in groove pitch λ.

Fig. 4
Fig. 4

AFM images of the nano-sized groove used in this experiment. The four pitches (200, 400, 800, and 1600 nm) were patterned continuously in order, and the features were transferred by NIL from a mold pattern into a hybrid-type polyimide film.

Fig. 5
Fig. 5

Polarizing microscopic images of LC alignments in the LC cell filled with 5CB LC on the rubbed surfaces with 200, 400, and 800 nm pitch grooves. (a) For hybrid-type polyimide film used as an LC alignment layer. (b) For PMMA film used as an LC alignment layer.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

z=Asin[q(xcosϕysinϕ)].
F= 1 2 [ K 1 ( n ) 2 + K 2 ( n × n ) 2 + K 3 ( n ×× n ) 2 ( K 2 + K 24 )( n n + n ×× n )]dr.
f= 1 2 W G [ sin 4 ϕ g 1 (ϕ) + ( K 2 + K 24 ) K 3 sin 2 ϕ cos 2 ϕ g 1 (ϕ) (2 ( K 2 + K 24 ) K 3 g 1 (ϕ) g 2 (ϕ) cos 2 ϕ sin 2 ϕ )],
f= 1 2 W G sin 2 ϕ.
f= 1 2 W G sin 2 ϕ 1 2 W A sin 2 ϕ,
df dϕ =sinϕcosϕ( W G W A )=0.
f= 1 2 W G [ sin 4 ϕ g 1 (ϕ) + ( K 2 + K 24 ) K 3 sin 2 ϕ cos 2 ϕ g 1 (ϕ) (2 ( K 2 + K 24 ) K 3 g 1 (ϕ) g 2 (ϕ) cos 2 ϕ sin 2 ϕ )] + 1 2 W A cos 2 ϕ.
W A = W G ( 1 2 g 1 3 (1 β 1 )( β 3 2 cos 4 ϕ+ sin 4 ϕ)+ (22 β 3 ) sin 2 ϕ g 1 + β 3 2 g 2 + β 3 cos 2 ϕ×( 2 g 1 + β 3 ( 2 g 1 + 1 2 g 2 (1 β 2 )))+ β 3 sin 2 2ϕ 4 g 1 3 (1 β 1 )),
W A = W G 2 cos 2 ϕ { 1 2 g 1 3 (1 β 1 )( β 3 2 cos 4 ϕ+ sin 4 ϕ)+ (22 β 3 ) sin 2 ϕ g 1 + β 3 2 g 2 + β 3 cos 2 ϕ×[ 2 g 1 + β 3 ( 2 g 1 + 1 2 g 2 (1 β 2 )) ]+ β 3 sin 2 2ϕ 4 g 1 3 (1 β 1 ) }.
W G ( W P )= 1 2 K 3 A 2 q 3 ( 1+ q K 3 2 W P ) 1 .

Metrics