Abstract

We demonstrate an approach for background-free three-dimensional imaging of director fields in liquid crystals using stimulated Raman scattering microscopy. This imaging technique is implemented using a single femtosecond pulsed laser and a photonic crystal fiber, providing Stokes and pump frequencies needed to access Raman shifts of different chemical bonds of molecules and allowing for chemically selective and broadband imaging of both pristine liquid crystals and composite materials. Using examples of model three-dimensional structures of director fields, we show that the described technique is a powerful tool for mapping of long-range molecular orientation patterns in soft matter via polarized chemical-selective imaging.

© 2013 OSA

Full Article  |  PDF Article
Related Articles
Three-dimensional imaging of chemical bond orientation in liquid crystals by coherent anti-Stokes Raman scattering microscopy

Brian G. Saar, Heung-Shik Park, X. Sunney Xie, and Oleg D. Lavrentovich
Opt. Express 15(21) 13585-13596 (2007)

Realignment-enhanced coherent anti-Stokes Raman scattering and three-dimensional imaging in anisotropic fluids

Aliaksandr V. Kachynski, Andrey N. Kuzmin, Paras N. Prasad, and Ivan I. Smalyukh
Opt. Express 16(14) 10617-10632 (2008)

Multimodal nonlinear optical polarizing microscopy of long-range molecular order in liquid crystals

Taewoo Lee, Rahul P. Trivedi, and Ivan I. Smalyukh
Opt. Lett. 35(20) 3447-3449 (2010)

References

  • View by:
  • |
  • |
  • |

  1. P. M. Chaikin and T. C. Lubensky, Principles of Condensed Matter Physics (Cambridge U. Press, 2000).
  2. P. G. de Gennes and J. Prost, The Physics of Liquid Crystals (Clarendon Press, Oxford 1993).
  3. B. Senyuk, Q. Liu, S. He, R. D. Kamien, R. B. Kusner, T. C. Lubensky, and I. I. Smalyukh, “Topological colloids,” Nature 493(7431), 200–205 (2012).
    [Crossref] [PubMed]
  4. I. I. Smalyukh, S. V. Shiyanovskii, and O. D. Lavrentovich, “Three-dimensional imaging of orientational order by fluorescence confocal polarizing microscopy,” Chem. Phys. Lett. 336(1–2), 88–96 (2001).
    [Crossref]
  5. A. V. Kachynski, A. N. Kuzmin, P. N. Prasad, and I. I. Smalyukh, “Coherent anti-Stokes Raman scattering polarized microscopy of three-dimensional director structures in liquid crystals,” Appl. Phys. Lett. 91(15), 151905 (2007).
    [Crossref]
  6. T. Lee, R. P. Trivedi, and I. I. Smalyukh, “Multimodal nonlinear optical polarizing microscopy of long-range molecular order in liquid crystals,” Opt. Lett. 35(20), 3447–3449 (2010).
    [Crossref] [PubMed]
  7. R. P. Trivedi, T. Lee, K. A. Bertness, and I. I. Smalyukh, “Three dimensional optical manipulation and structural imaging of soft materials by use of laser tweezers and multimodal nonlinear microscopy,” Opt. Express 18(26), 27658–27669 (2010).
    [Crossref] [PubMed]
  8. A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 82(20), 4142–4145 (1999).
    [Crossref]
  9. J.-X. Cheng and X. S. Xie, “Coherent anti-Stokes Raman scattering microscopy: instrumentation, theory and applications,” J. Phys. Chem. B 108(3), 827–840 (2004).
    [Crossref]
  10. F. Ganikhanov, C. L. Evans, B. G. Saar, and X. S. Xie, “High-sensitivity vibrational imaging with frequency modulation coherent anti-Stokes Raman scattering (FM CARS) microscopy,” Opt. Lett. 31(12), 1872–1874 (2006).
    [Crossref] [PubMed]
  11. C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-Free Biomedical Imaging with High Sensitivity by Stimulated Raman Scattering Microscopy,” Science 322(5909), 1857–1861 (2008).
    [Crossref] [PubMed]
  12. P. Nandakumar, A. Kovalev, and A. Volkmer, “Vibrational imaging based on stimulated Raman scattering microscopy,” New J. Phys. 11(3), 033026 (2009).
    [Crossref]
  13. H. T. Beier, G. D. Noojin, and B. A. Rockwell, “Stimulated Raman scattering using a single femtosecond oscillator with flexibility for imaging and spectral applications,” Opt. Express 19(20), 18885–18892 (2011).
    [Crossref] [PubMed]
  14. K. I. Popov, A. F. Pegoraro, A. Stolow, and L. Ramunno, “Image formation in CARS and SRS: effect of an inhomogeneous nonresonant background medium,” Opt. Lett. 37(4), 473–475 (2012).
    [Crossref] [PubMed]
  15. T. Čižmár, M. Mazilu, and K. Dholakia, “In situ wavefront correction and its application to micromanipulation,” Nat. Photonics 4(6), 388–394 (2010).
    [Crossref]
  16. J. Rehbinder, C. Pohling, T. Buckup, and M. Motzkus, “Multiplex coherent anti-Stokes Raman microspectroscopy with tailored Stokes spectrum,” Opt. Lett. 35(22), 3721–3723 (2010).
    [Crossref] [PubMed]

2012 (2)

B. Senyuk, Q. Liu, S. He, R. D. Kamien, R. B. Kusner, T. C. Lubensky, and I. I. Smalyukh, “Topological colloids,” Nature 493(7431), 200–205 (2012).
[Crossref] [PubMed]

K. I. Popov, A. F. Pegoraro, A. Stolow, and L. Ramunno, “Image formation in CARS and SRS: effect of an inhomogeneous nonresonant background medium,” Opt. Lett. 37(4), 473–475 (2012).
[Crossref] [PubMed]

2011 (1)

2010 (4)

2009 (1)

P. Nandakumar, A. Kovalev, and A. Volkmer, “Vibrational imaging based on stimulated Raman scattering microscopy,” New J. Phys. 11(3), 033026 (2009).
[Crossref]

2008 (1)

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-Free Biomedical Imaging with High Sensitivity by Stimulated Raman Scattering Microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref] [PubMed]

2007 (1)

A. V. Kachynski, A. N. Kuzmin, P. N. Prasad, and I. I. Smalyukh, “Coherent anti-Stokes Raman scattering polarized microscopy of three-dimensional director structures in liquid crystals,” Appl. Phys. Lett. 91(15), 151905 (2007).
[Crossref]

2006 (1)

2004 (1)

J.-X. Cheng and X. S. Xie, “Coherent anti-Stokes Raman scattering microscopy: instrumentation, theory and applications,” J. Phys. Chem. B 108(3), 827–840 (2004).
[Crossref]

2001 (1)

I. I. Smalyukh, S. V. Shiyanovskii, and O. D. Lavrentovich, “Three-dimensional imaging of orientational order by fluorescence confocal polarizing microscopy,” Chem. Phys. Lett. 336(1–2), 88–96 (2001).
[Crossref]

1999 (1)

A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 82(20), 4142–4145 (1999).
[Crossref]

Beier, H. T.

Bertness, K. A.

Buckup, T.

Cheng, J.-X.

J.-X. Cheng and X. S. Xie, “Coherent anti-Stokes Raman scattering microscopy: instrumentation, theory and applications,” J. Phys. Chem. B 108(3), 827–840 (2004).
[Crossref]

Cižmár, T.

T. Čižmár, M. Mazilu, and K. Dholakia, “In situ wavefront correction and its application to micromanipulation,” Nat. Photonics 4(6), 388–394 (2010).
[Crossref]

Dholakia, K.

T. Čižmár, M. Mazilu, and K. Dholakia, “In situ wavefront correction and its application to micromanipulation,” Nat. Photonics 4(6), 388–394 (2010).
[Crossref]

Evans, C. L.

Freudiger, C. W.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-Free Biomedical Imaging with High Sensitivity by Stimulated Raman Scattering Microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref] [PubMed]

Ganikhanov, F.

He, C.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-Free Biomedical Imaging with High Sensitivity by Stimulated Raman Scattering Microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref] [PubMed]

He, S.

B. Senyuk, Q. Liu, S. He, R. D. Kamien, R. B. Kusner, T. C. Lubensky, and I. I. Smalyukh, “Topological colloids,” Nature 493(7431), 200–205 (2012).
[Crossref] [PubMed]

Holtom, G. R.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-Free Biomedical Imaging with High Sensitivity by Stimulated Raman Scattering Microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref] [PubMed]

A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 82(20), 4142–4145 (1999).
[Crossref]

Kachynski, A. V.

A. V. Kachynski, A. N. Kuzmin, P. N. Prasad, and I. I. Smalyukh, “Coherent anti-Stokes Raman scattering polarized microscopy of three-dimensional director structures in liquid crystals,” Appl. Phys. Lett. 91(15), 151905 (2007).
[Crossref]

Kamien, R. D.

B. Senyuk, Q. Liu, S. He, R. D. Kamien, R. B. Kusner, T. C. Lubensky, and I. I. Smalyukh, “Topological colloids,” Nature 493(7431), 200–205 (2012).
[Crossref] [PubMed]

Kang, J. X.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-Free Biomedical Imaging with High Sensitivity by Stimulated Raman Scattering Microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref] [PubMed]

Kovalev, A.

P. Nandakumar, A. Kovalev, and A. Volkmer, “Vibrational imaging based on stimulated Raman scattering microscopy,” New J. Phys. 11(3), 033026 (2009).
[Crossref]

Kusner, R. B.

B. Senyuk, Q. Liu, S. He, R. D. Kamien, R. B. Kusner, T. C. Lubensky, and I. I. Smalyukh, “Topological colloids,” Nature 493(7431), 200–205 (2012).
[Crossref] [PubMed]

Kuzmin, A. N.

A. V. Kachynski, A. N. Kuzmin, P. N. Prasad, and I. I. Smalyukh, “Coherent anti-Stokes Raman scattering polarized microscopy of three-dimensional director structures in liquid crystals,” Appl. Phys. Lett. 91(15), 151905 (2007).
[Crossref]

Lavrentovich, O. D.

I. I. Smalyukh, S. V. Shiyanovskii, and O. D. Lavrentovich, “Three-dimensional imaging of orientational order by fluorescence confocal polarizing microscopy,” Chem. Phys. Lett. 336(1–2), 88–96 (2001).
[Crossref]

Lee, T.

Liu, Q.

B. Senyuk, Q. Liu, S. He, R. D. Kamien, R. B. Kusner, T. C. Lubensky, and I. I. Smalyukh, “Topological colloids,” Nature 493(7431), 200–205 (2012).
[Crossref] [PubMed]

Lu, S.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-Free Biomedical Imaging with High Sensitivity by Stimulated Raman Scattering Microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref] [PubMed]

Lubensky, T. C.

B. Senyuk, Q. Liu, S. He, R. D. Kamien, R. B. Kusner, T. C. Lubensky, and I. I. Smalyukh, “Topological colloids,” Nature 493(7431), 200–205 (2012).
[Crossref] [PubMed]

Mazilu, M.

T. Čižmár, M. Mazilu, and K. Dholakia, “In situ wavefront correction and its application to micromanipulation,” Nat. Photonics 4(6), 388–394 (2010).
[Crossref]

Min, W.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-Free Biomedical Imaging with High Sensitivity by Stimulated Raman Scattering Microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref] [PubMed]

Motzkus, M.

Nandakumar, P.

P. Nandakumar, A. Kovalev, and A. Volkmer, “Vibrational imaging based on stimulated Raman scattering microscopy,” New J. Phys. 11(3), 033026 (2009).
[Crossref]

Noojin, G. D.

Pegoraro, A. F.

Pohling, C.

Popov, K. I.

Prasad, P. N.

A. V. Kachynski, A. N. Kuzmin, P. N. Prasad, and I. I. Smalyukh, “Coherent anti-Stokes Raman scattering polarized microscopy of three-dimensional director structures in liquid crystals,” Appl. Phys. Lett. 91(15), 151905 (2007).
[Crossref]

Ramunno, L.

Rehbinder, J.

Rockwell, B. A.

Saar, B. G.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-Free Biomedical Imaging with High Sensitivity by Stimulated Raman Scattering Microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref] [PubMed]

F. Ganikhanov, C. L. Evans, B. G. Saar, and X. S. Xie, “High-sensitivity vibrational imaging with frequency modulation coherent anti-Stokes Raman scattering (FM CARS) microscopy,” Opt. Lett. 31(12), 1872–1874 (2006).
[Crossref] [PubMed]

Senyuk, B.

B. Senyuk, Q. Liu, S. He, R. D. Kamien, R. B. Kusner, T. C. Lubensky, and I. I. Smalyukh, “Topological colloids,” Nature 493(7431), 200–205 (2012).
[Crossref] [PubMed]

Shiyanovskii, S. V.

I. I. Smalyukh, S. V. Shiyanovskii, and O. D. Lavrentovich, “Three-dimensional imaging of orientational order by fluorescence confocal polarizing microscopy,” Chem. Phys. Lett. 336(1–2), 88–96 (2001).
[Crossref]

Smalyukh, I. I.

B. Senyuk, Q. Liu, S. He, R. D. Kamien, R. B. Kusner, T. C. Lubensky, and I. I. Smalyukh, “Topological colloids,” Nature 493(7431), 200–205 (2012).
[Crossref] [PubMed]

R. P. Trivedi, T. Lee, K. A. Bertness, and I. I. Smalyukh, “Three dimensional optical manipulation and structural imaging of soft materials by use of laser tweezers and multimodal nonlinear microscopy,” Opt. Express 18(26), 27658–27669 (2010).
[Crossref] [PubMed]

T. Lee, R. P. Trivedi, and I. I. Smalyukh, “Multimodal nonlinear optical polarizing microscopy of long-range molecular order in liquid crystals,” Opt. Lett. 35(20), 3447–3449 (2010).
[Crossref] [PubMed]

A. V. Kachynski, A. N. Kuzmin, P. N. Prasad, and I. I. Smalyukh, “Coherent anti-Stokes Raman scattering polarized microscopy of three-dimensional director structures in liquid crystals,” Appl. Phys. Lett. 91(15), 151905 (2007).
[Crossref]

I. I. Smalyukh, S. V. Shiyanovskii, and O. D. Lavrentovich, “Three-dimensional imaging of orientational order by fluorescence confocal polarizing microscopy,” Chem. Phys. Lett. 336(1–2), 88–96 (2001).
[Crossref]

Stolow, A.

Trivedi, R. P.

Tsai, J. C.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-Free Biomedical Imaging with High Sensitivity by Stimulated Raman Scattering Microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref] [PubMed]

Volkmer, A.

P. Nandakumar, A. Kovalev, and A. Volkmer, “Vibrational imaging based on stimulated Raman scattering microscopy,” New J. Phys. 11(3), 033026 (2009).
[Crossref]

Xie, X. S.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-Free Biomedical Imaging with High Sensitivity by Stimulated Raman Scattering Microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref] [PubMed]

F. Ganikhanov, C. L. Evans, B. G. Saar, and X. S. Xie, “High-sensitivity vibrational imaging with frequency modulation coherent anti-Stokes Raman scattering (FM CARS) microscopy,” Opt. Lett. 31(12), 1872–1874 (2006).
[Crossref] [PubMed]

J.-X. Cheng and X. S. Xie, “Coherent anti-Stokes Raman scattering microscopy: instrumentation, theory and applications,” J. Phys. Chem. B 108(3), 827–840 (2004).
[Crossref]

A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 82(20), 4142–4145 (1999).
[Crossref]

Zumbusch, A.

A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 82(20), 4142–4145 (1999).
[Crossref]

Appl. Phys. Lett. (1)

A. V. Kachynski, A. N. Kuzmin, P. N. Prasad, and I. I. Smalyukh, “Coherent anti-Stokes Raman scattering polarized microscopy of three-dimensional director structures in liquid crystals,” Appl. Phys. Lett. 91(15), 151905 (2007).
[Crossref]

Chem. Phys. Lett. (1)

I. I. Smalyukh, S. V. Shiyanovskii, and O. D. Lavrentovich, “Three-dimensional imaging of orientational order by fluorescence confocal polarizing microscopy,” Chem. Phys. Lett. 336(1–2), 88–96 (2001).
[Crossref]

J. Phys. Chem. B (1)

J.-X. Cheng and X. S. Xie, “Coherent anti-Stokes Raman scattering microscopy: instrumentation, theory and applications,” J. Phys. Chem. B 108(3), 827–840 (2004).
[Crossref]

Nat. Photonics (1)

T. Čižmár, M. Mazilu, and K. Dholakia, “In situ wavefront correction and its application to micromanipulation,” Nat. Photonics 4(6), 388–394 (2010).
[Crossref]

Nature (1)

B. Senyuk, Q. Liu, S. He, R. D. Kamien, R. B. Kusner, T. C. Lubensky, and I. I. Smalyukh, “Topological colloids,” Nature 493(7431), 200–205 (2012).
[Crossref] [PubMed]

New J. Phys. (1)

P. Nandakumar, A. Kovalev, and A. Volkmer, “Vibrational imaging based on stimulated Raman scattering microscopy,” New J. Phys. 11(3), 033026 (2009).
[Crossref]

Opt. Express (2)

Opt. Lett. (4)

Phys. Rev. Lett. (1)

A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 82(20), 4142–4145 (1999).
[Crossref]

Science (1)

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-Free Biomedical Imaging with High Sensitivity by Stimulated Raman Scattering Microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref] [PubMed]

Other (2)

P. M. Chaikin and T. C. Lubensky, Principles of Condensed Matter Physics (Cambridge U. Press, 2000).

P. G. de Gennes and J. Prost, The Physics of Liquid Crystals (Clarendon Press, Oxford 1993).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Principles and a schematic diagram of the SRS-PM setup. (a) Energy diagram of SRS and detection of SRL as the amplitude-modulated component of the pump beam that appears due to the modulated Stokes beam. (b) A schematic diagram of SRS-PM setup integrated with transmission-mode imaging and CARS-PM.

Fig. 2
Fig. 2

Characterization of orientation-sensitive Raman and SRL signals. (a) ordinary Raman spectra of an aligned 8CB LC for linear polarizations of excitation light parallel (red) and perpendicular (green) to the far-field director. (b) SRL signal ΔISRL vs. pump power (PP) at fixed Stokes power of PS = 1.5mW. (c) ΔISRL vs. angle θ between collinear polarizations of excitation beams and n(r). (d) ΔISRL vs. PpPs. Plots (b-d) were obtained for a planar-aligned E7 LC.

Fig. 3
Fig. 3

SRS-PM and CARS-PM images of an FCD in a SmA LC 8CB obtained in the plane of the ellipse. (a-c) Reconstructed SRS-PM images of the FCD for two orthogonal co-linear polarizations of incident pump and Stokes beams (50 × 50 pixels, 0.2 um pixel size, 100 ms pixel dwell time): (a) horizontal (b) vertical polarization and (c) superimposed images (a) and (b). (d) Collocated CARS-PM images of the same FCD as shown in (c). (e,f) 3D schematics of the FCD containing ellipse and hyperbola defect lines represented by (e) director field n(r) depicted as black lines, and (f) smectic layers perpendicular to n(r).

Fig. 4
Fig. 4

SRS-PM imaging of an LC-Colloidal composite. (a) SRS-PM image. (b) A schematic of distorted layered structure around a particle in a planar-aligned SmA LC. Thin solid lines show smectic layers; thick straight lines show defects.

Metrics