Abstract

We demonstrate room temperature lasing through the polaritonic mode of a J-aggregate microcavity in which losses from exciton-exciton annihilation and slow polariton relaxation typical of direct J-aggregate excitation are circumvented via intra-cavity pumping. The pumping scheme utilizes an organic dye layer (DCM) within the cavity with an emission band overlapping the entire lower J-aggregate polariton branch spectrum, hence forcing DCM lasing to occur through the strongly-coupled mode. This cavity architecture, which separates strong coupling and gain into two materials, presents a general and flexible design for polariton devices and allows for the use of a wide range of materials, organic and inorganic, to be integrated into the cavity.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Deng, H. Haug, and Y. Yamamoto, “Exciton-polariton Bose-Einstein condensation,” Rev. Mod. Phys.82(2), 1489–1537 (2010).
    [CrossRef]
  2. D. Sanvitto, F. M. Marchetti, M. H. Szymańska, G. Tosi, M. Baudisch, F. P. Laussy, D. N. Krizhanovskii, M. S. Skolnick, L. Marrucci, A. Lemaître, J. Bloch, C. Tejedor, and L. Viña, “Persistent currents and quantized vortices in a polariton superfluid,” Nat. Phys.6(7), 527–533 (2010).
    [CrossRef]
  3. K. G. Lagoudakis, M. Wouters, M. Richard, A. Baas, I. Carusotto, R. André, L. S. Dang, and B. Deveaud-Plédran, “Quantized vortices in an exciton–polariton condensate,” Nat. Phys.4(9), 706–710 (2008).
    [CrossRef]
  4. R. Balili, V. Hartwell, D. Snoke, L. Pfeiffer, and K. West, “Bose-Einstein condensation of microcavity polaritons in a trap,” Science316(5827), 1007–1010 (2007).
    [CrossRef] [PubMed]
  5. S. Christopoulos, G. B. von Högersthal, A. J. Grundy, P. G. Lagoudakis, A. V. Kavokin, J. J. Baumberg, G. Christmann, R. Butté, E. Feltin, J.-F. Carlin, and N. Grandjean, “Room-temperature polariton lasing in semiconductor microcavities,” Phys. Rev. Lett.98(12), 126405 (2007).
    [CrossRef] [PubMed]
  6. D. G. Lidzey, D. D. C. Bradley, M. S. Skolnick, T. Virgili, S. Walker, and D. M. Whittaker, “Strong exciton-photon coupling in an organic semiconductor microcavity,” Nature395(6697), 53–55 (1998).
    [CrossRef]
  7. J. R. Tischler, M. S. Bradley, Q. Zhang, T. Atay, A. Nurmikko, and V. Bulovic, “Solid state cavity QED: strong coupling in organic thin films,” Org. Electron.8(2-3), 94–113 (2007).
    [CrossRef]
  8. S. Kéna-Cohen and S. R. Forrest, “Room-temperature polariton lasing in an organic single-crystal microcavity,” Nat. Photonics4(6), 371–375 (2010).
    [CrossRef]
  9. M. Slootsky, Y. Zhang, and S. R. Forrest, “Temperature dependence of polariton lasing in a crystalline anthracene microcavity,” Phys. Rev. B86(4), 045312 (2012).
    [CrossRef]
  10. G. M. Akselrod, Y. R. Tischler, E. R. Young, D. G. Nocera, and V. Bulovic, “Exciton-exciton annihilation in organic polariton microcavities,” Phys. Rev. B82(11), 113106 (2010).
    [CrossRef]
  11. C. E. Swenberg, N. E. Geacintov, and M. Pope, “Bimolecular quenching of excitons and fluorescence in the photosynthetic unit,” Biophys. J.16(12), 1447–1452 (1976).
    [CrossRef] [PubMed]
  12. C. Swenberg and M. Pope, Electronic Processes in Organic Crystals and Polymers (Oxford University Press, 1999).
  13. P. Michetti and G. La Rocca, “Simulation of J-aggregate microcavity photoluminescence,” Phys. Rev. B77(19), 195301 (2008).
    [CrossRef]
  14. D. M. Coles, P. Michetti, C. Clark, W. C. Tsoi, A. M. Adawi, J.-S. Kim, and D. G. Lidzey, “Vibrationally assisted polariton-relaxation processes in strongly coupled organic-semiconductor microcavities,” Adv. Funct. Mater.21(19), 3691–3696 (2011).
    [CrossRef]
  15. M. Bradley and V. Bulović, “Intracavity optical pumping of J-aggregate microcavity exciton polaritons,” Phys. Rev. B82(3), 033305 (2010).
    [CrossRef]
  16. J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J. M. J. Keeling, F. M. Marchetti, M. H. Szymańska, R. André, J. L. Staehli, V. Savona, P. B. Littlewood, B. Deveaud, and S. Dang, “Bose-Einstein condensation of exciton polaritons,” Nature443(7110), 409–414 (2006).
    [CrossRef] [PubMed]
  17. I. D. W. Samuel and G. A. Turnbull, “Organic semiconductor lasers,” Chem. Rev.107(4), 1272–1295 (2007).
    [CrossRef] [PubMed]
  18. M. Koschorreck, R. Gehlhaar, V. G. Lyssenko, M. Swoboda, M. Hoffmann, and K. Leo, “Dynamics of a high-Q vertical-cavity organic laser,” Appl. Phys. Lett.87(18), 181108 (2005).
    [CrossRef]
  19. G. C. La Rocca, “Organic photonics: polariton lasing,” Nat. Photonics4(6), 343–345 (2010).
    [CrossRef]
  20. M. S. Bradley, J. R. Tischler, and V. Bulovic, “Layer-by-layer J-aggregate thin films with a peak absorption constant of 10(6) cm(−1),” Adv. Mater.17(15), 1881–1886 (2005).
    [CrossRef]
  21. V. Kozlov, V. Bulovic, P. E. Burrows, M. Baldo, V. B. Khalfin, G. Parthasarathy, S. R. Forrest, Y. You, and M. E. Thompson, “Study of lasing action based on Förster energy transfer in optically pumped organic semiconductor thin films,” J. Appl. Phys.84(8), 4096–4108 (1998).
    [CrossRef]
  22. C. W. Lai, N. Y. Kim, S. Utsunomiya, G. Roumpos, H. Deng, M. D. Fraser, T. Byrnes, P. Recher, N. Kumada, T. Fujisawa, and Y. Yamamoto, “Coherent zero-state and pi-state in an exciton-polariton condensate array.,” Nature450(7169), 529–532 (2007).
    [CrossRef] [PubMed]
  23. V. G. Kozlov, V. Bulović, and S. R. Forrest, “Temperature independent performance of organic semiconductor lasers,” Appl. Phys. Lett.71(18), 2575 (1997).
    [CrossRef]
  24. V. M. Agranovich, D. M. Basko, and G. C. La Rocca, “Efficient optical pumping of organic-inorganic heterostructures for nonlinear optics,” Phys. Rev. B86(16), 165204 (2012).
    [CrossRef]

2012 (2)

M. Slootsky, Y. Zhang, and S. R. Forrest, “Temperature dependence of polariton lasing in a crystalline anthracene microcavity,” Phys. Rev. B86(4), 045312 (2012).
[CrossRef]

V. M. Agranovich, D. M. Basko, and G. C. La Rocca, “Efficient optical pumping of organic-inorganic heterostructures for nonlinear optics,” Phys. Rev. B86(16), 165204 (2012).
[CrossRef]

2011 (1)

D. M. Coles, P. Michetti, C. Clark, W. C. Tsoi, A. M. Adawi, J.-S. Kim, and D. G. Lidzey, “Vibrationally assisted polariton-relaxation processes in strongly coupled organic-semiconductor microcavities,” Adv. Funct. Mater.21(19), 3691–3696 (2011).
[CrossRef]

2010 (6)

M. Bradley and V. Bulović, “Intracavity optical pumping of J-aggregate microcavity exciton polaritons,” Phys. Rev. B82(3), 033305 (2010).
[CrossRef]

G. C. La Rocca, “Organic photonics: polariton lasing,” Nat. Photonics4(6), 343–345 (2010).
[CrossRef]

G. M. Akselrod, Y. R. Tischler, E. R. Young, D. G. Nocera, and V. Bulovic, “Exciton-exciton annihilation in organic polariton microcavities,” Phys. Rev. B82(11), 113106 (2010).
[CrossRef]

S. Kéna-Cohen and S. R. Forrest, “Room-temperature polariton lasing in an organic single-crystal microcavity,” Nat. Photonics4(6), 371–375 (2010).
[CrossRef]

H. Deng, H. Haug, and Y. Yamamoto, “Exciton-polariton Bose-Einstein condensation,” Rev. Mod. Phys.82(2), 1489–1537 (2010).
[CrossRef]

D. Sanvitto, F. M. Marchetti, M. H. Szymańska, G. Tosi, M. Baudisch, F. P. Laussy, D. N. Krizhanovskii, M. S. Skolnick, L. Marrucci, A. Lemaître, J. Bloch, C. Tejedor, and L. Viña, “Persistent currents and quantized vortices in a polariton superfluid,” Nat. Phys.6(7), 527–533 (2010).
[CrossRef]

2008 (2)

K. G. Lagoudakis, M. Wouters, M. Richard, A. Baas, I. Carusotto, R. André, L. S. Dang, and B. Deveaud-Plédran, “Quantized vortices in an exciton–polariton condensate,” Nat. Phys.4(9), 706–710 (2008).
[CrossRef]

P. Michetti and G. La Rocca, “Simulation of J-aggregate microcavity photoluminescence,” Phys. Rev. B77(19), 195301 (2008).
[CrossRef]

2007 (5)

R. Balili, V. Hartwell, D. Snoke, L. Pfeiffer, and K. West, “Bose-Einstein condensation of microcavity polaritons in a trap,” Science316(5827), 1007–1010 (2007).
[CrossRef] [PubMed]

S. Christopoulos, G. B. von Högersthal, A. J. Grundy, P. G. Lagoudakis, A. V. Kavokin, J. J. Baumberg, G. Christmann, R. Butté, E. Feltin, J.-F. Carlin, and N. Grandjean, “Room-temperature polariton lasing in semiconductor microcavities,” Phys. Rev. Lett.98(12), 126405 (2007).
[CrossRef] [PubMed]

J. R. Tischler, M. S. Bradley, Q. Zhang, T. Atay, A. Nurmikko, and V. Bulovic, “Solid state cavity QED: strong coupling in organic thin films,” Org. Electron.8(2-3), 94–113 (2007).
[CrossRef]

C. W. Lai, N. Y. Kim, S. Utsunomiya, G. Roumpos, H. Deng, M. D. Fraser, T. Byrnes, P. Recher, N. Kumada, T. Fujisawa, and Y. Yamamoto, “Coherent zero-state and pi-state in an exciton-polariton condensate array.,” Nature450(7169), 529–532 (2007).
[CrossRef] [PubMed]

I. D. W. Samuel and G. A. Turnbull, “Organic semiconductor lasers,” Chem. Rev.107(4), 1272–1295 (2007).
[CrossRef] [PubMed]

2006 (1)

J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J. M. J. Keeling, F. M. Marchetti, M. H. Szymańska, R. André, J. L. Staehli, V. Savona, P. B. Littlewood, B. Deveaud, and S. Dang, “Bose-Einstein condensation of exciton polaritons,” Nature443(7110), 409–414 (2006).
[CrossRef] [PubMed]

2005 (2)

M. Koschorreck, R. Gehlhaar, V. G. Lyssenko, M. Swoboda, M. Hoffmann, and K. Leo, “Dynamics of a high-Q vertical-cavity organic laser,” Appl. Phys. Lett.87(18), 181108 (2005).
[CrossRef]

M. S. Bradley, J. R. Tischler, and V. Bulovic, “Layer-by-layer J-aggregate thin films with a peak absorption constant of 10(6) cm(−1),” Adv. Mater.17(15), 1881–1886 (2005).
[CrossRef]

1998 (2)

V. Kozlov, V. Bulovic, P. E. Burrows, M. Baldo, V. B. Khalfin, G. Parthasarathy, S. R. Forrest, Y. You, and M. E. Thompson, “Study of lasing action based on Förster energy transfer in optically pumped organic semiconductor thin films,” J. Appl. Phys.84(8), 4096–4108 (1998).
[CrossRef]

D. G. Lidzey, D. D. C. Bradley, M. S. Skolnick, T. Virgili, S. Walker, and D. M. Whittaker, “Strong exciton-photon coupling in an organic semiconductor microcavity,” Nature395(6697), 53–55 (1998).
[CrossRef]

1997 (1)

V. G. Kozlov, V. Bulović, and S. R. Forrest, “Temperature independent performance of organic semiconductor lasers,” Appl. Phys. Lett.71(18), 2575 (1997).
[CrossRef]

1976 (1)

C. E. Swenberg, N. E. Geacintov, and M. Pope, “Bimolecular quenching of excitons and fluorescence in the photosynthetic unit,” Biophys. J.16(12), 1447–1452 (1976).
[CrossRef] [PubMed]

Adawi, A. M.

D. M. Coles, P. Michetti, C. Clark, W. C. Tsoi, A. M. Adawi, J.-S. Kim, and D. G. Lidzey, “Vibrationally assisted polariton-relaxation processes in strongly coupled organic-semiconductor microcavities,” Adv. Funct. Mater.21(19), 3691–3696 (2011).
[CrossRef]

Agranovich, V. M.

V. M. Agranovich, D. M. Basko, and G. C. La Rocca, “Efficient optical pumping of organic-inorganic heterostructures for nonlinear optics,” Phys. Rev. B86(16), 165204 (2012).
[CrossRef]

Akselrod, G. M.

G. M. Akselrod, Y. R. Tischler, E. R. Young, D. G. Nocera, and V. Bulovic, “Exciton-exciton annihilation in organic polariton microcavities,” Phys. Rev. B82(11), 113106 (2010).
[CrossRef]

André, R.

K. G. Lagoudakis, M. Wouters, M. Richard, A. Baas, I. Carusotto, R. André, L. S. Dang, and B. Deveaud-Plédran, “Quantized vortices in an exciton–polariton condensate,” Nat. Phys.4(9), 706–710 (2008).
[CrossRef]

J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J. M. J. Keeling, F. M. Marchetti, M. H. Szymańska, R. André, J. L. Staehli, V. Savona, P. B. Littlewood, B. Deveaud, and S. Dang, “Bose-Einstein condensation of exciton polaritons,” Nature443(7110), 409–414 (2006).
[CrossRef] [PubMed]

Atay, T.

J. R. Tischler, M. S. Bradley, Q. Zhang, T. Atay, A. Nurmikko, and V. Bulovic, “Solid state cavity QED: strong coupling in organic thin films,” Org. Electron.8(2-3), 94–113 (2007).
[CrossRef]

Baas, A.

K. G. Lagoudakis, M. Wouters, M. Richard, A. Baas, I. Carusotto, R. André, L. S. Dang, and B. Deveaud-Plédran, “Quantized vortices in an exciton–polariton condensate,” Nat. Phys.4(9), 706–710 (2008).
[CrossRef]

J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J. M. J. Keeling, F. M. Marchetti, M. H. Szymańska, R. André, J. L. Staehli, V. Savona, P. B. Littlewood, B. Deveaud, and S. Dang, “Bose-Einstein condensation of exciton polaritons,” Nature443(7110), 409–414 (2006).
[CrossRef] [PubMed]

Baldo, M.

V. Kozlov, V. Bulovic, P. E. Burrows, M. Baldo, V. B. Khalfin, G. Parthasarathy, S. R. Forrest, Y. You, and M. E. Thompson, “Study of lasing action based on Förster energy transfer in optically pumped organic semiconductor thin films,” J. Appl. Phys.84(8), 4096–4108 (1998).
[CrossRef]

Balili, R.

R. Balili, V. Hartwell, D. Snoke, L. Pfeiffer, and K. West, “Bose-Einstein condensation of microcavity polaritons in a trap,” Science316(5827), 1007–1010 (2007).
[CrossRef] [PubMed]

Basko, D. M.

V. M. Agranovich, D. M. Basko, and G. C. La Rocca, “Efficient optical pumping of organic-inorganic heterostructures for nonlinear optics,” Phys. Rev. B86(16), 165204 (2012).
[CrossRef]

Baudisch, M.

D. Sanvitto, F. M. Marchetti, M. H. Szymańska, G. Tosi, M. Baudisch, F. P. Laussy, D. N. Krizhanovskii, M. S. Skolnick, L. Marrucci, A. Lemaître, J. Bloch, C. Tejedor, and L. Viña, “Persistent currents and quantized vortices in a polariton superfluid,” Nat. Phys.6(7), 527–533 (2010).
[CrossRef]

Baumberg, J. J.

S. Christopoulos, G. B. von Högersthal, A. J. Grundy, P. G. Lagoudakis, A. V. Kavokin, J. J. Baumberg, G. Christmann, R. Butté, E. Feltin, J.-F. Carlin, and N. Grandjean, “Room-temperature polariton lasing in semiconductor microcavities,” Phys. Rev. Lett.98(12), 126405 (2007).
[CrossRef] [PubMed]

Bloch, J.

D. Sanvitto, F. M. Marchetti, M. H. Szymańska, G. Tosi, M. Baudisch, F. P. Laussy, D. N. Krizhanovskii, M. S. Skolnick, L. Marrucci, A. Lemaître, J. Bloch, C. Tejedor, and L. Viña, “Persistent currents and quantized vortices in a polariton superfluid,” Nat. Phys.6(7), 527–533 (2010).
[CrossRef]

Bradley, D. D. C.

D. G. Lidzey, D. D. C. Bradley, M. S. Skolnick, T. Virgili, S. Walker, and D. M. Whittaker, “Strong exciton-photon coupling in an organic semiconductor microcavity,” Nature395(6697), 53–55 (1998).
[CrossRef]

Bradley, M.

M. Bradley and V. Bulović, “Intracavity optical pumping of J-aggregate microcavity exciton polaritons,” Phys. Rev. B82(3), 033305 (2010).
[CrossRef]

Bradley, M. S.

J. R. Tischler, M. S. Bradley, Q. Zhang, T. Atay, A. Nurmikko, and V. Bulovic, “Solid state cavity QED: strong coupling in organic thin films,” Org. Electron.8(2-3), 94–113 (2007).
[CrossRef]

M. S. Bradley, J. R. Tischler, and V. Bulovic, “Layer-by-layer J-aggregate thin films with a peak absorption constant of 10(6) cm(−1),” Adv. Mater.17(15), 1881–1886 (2005).
[CrossRef]

Bulovic, V.

G. M. Akselrod, Y. R. Tischler, E. R. Young, D. G. Nocera, and V. Bulovic, “Exciton-exciton annihilation in organic polariton microcavities,” Phys. Rev. B82(11), 113106 (2010).
[CrossRef]

M. Bradley and V. Bulović, “Intracavity optical pumping of J-aggregate microcavity exciton polaritons,” Phys. Rev. B82(3), 033305 (2010).
[CrossRef]

J. R. Tischler, M. S. Bradley, Q. Zhang, T. Atay, A. Nurmikko, and V. Bulovic, “Solid state cavity QED: strong coupling in organic thin films,” Org. Electron.8(2-3), 94–113 (2007).
[CrossRef]

M. S. Bradley, J. R. Tischler, and V. Bulovic, “Layer-by-layer J-aggregate thin films with a peak absorption constant of 10(6) cm(−1),” Adv. Mater.17(15), 1881–1886 (2005).
[CrossRef]

V. Kozlov, V. Bulovic, P. E. Burrows, M. Baldo, V. B. Khalfin, G. Parthasarathy, S. R. Forrest, Y. You, and M. E. Thompson, “Study of lasing action based on Förster energy transfer in optically pumped organic semiconductor thin films,” J. Appl. Phys.84(8), 4096–4108 (1998).
[CrossRef]

V. G. Kozlov, V. Bulović, and S. R. Forrest, “Temperature independent performance of organic semiconductor lasers,” Appl. Phys. Lett.71(18), 2575 (1997).
[CrossRef]

Burrows, P. E.

V. Kozlov, V. Bulovic, P. E. Burrows, M. Baldo, V. B. Khalfin, G. Parthasarathy, S. R. Forrest, Y. You, and M. E. Thompson, “Study of lasing action based on Förster energy transfer in optically pumped organic semiconductor thin films,” J. Appl. Phys.84(8), 4096–4108 (1998).
[CrossRef]

Butté, R.

S. Christopoulos, G. B. von Högersthal, A. J. Grundy, P. G. Lagoudakis, A. V. Kavokin, J. J. Baumberg, G. Christmann, R. Butté, E. Feltin, J.-F. Carlin, and N. Grandjean, “Room-temperature polariton lasing in semiconductor microcavities,” Phys. Rev. Lett.98(12), 126405 (2007).
[CrossRef] [PubMed]

Byrnes, T.

C. W. Lai, N. Y. Kim, S. Utsunomiya, G. Roumpos, H. Deng, M. D. Fraser, T. Byrnes, P. Recher, N. Kumada, T. Fujisawa, and Y. Yamamoto, “Coherent zero-state and pi-state in an exciton-polariton condensate array.,” Nature450(7169), 529–532 (2007).
[CrossRef] [PubMed]

Carlin, J.-F.

S. Christopoulos, G. B. von Högersthal, A. J. Grundy, P. G. Lagoudakis, A. V. Kavokin, J. J. Baumberg, G. Christmann, R. Butté, E. Feltin, J.-F. Carlin, and N. Grandjean, “Room-temperature polariton lasing in semiconductor microcavities,” Phys. Rev. Lett.98(12), 126405 (2007).
[CrossRef] [PubMed]

Carusotto, I.

K. G. Lagoudakis, M. Wouters, M. Richard, A. Baas, I. Carusotto, R. André, L. S. Dang, and B. Deveaud-Plédran, “Quantized vortices in an exciton–polariton condensate,” Nat. Phys.4(9), 706–710 (2008).
[CrossRef]

Christmann, G.

S. Christopoulos, G. B. von Högersthal, A. J. Grundy, P. G. Lagoudakis, A. V. Kavokin, J. J. Baumberg, G. Christmann, R. Butté, E. Feltin, J.-F. Carlin, and N. Grandjean, “Room-temperature polariton lasing in semiconductor microcavities,” Phys. Rev. Lett.98(12), 126405 (2007).
[CrossRef] [PubMed]

Christopoulos, S.

S. Christopoulos, G. B. von Högersthal, A. J. Grundy, P. G. Lagoudakis, A. V. Kavokin, J. J. Baumberg, G. Christmann, R. Butté, E. Feltin, J.-F. Carlin, and N. Grandjean, “Room-temperature polariton lasing in semiconductor microcavities,” Phys. Rev. Lett.98(12), 126405 (2007).
[CrossRef] [PubMed]

Clark, C.

D. M. Coles, P. Michetti, C. Clark, W. C. Tsoi, A. M. Adawi, J.-S. Kim, and D. G. Lidzey, “Vibrationally assisted polariton-relaxation processes in strongly coupled organic-semiconductor microcavities,” Adv. Funct. Mater.21(19), 3691–3696 (2011).
[CrossRef]

Coles, D. M.

D. M. Coles, P. Michetti, C. Clark, W. C. Tsoi, A. M. Adawi, J.-S. Kim, and D. G. Lidzey, “Vibrationally assisted polariton-relaxation processes in strongly coupled organic-semiconductor microcavities,” Adv. Funct. Mater.21(19), 3691–3696 (2011).
[CrossRef]

Dang, L. S.

K. G. Lagoudakis, M. Wouters, M. Richard, A. Baas, I. Carusotto, R. André, L. S. Dang, and B. Deveaud-Plédran, “Quantized vortices in an exciton–polariton condensate,” Nat. Phys.4(9), 706–710 (2008).
[CrossRef]

Dang, S.

J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J. M. J. Keeling, F. M. Marchetti, M. H. Szymańska, R. André, J. L. Staehli, V. Savona, P. B. Littlewood, B. Deveaud, and S. Dang, “Bose-Einstein condensation of exciton polaritons,” Nature443(7110), 409–414 (2006).
[CrossRef] [PubMed]

Deng, H.

H. Deng, H. Haug, and Y. Yamamoto, “Exciton-polariton Bose-Einstein condensation,” Rev. Mod. Phys.82(2), 1489–1537 (2010).
[CrossRef]

C. W. Lai, N. Y. Kim, S. Utsunomiya, G. Roumpos, H. Deng, M. D. Fraser, T. Byrnes, P. Recher, N. Kumada, T. Fujisawa, and Y. Yamamoto, “Coherent zero-state and pi-state in an exciton-polariton condensate array.,” Nature450(7169), 529–532 (2007).
[CrossRef] [PubMed]

Deveaud, B.

J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J. M. J. Keeling, F. M. Marchetti, M. H. Szymańska, R. André, J. L. Staehli, V. Savona, P. B. Littlewood, B. Deveaud, and S. Dang, “Bose-Einstein condensation of exciton polaritons,” Nature443(7110), 409–414 (2006).
[CrossRef] [PubMed]

Deveaud-Plédran, B.

K. G. Lagoudakis, M. Wouters, M. Richard, A. Baas, I. Carusotto, R. André, L. S. Dang, and B. Deveaud-Plédran, “Quantized vortices in an exciton–polariton condensate,” Nat. Phys.4(9), 706–710 (2008).
[CrossRef]

Feltin, E.

S. Christopoulos, G. B. von Högersthal, A. J. Grundy, P. G. Lagoudakis, A. V. Kavokin, J. J. Baumberg, G. Christmann, R. Butté, E. Feltin, J.-F. Carlin, and N. Grandjean, “Room-temperature polariton lasing in semiconductor microcavities,” Phys. Rev. Lett.98(12), 126405 (2007).
[CrossRef] [PubMed]

Forrest, S. R.

M. Slootsky, Y. Zhang, and S. R. Forrest, “Temperature dependence of polariton lasing in a crystalline anthracene microcavity,” Phys. Rev. B86(4), 045312 (2012).
[CrossRef]

S. Kéna-Cohen and S. R. Forrest, “Room-temperature polariton lasing in an organic single-crystal microcavity,” Nat. Photonics4(6), 371–375 (2010).
[CrossRef]

V. Kozlov, V. Bulovic, P. E. Burrows, M. Baldo, V. B. Khalfin, G. Parthasarathy, S. R. Forrest, Y. You, and M. E. Thompson, “Study of lasing action based on Förster energy transfer in optically pumped organic semiconductor thin films,” J. Appl. Phys.84(8), 4096–4108 (1998).
[CrossRef]

V. G. Kozlov, V. Bulović, and S. R. Forrest, “Temperature independent performance of organic semiconductor lasers,” Appl. Phys. Lett.71(18), 2575 (1997).
[CrossRef]

Fraser, M. D.

C. W. Lai, N. Y. Kim, S. Utsunomiya, G. Roumpos, H. Deng, M. D. Fraser, T. Byrnes, P. Recher, N. Kumada, T. Fujisawa, and Y. Yamamoto, “Coherent zero-state and pi-state in an exciton-polariton condensate array.,” Nature450(7169), 529–532 (2007).
[CrossRef] [PubMed]

Fujisawa, T.

C. W. Lai, N. Y. Kim, S. Utsunomiya, G. Roumpos, H. Deng, M. D. Fraser, T. Byrnes, P. Recher, N. Kumada, T. Fujisawa, and Y. Yamamoto, “Coherent zero-state and pi-state in an exciton-polariton condensate array.,” Nature450(7169), 529–532 (2007).
[CrossRef] [PubMed]

Geacintov, N. E.

C. E. Swenberg, N. E. Geacintov, and M. Pope, “Bimolecular quenching of excitons and fluorescence in the photosynthetic unit,” Biophys. J.16(12), 1447–1452 (1976).
[CrossRef] [PubMed]

Gehlhaar, R.

M. Koschorreck, R. Gehlhaar, V. G. Lyssenko, M. Swoboda, M. Hoffmann, and K. Leo, “Dynamics of a high-Q vertical-cavity organic laser,” Appl. Phys. Lett.87(18), 181108 (2005).
[CrossRef]

Grandjean, N.

S. Christopoulos, G. B. von Högersthal, A. J. Grundy, P. G. Lagoudakis, A. V. Kavokin, J. J. Baumberg, G. Christmann, R. Butté, E. Feltin, J.-F. Carlin, and N. Grandjean, “Room-temperature polariton lasing in semiconductor microcavities,” Phys. Rev. Lett.98(12), 126405 (2007).
[CrossRef] [PubMed]

Grundy, A. J.

S. Christopoulos, G. B. von Högersthal, A. J. Grundy, P. G. Lagoudakis, A. V. Kavokin, J. J. Baumberg, G. Christmann, R. Butté, E. Feltin, J.-F. Carlin, and N. Grandjean, “Room-temperature polariton lasing in semiconductor microcavities,” Phys. Rev. Lett.98(12), 126405 (2007).
[CrossRef] [PubMed]

Hartwell, V.

R. Balili, V. Hartwell, D. Snoke, L. Pfeiffer, and K. West, “Bose-Einstein condensation of microcavity polaritons in a trap,” Science316(5827), 1007–1010 (2007).
[CrossRef] [PubMed]

Haug, H.

H. Deng, H. Haug, and Y. Yamamoto, “Exciton-polariton Bose-Einstein condensation,” Rev. Mod. Phys.82(2), 1489–1537 (2010).
[CrossRef]

Hoffmann, M.

M. Koschorreck, R. Gehlhaar, V. G. Lyssenko, M. Swoboda, M. Hoffmann, and K. Leo, “Dynamics of a high-Q vertical-cavity organic laser,” Appl. Phys. Lett.87(18), 181108 (2005).
[CrossRef]

Jeambrun, P.

J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J. M. J. Keeling, F. M. Marchetti, M. H. Szymańska, R. André, J. L. Staehli, V. Savona, P. B. Littlewood, B. Deveaud, and S. Dang, “Bose-Einstein condensation of exciton polaritons,” Nature443(7110), 409–414 (2006).
[CrossRef] [PubMed]

Kasprzak, J.

J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J. M. J. Keeling, F. M. Marchetti, M. H. Szymańska, R. André, J. L. Staehli, V. Savona, P. B. Littlewood, B. Deveaud, and S. Dang, “Bose-Einstein condensation of exciton polaritons,” Nature443(7110), 409–414 (2006).
[CrossRef] [PubMed]

Kavokin, A. V.

S. Christopoulos, G. B. von Högersthal, A. J. Grundy, P. G. Lagoudakis, A. V. Kavokin, J. J. Baumberg, G. Christmann, R. Butté, E. Feltin, J.-F. Carlin, and N. Grandjean, “Room-temperature polariton lasing in semiconductor microcavities,” Phys. Rev. Lett.98(12), 126405 (2007).
[CrossRef] [PubMed]

Keeling, J. M. J.

J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J. M. J. Keeling, F. M. Marchetti, M. H. Szymańska, R. André, J. L. Staehli, V. Savona, P. B. Littlewood, B. Deveaud, and S. Dang, “Bose-Einstein condensation of exciton polaritons,” Nature443(7110), 409–414 (2006).
[CrossRef] [PubMed]

Kéna-Cohen, S.

S. Kéna-Cohen and S. R. Forrest, “Room-temperature polariton lasing in an organic single-crystal microcavity,” Nat. Photonics4(6), 371–375 (2010).
[CrossRef]

Khalfin, V. B.

V. Kozlov, V. Bulovic, P. E. Burrows, M. Baldo, V. B. Khalfin, G. Parthasarathy, S. R. Forrest, Y. You, and M. E. Thompson, “Study of lasing action based on Förster energy transfer in optically pumped organic semiconductor thin films,” J. Appl. Phys.84(8), 4096–4108 (1998).
[CrossRef]

Kim, J.-S.

D. M. Coles, P. Michetti, C. Clark, W. C. Tsoi, A. M. Adawi, J.-S. Kim, and D. G. Lidzey, “Vibrationally assisted polariton-relaxation processes in strongly coupled organic-semiconductor microcavities,” Adv. Funct. Mater.21(19), 3691–3696 (2011).
[CrossRef]

Kim, N. Y.

C. W. Lai, N. Y. Kim, S. Utsunomiya, G. Roumpos, H. Deng, M. D. Fraser, T. Byrnes, P. Recher, N. Kumada, T. Fujisawa, and Y. Yamamoto, “Coherent zero-state and pi-state in an exciton-polariton condensate array.,” Nature450(7169), 529–532 (2007).
[CrossRef] [PubMed]

Koschorreck, M.

M. Koschorreck, R. Gehlhaar, V. G. Lyssenko, M. Swoboda, M. Hoffmann, and K. Leo, “Dynamics of a high-Q vertical-cavity organic laser,” Appl. Phys. Lett.87(18), 181108 (2005).
[CrossRef]

Kozlov, V.

V. Kozlov, V. Bulovic, P. E. Burrows, M. Baldo, V. B. Khalfin, G. Parthasarathy, S. R. Forrest, Y. You, and M. E. Thompson, “Study of lasing action based on Förster energy transfer in optically pumped organic semiconductor thin films,” J. Appl. Phys.84(8), 4096–4108 (1998).
[CrossRef]

Kozlov, V. G.

V. G. Kozlov, V. Bulović, and S. R. Forrest, “Temperature independent performance of organic semiconductor lasers,” Appl. Phys. Lett.71(18), 2575 (1997).
[CrossRef]

Krizhanovskii, D. N.

D. Sanvitto, F. M. Marchetti, M. H. Szymańska, G. Tosi, M. Baudisch, F. P. Laussy, D. N. Krizhanovskii, M. S. Skolnick, L. Marrucci, A. Lemaître, J. Bloch, C. Tejedor, and L. Viña, “Persistent currents and quantized vortices in a polariton superfluid,” Nat. Phys.6(7), 527–533 (2010).
[CrossRef]

Kumada, N.

C. W. Lai, N. Y. Kim, S. Utsunomiya, G. Roumpos, H. Deng, M. D. Fraser, T. Byrnes, P. Recher, N. Kumada, T. Fujisawa, and Y. Yamamoto, “Coherent zero-state and pi-state in an exciton-polariton condensate array.,” Nature450(7169), 529–532 (2007).
[CrossRef] [PubMed]

Kundermann, S.

J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J. M. J. Keeling, F. M. Marchetti, M. H. Szymańska, R. André, J. L. Staehli, V. Savona, P. B. Littlewood, B. Deveaud, and S. Dang, “Bose-Einstein condensation of exciton polaritons,” Nature443(7110), 409–414 (2006).
[CrossRef] [PubMed]

La Rocca, G.

P. Michetti and G. La Rocca, “Simulation of J-aggregate microcavity photoluminescence,” Phys. Rev. B77(19), 195301 (2008).
[CrossRef]

La Rocca, G. C.

V. M. Agranovich, D. M. Basko, and G. C. La Rocca, “Efficient optical pumping of organic-inorganic heterostructures for nonlinear optics,” Phys. Rev. B86(16), 165204 (2012).
[CrossRef]

G. C. La Rocca, “Organic photonics: polariton lasing,” Nat. Photonics4(6), 343–345 (2010).
[CrossRef]

Lagoudakis, K. G.

K. G. Lagoudakis, M. Wouters, M. Richard, A. Baas, I. Carusotto, R. André, L. S. Dang, and B. Deveaud-Plédran, “Quantized vortices in an exciton–polariton condensate,” Nat. Phys.4(9), 706–710 (2008).
[CrossRef]

Lagoudakis, P. G.

S. Christopoulos, G. B. von Högersthal, A. J. Grundy, P. G. Lagoudakis, A. V. Kavokin, J. J. Baumberg, G. Christmann, R. Butté, E. Feltin, J.-F. Carlin, and N. Grandjean, “Room-temperature polariton lasing in semiconductor microcavities,” Phys. Rev. Lett.98(12), 126405 (2007).
[CrossRef] [PubMed]

Lai, C. W.

C. W. Lai, N. Y. Kim, S. Utsunomiya, G. Roumpos, H. Deng, M. D. Fraser, T. Byrnes, P. Recher, N. Kumada, T. Fujisawa, and Y. Yamamoto, “Coherent zero-state and pi-state in an exciton-polariton condensate array.,” Nature450(7169), 529–532 (2007).
[CrossRef] [PubMed]

Laussy, F. P.

D. Sanvitto, F. M. Marchetti, M. H. Szymańska, G. Tosi, M. Baudisch, F. P. Laussy, D. N. Krizhanovskii, M. S. Skolnick, L. Marrucci, A. Lemaître, J. Bloch, C. Tejedor, and L. Viña, “Persistent currents and quantized vortices in a polariton superfluid,” Nat. Phys.6(7), 527–533 (2010).
[CrossRef]

Lemaître, A.

D. Sanvitto, F. M. Marchetti, M. H. Szymańska, G. Tosi, M. Baudisch, F. P. Laussy, D. N. Krizhanovskii, M. S. Skolnick, L. Marrucci, A. Lemaître, J. Bloch, C. Tejedor, and L. Viña, “Persistent currents and quantized vortices in a polariton superfluid,” Nat. Phys.6(7), 527–533 (2010).
[CrossRef]

Leo, K.

M. Koschorreck, R. Gehlhaar, V. G. Lyssenko, M. Swoboda, M. Hoffmann, and K. Leo, “Dynamics of a high-Q vertical-cavity organic laser,” Appl. Phys. Lett.87(18), 181108 (2005).
[CrossRef]

Lidzey, D. G.

D. M. Coles, P. Michetti, C. Clark, W. C. Tsoi, A. M. Adawi, J.-S. Kim, and D. G. Lidzey, “Vibrationally assisted polariton-relaxation processes in strongly coupled organic-semiconductor microcavities,” Adv. Funct. Mater.21(19), 3691–3696 (2011).
[CrossRef]

D. G. Lidzey, D. D. C. Bradley, M. S. Skolnick, T. Virgili, S. Walker, and D. M. Whittaker, “Strong exciton-photon coupling in an organic semiconductor microcavity,” Nature395(6697), 53–55 (1998).
[CrossRef]

Littlewood, P. B.

J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J. M. J. Keeling, F. M. Marchetti, M. H. Szymańska, R. André, J. L. Staehli, V. Savona, P. B. Littlewood, B. Deveaud, and S. Dang, “Bose-Einstein condensation of exciton polaritons,” Nature443(7110), 409–414 (2006).
[CrossRef] [PubMed]

Lyssenko, V. G.

M. Koschorreck, R. Gehlhaar, V. G. Lyssenko, M. Swoboda, M. Hoffmann, and K. Leo, “Dynamics of a high-Q vertical-cavity organic laser,” Appl. Phys. Lett.87(18), 181108 (2005).
[CrossRef]

Marchetti, F. M.

D. Sanvitto, F. M. Marchetti, M. H. Szymańska, G. Tosi, M. Baudisch, F. P. Laussy, D. N. Krizhanovskii, M. S. Skolnick, L. Marrucci, A. Lemaître, J. Bloch, C. Tejedor, and L. Viña, “Persistent currents and quantized vortices in a polariton superfluid,” Nat. Phys.6(7), 527–533 (2010).
[CrossRef]

J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J. M. J. Keeling, F. M. Marchetti, M. H. Szymańska, R. André, J. L. Staehli, V. Savona, P. B. Littlewood, B. Deveaud, and S. Dang, “Bose-Einstein condensation of exciton polaritons,” Nature443(7110), 409–414 (2006).
[CrossRef] [PubMed]

Marrucci, L.

D. Sanvitto, F. M. Marchetti, M. H. Szymańska, G. Tosi, M. Baudisch, F. P. Laussy, D. N. Krizhanovskii, M. S. Skolnick, L. Marrucci, A. Lemaître, J. Bloch, C. Tejedor, and L. Viña, “Persistent currents and quantized vortices in a polariton superfluid,” Nat. Phys.6(7), 527–533 (2010).
[CrossRef]

Michetti, P.

D. M. Coles, P. Michetti, C. Clark, W. C. Tsoi, A. M. Adawi, J.-S. Kim, and D. G. Lidzey, “Vibrationally assisted polariton-relaxation processes in strongly coupled organic-semiconductor microcavities,” Adv. Funct. Mater.21(19), 3691–3696 (2011).
[CrossRef]

P. Michetti and G. La Rocca, “Simulation of J-aggregate microcavity photoluminescence,” Phys. Rev. B77(19), 195301 (2008).
[CrossRef]

Nocera, D. G.

G. M. Akselrod, Y. R. Tischler, E. R. Young, D. G. Nocera, and V. Bulovic, “Exciton-exciton annihilation in organic polariton microcavities,” Phys. Rev. B82(11), 113106 (2010).
[CrossRef]

Nurmikko, A.

J. R. Tischler, M. S. Bradley, Q. Zhang, T. Atay, A. Nurmikko, and V. Bulovic, “Solid state cavity QED: strong coupling in organic thin films,” Org. Electron.8(2-3), 94–113 (2007).
[CrossRef]

Parthasarathy, G.

V. Kozlov, V. Bulovic, P. E. Burrows, M. Baldo, V. B. Khalfin, G. Parthasarathy, S. R. Forrest, Y. You, and M. E. Thompson, “Study of lasing action based on Förster energy transfer in optically pumped organic semiconductor thin films,” J. Appl. Phys.84(8), 4096–4108 (1998).
[CrossRef]

Pfeiffer, L.

R. Balili, V. Hartwell, D. Snoke, L. Pfeiffer, and K. West, “Bose-Einstein condensation of microcavity polaritons in a trap,” Science316(5827), 1007–1010 (2007).
[CrossRef] [PubMed]

Pope, M.

C. E. Swenberg, N. E. Geacintov, and M. Pope, “Bimolecular quenching of excitons and fluorescence in the photosynthetic unit,” Biophys. J.16(12), 1447–1452 (1976).
[CrossRef] [PubMed]

Recher, P.

C. W. Lai, N. Y. Kim, S. Utsunomiya, G. Roumpos, H. Deng, M. D. Fraser, T. Byrnes, P. Recher, N. Kumada, T. Fujisawa, and Y. Yamamoto, “Coherent zero-state and pi-state in an exciton-polariton condensate array.,” Nature450(7169), 529–532 (2007).
[CrossRef] [PubMed]

Richard, M.

K. G. Lagoudakis, M. Wouters, M. Richard, A. Baas, I. Carusotto, R. André, L. S. Dang, and B. Deveaud-Plédran, “Quantized vortices in an exciton–polariton condensate,” Nat. Phys.4(9), 706–710 (2008).
[CrossRef]

J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J. M. J. Keeling, F. M. Marchetti, M. H. Szymańska, R. André, J. L. Staehli, V. Savona, P. B. Littlewood, B. Deveaud, and S. Dang, “Bose-Einstein condensation of exciton polaritons,” Nature443(7110), 409–414 (2006).
[CrossRef] [PubMed]

Roumpos, G.

C. W. Lai, N. Y. Kim, S. Utsunomiya, G. Roumpos, H. Deng, M. D. Fraser, T. Byrnes, P. Recher, N. Kumada, T. Fujisawa, and Y. Yamamoto, “Coherent zero-state and pi-state in an exciton-polariton condensate array.,” Nature450(7169), 529–532 (2007).
[CrossRef] [PubMed]

Samuel, I. D. W.

I. D. W. Samuel and G. A. Turnbull, “Organic semiconductor lasers,” Chem. Rev.107(4), 1272–1295 (2007).
[CrossRef] [PubMed]

Sanvitto, D.

D. Sanvitto, F. M. Marchetti, M. H. Szymańska, G. Tosi, M. Baudisch, F. P. Laussy, D. N. Krizhanovskii, M. S. Skolnick, L. Marrucci, A. Lemaître, J. Bloch, C. Tejedor, and L. Viña, “Persistent currents and quantized vortices in a polariton superfluid,” Nat. Phys.6(7), 527–533 (2010).
[CrossRef]

Savona, V.

J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J. M. J. Keeling, F. M. Marchetti, M. H. Szymańska, R. André, J. L. Staehli, V. Savona, P. B. Littlewood, B. Deveaud, and S. Dang, “Bose-Einstein condensation of exciton polaritons,” Nature443(7110), 409–414 (2006).
[CrossRef] [PubMed]

Skolnick, M. S.

D. Sanvitto, F. M. Marchetti, M. H. Szymańska, G. Tosi, M. Baudisch, F. P. Laussy, D. N. Krizhanovskii, M. S. Skolnick, L. Marrucci, A. Lemaître, J. Bloch, C. Tejedor, and L. Viña, “Persistent currents and quantized vortices in a polariton superfluid,” Nat. Phys.6(7), 527–533 (2010).
[CrossRef]

D. G. Lidzey, D. D. C. Bradley, M. S. Skolnick, T. Virgili, S. Walker, and D. M. Whittaker, “Strong exciton-photon coupling in an organic semiconductor microcavity,” Nature395(6697), 53–55 (1998).
[CrossRef]

Slootsky, M.

M. Slootsky, Y. Zhang, and S. R. Forrest, “Temperature dependence of polariton lasing in a crystalline anthracene microcavity,” Phys. Rev. B86(4), 045312 (2012).
[CrossRef]

Snoke, D.

R. Balili, V. Hartwell, D. Snoke, L. Pfeiffer, and K. West, “Bose-Einstein condensation of microcavity polaritons in a trap,” Science316(5827), 1007–1010 (2007).
[CrossRef] [PubMed]

Staehli, J. L.

J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J. M. J. Keeling, F. M. Marchetti, M. H. Szymańska, R. André, J. L. Staehli, V. Savona, P. B. Littlewood, B. Deveaud, and S. Dang, “Bose-Einstein condensation of exciton polaritons,” Nature443(7110), 409–414 (2006).
[CrossRef] [PubMed]

Swenberg, C. E.

C. E. Swenberg, N. E. Geacintov, and M. Pope, “Bimolecular quenching of excitons and fluorescence in the photosynthetic unit,” Biophys. J.16(12), 1447–1452 (1976).
[CrossRef] [PubMed]

Swoboda, M.

M. Koschorreck, R. Gehlhaar, V. G. Lyssenko, M. Swoboda, M. Hoffmann, and K. Leo, “Dynamics of a high-Q vertical-cavity organic laser,” Appl. Phys. Lett.87(18), 181108 (2005).
[CrossRef]

Szymanska, M. H.

D. Sanvitto, F. M. Marchetti, M. H. Szymańska, G. Tosi, M. Baudisch, F. P. Laussy, D. N. Krizhanovskii, M. S. Skolnick, L. Marrucci, A. Lemaître, J. Bloch, C. Tejedor, and L. Viña, “Persistent currents and quantized vortices in a polariton superfluid,” Nat. Phys.6(7), 527–533 (2010).
[CrossRef]

J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J. M. J. Keeling, F. M. Marchetti, M. H. Szymańska, R. André, J. L. Staehli, V. Savona, P. B. Littlewood, B. Deveaud, and S. Dang, “Bose-Einstein condensation of exciton polaritons,” Nature443(7110), 409–414 (2006).
[CrossRef] [PubMed]

Tejedor, C.

D. Sanvitto, F. M. Marchetti, M. H. Szymańska, G. Tosi, M. Baudisch, F. P. Laussy, D. N. Krizhanovskii, M. S. Skolnick, L. Marrucci, A. Lemaître, J. Bloch, C. Tejedor, and L. Viña, “Persistent currents and quantized vortices in a polariton superfluid,” Nat. Phys.6(7), 527–533 (2010).
[CrossRef]

Thompson, M. E.

V. Kozlov, V. Bulovic, P. E. Burrows, M. Baldo, V. B. Khalfin, G. Parthasarathy, S. R. Forrest, Y. You, and M. E. Thompson, “Study of lasing action based on Förster energy transfer in optically pumped organic semiconductor thin films,” J. Appl. Phys.84(8), 4096–4108 (1998).
[CrossRef]

Tischler, J. R.

J. R. Tischler, M. S. Bradley, Q. Zhang, T. Atay, A. Nurmikko, and V. Bulovic, “Solid state cavity QED: strong coupling in organic thin films,” Org. Electron.8(2-3), 94–113 (2007).
[CrossRef]

M. S. Bradley, J. R. Tischler, and V. Bulovic, “Layer-by-layer J-aggregate thin films with a peak absorption constant of 10(6) cm(−1),” Adv. Mater.17(15), 1881–1886 (2005).
[CrossRef]

Tischler, Y. R.

G. M. Akselrod, Y. R. Tischler, E. R. Young, D. G. Nocera, and V. Bulovic, “Exciton-exciton annihilation in organic polariton microcavities,” Phys. Rev. B82(11), 113106 (2010).
[CrossRef]

Tosi, G.

D. Sanvitto, F. M. Marchetti, M. H. Szymańska, G. Tosi, M. Baudisch, F. P. Laussy, D. N. Krizhanovskii, M. S. Skolnick, L. Marrucci, A. Lemaître, J. Bloch, C. Tejedor, and L. Viña, “Persistent currents and quantized vortices in a polariton superfluid,” Nat. Phys.6(7), 527–533 (2010).
[CrossRef]

Tsoi, W. C.

D. M. Coles, P. Michetti, C. Clark, W. C. Tsoi, A. M. Adawi, J.-S. Kim, and D. G. Lidzey, “Vibrationally assisted polariton-relaxation processes in strongly coupled organic-semiconductor microcavities,” Adv. Funct. Mater.21(19), 3691–3696 (2011).
[CrossRef]

Turnbull, G. A.

I. D. W. Samuel and G. A. Turnbull, “Organic semiconductor lasers,” Chem. Rev.107(4), 1272–1295 (2007).
[CrossRef] [PubMed]

Utsunomiya, S.

C. W. Lai, N. Y. Kim, S. Utsunomiya, G. Roumpos, H. Deng, M. D. Fraser, T. Byrnes, P. Recher, N. Kumada, T. Fujisawa, and Y. Yamamoto, “Coherent zero-state and pi-state in an exciton-polariton condensate array.,” Nature450(7169), 529–532 (2007).
[CrossRef] [PubMed]

Viña, L.

D. Sanvitto, F. M. Marchetti, M. H. Szymańska, G. Tosi, M. Baudisch, F. P. Laussy, D. N. Krizhanovskii, M. S. Skolnick, L. Marrucci, A. Lemaître, J. Bloch, C. Tejedor, and L. Viña, “Persistent currents and quantized vortices in a polariton superfluid,” Nat. Phys.6(7), 527–533 (2010).
[CrossRef]

Virgili, T.

D. G. Lidzey, D. D. C. Bradley, M. S. Skolnick, T. Virgili, S. Walker, and D. M. Whittaker, “Strong exciton-photon coupling in an organic semiconductor microcavity,” Nature395(6697), 53–55 (1998).
[CrossRef]

von Högersthal, G. B.

S. Christopoulos, G. B. von Högersthal, A. J. Grundy, P. G. Lagoudakis, A. V. Kavokin, J. J. Baumberg, G. Christmann, R. Butté, E. Feltin, J.-F. Carlin, and N. Grandjean, “Room-temperature polariton lasing in semiconductor microcavities,” Phys. Rev. Lett.98(12), 126405 (2007).
[CrossRef] [PubMed]

Walker, S.

D. G. Lidzey, D. D. C. Bradley, M. S. Skolnick, T. Virgili, S. Walker, and D. M. Whittaker, “Strong exciton-photon coupling in an organic semiconductor microcavity,” Nature395(6697), 53–55 (1998).
[CrossRef]

West, K.

R. Balili, V. Hartwell, D. Snoke, L. Pfeiffer, and K. West, “Bose-Einstein condensation of microcavity polaritons in a trap,” Science316(5827), 1007–1010 (2007).
[CrossRef] [PubMed]

Whittaker, D. M.

D. G. Lidzey, D. D. C. Bradley, M. S. Skolnick, T. Virgili, S. Walker, and D. M. Whittaker, “Strong exciton-photon coupling in an organic semiconductor microcavity,” Nature395(6697), 53–55 (1998).
[CrossRef]

Wouters, M.

K. G. Lagoudakis, M. Wouters, M. Richard, A. Baas, I. Carusotto, R. André, L. S. Dang, and B. Deveaud-Plédran, “Quantized vortices in an exciton–polariton condensate,” Nat. Phys.4(9), 706–710 (2008).
[CrossRef]

Yamamoto, Y.

H. Deng, H. Haug, and Y. Yamamoto, “Exciton-polariton Bose-Einstein condensation,” Rev. Mod. Phys.82(2), 1489–1537 (2010).
[CrossRef]

C. W. Lai, N. Y. Kim, S. Utsunomiya, G. Roumpos, H. Deng, M. D. Fraser, T. Byrnes, P. Recher, N. Kumada, T. Fujisawa, and Y. Yamamoto, “Coherent zero-state and pi-state in an exciton-polariton condensate array.,” Nature450(7169), 529–532 (2007).
[CrossRef] [PubMed]

You, Y.

V. Kozlov, V. Bulovic, P. E. Burrows, M. Baldo, V. B. Khalfin, G. Parthasarathy, S. R. Forrest, Y. You, and M. E. Thompson, “Study of lasing action based on Förster energy transfer in optically pumped organic semiconductor thin films,” J. Appl. Phys.84(8), 4096–4108 (1998).
[CrossRef]

Young, E. R.

G. M. Akselrod, Y. R. Tischler, E. R. Young, D. G. Nocera, and V. Bulovic, “Exciton-exciton annihilation in organic polariton microcavities,” Phys. Rev. B82(11), 113106 (2010).
[CrossRef]

Zhang, Q.

J. R. Tischler, M. S. Bradley, Q. Zhang, T. Atay, A. Nurmikko, and V. Bulovic, “Solid state cavity QED: strong coupling in organic thin films,” Org. Electron.8(2-3), 94–113 (2007).
[CrossRef]

Zhang, Y.

M. Slootsky, Y. Zhang, and S. R. Forrest, “Temperature dependence of polariton lasing in a crystalline anthracene microcavity,” Phys. Rev. B86(4), 045312 (2012).
[CrossRef]

Adv. Funct. Mater. (1)

D. M. Coles, P. Michetti, C. Clark, W. C. Tsoi, A. M. Adawi, J.-S. Kim, and D. G. Lidzey, “Vibrationally assisted polariton-relaxation processes in strongly coupled organic-semiconductor microcavities,” Adv. Funct. Mater.21(19), 3691–3696 (2011).
[CrossRef]

Adv. Mater. (1)

M. S. Bradley, J. R. Tischler, and V. Bulovic, “Layer-by-layer J-aggregate thin films with a peak absorption constant of 10(6) cm(−1),” Adv. Mater.17(15), 1881–1886 (2005).
[CrossRef]

Appl. Phys. Lett. (2)

V. G. Kozlov, V. Bulović, and S. R. Forrest, “Temperature independent performance of organic semiconductor lasers,” Appl. Phys. Lett.71(18), 2575 (1997).
[CrossRef]

M. Koschorreck, R. Gehlhaar, V. G. Lyssenko, M. Swoboda, M. Hoffmann, and K. Leo, “Dynamics of a high-Q vertical-cavity organic laser,” Appl. Phys. Lett.87(18), 181108 (2005).
[CrossRef]

Biophys. J. (1)

C. E. Swenberg, N. E. Geacintov, and M. Pope, “Bimolecular quenching of excitons and fluorescence in the photosynthetic unit,” Biophys. J.16(12), 1447–1452 (1976).
[CrossRef] [PubMed]

Chem. Rev. (1)

I. D. W. Samuel and G. A. Turnbull, “Organic semiconductor lasers,” Chem. Rev.107(4), 1272–1295 (2007).
[CrossRef] [PubMed]

J. Appl. Phys. (1)

V. Kozlov, V. Bulovic, P. E. Burrows, M. Baldo, V. B. Khalfin, G. Parthasarathy, S. R. Forrest, Y. You, and M. E. Thompson, “Study of lasing action based on Förster energy transfer in optically pumped organic semiconductor thin films,” J. Appl. Phys.84(8), 4096–4108 (1998).
[CrossRef]

Nat. Photonics (2)

G. C. La Rocca, “Organic photonics: polariton lasing,” Nat. Photonics4(6), 343–345 (2010).
[CrossRef]

S. Kéna-Cohen and S. R. Forrest, “Room-temperature polariton lasing in an organic single-crystal microcavity,” Nat. Photonics4(6), 371–375 (2010).
[CrossRef]

Nat. Phys. (2)

D. Sanvitto, F. M. Marchetti, M. H. Szymańska, G. Tosi, M. Baudisch, F. P. Laussy, D. N. Krizhanovskii, M. S. Skolnick, L. Marrucci, A. Lemaître, J. Bloch, C. Tejedor, and L. Viña, “Persistent currents and quantized vortices in a polariton superfluid,” Nat. Phys.6(7), 527–533 (2010).
[CrossRef]

K. G. Lagoudakis, M. Wouters, M. Richard, A. Baas, I. Carusotto, R. André, L. S. Dang, and B. Deveaud-Plédran, “Quantized vortices in an exciton–polariton condensate,” Nat. Phys.4(9), 706–710 (2008).
[CrossRef]

Nature (3)

D. G. Lidzey, D. D. C. Bradley, M. S. Skolnick, T. Virgili, S. Walker, and D. M. Whittaker, “Strong exciton-photon coupling in an organic semiconductor microcavity,” Nature395(6697), 53–55 (1998).
[CrossRef]

J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J. M. J. Keeling, F. M. Marchetti, M. H. Szymańska, R. André, J. L. Staehli, V. Savona, P. B. Littlewood, B. Deveaud, and S. Dang, “Bose-Einstein condensation of exciton polaritons,” Nature443(7110), 409–414 (2006).
[CrossRef] [PubMed]

C. W. Lai, N. Y. Kim, S. Utsunomiya, G. Roumpos, H. Deng, M. D. Fraser, T. Byrnes, P. Recher, N. Kumada, T. Fujisawa, and Y. Yamamoto, “Coherent zero-state and pi-state in an exciton-polariton condensate array.,” Nature450(7169), 529–532 (2007).
[CrossRef] [PubMed]

Org. Electron. (1)

J. R. Tischler, M. S. Bradley, Q. Zhang, T. Atay, A. Nurmikko, and V. Bulovic, “Solid state cavity QED: strong coupling in organic thin films,” Org. Electron.8(2-3), 94–113 (2007).
[CrossRef]

Phys. Rev. B (5)

M. Slootsky, Y. Zhang, and S. R. Forrest, “Temperature dependence of polariton lasing in a crystalline anthracene microcavity,” Phys. Rev. B86(4), 045312 (2012).
[CrossRef]

G. M. Akselrod, Y. R. Tischler, E. R. Young, D. G. Nocera, and V. Bulovic, “Exciton-exciton annihilation in organic polariton microcavities,” Phys. Rev. B82(11), 113106 (2010).
[CrossRef]

P. Michetti and G. La Rocca, “Simulation of J-aggregate microcavity photoluminescence,” Phys. Rev. B77(19), 195301 (2008).
[CrossRef]

M. Bradley and V. Bulović, “Intracavity optical pumping of J-aggregate microcavity exciton polaritons,” Phys. Rev. B82(3), 033305 (2010).
[CrossRef]

V. M. Agranovich, D. M. Basko, and G. C. La Rocca, “Efficient optical pumping of organic-inorganic heterostructures for nonlinear optics,” Phys. Rev. B86(16), 165204 (2012).
[CrossRef]

Phys. Rev. Lett. (1)

S. Christopoulos, G. B. von Högersthal, A. J. Grundy, P. G. Lagoudakis, A. V. Kavokin, J. J. Baumberg, G. Christmann, R. Butté, E. Feltin, J.-F. Carlin, and N. Grandjean, “Room-temperature polariton lasing in semiconductor microcavities,” Phys. Rev. Lett.98(12), 126405 (2007).
[CrossRef] [PubMed]

Rev. Mod. Phys. (1)

H. Deng, H. Haug, and Y. Yamamoto, “Exciton-polariton Bose-Einstein condensation,” Rev. Mod. Phys.82(2), 1489–1537 (2010).
[CrossRef]

Science (1)

R. Balili, V. Hartwell, D. Snoke, L. Pfeiffer, and K. West, “Bose-Einstein condensation of microcavity polaritons in a trap,” Science316(5827), 1007–1010 (2007).
[CrossRef] [PubMed]

Other (1)

C. Swenberg and M. Pope, Electronic Processes in Organic Crystals and Polymers (Oxford University Press, 1999).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Non-resonant excitation scheme for polariton microcavities showing exciton-exciton annihilation as a lossy process. (b) Intra-cavity pumping scheme utilizing broadband emission from a second organic material in the cavity to pump the entire LP branch thereby removing the need for polariton-polariton scattering to populate the bottom of the LP dispersion.

Fig. 2
Fig. 2

(a) Schematic of the cavity structure along with an approximate representation of the cavity electric field with the TDBC J-aggregate film at one of the cavity antinodes. (b) Absorption spectrum of TDBC J-aggregates and the emission spectrum of DCM showing overlap with the LP energy. The DCM:Alq3 absorption is negligible at the LP energy. (c) PL of the LP branch as a function of angle for three cavity-exciton detunings, showing a fit to the LP dispersion, demonstrating that the cavity is in strong coupling.

Fig. 3
Fig. 3

(a) Photoluminescence dispersion from a cavity with −43 meV detuning pumped below the lasing threshold, Eth (shown in linear scale). The plot shows the LP emission maximum at each angle (black circles) and a fit to the LP and UP energy (white solid lines), as well as the energy dispersion of the uncoupled cavity, Ecav, and the uncoupled exciton energy, Eex (white dashed lines). (b) Dispersion of same cavity above the lasing threshold, with the intensity shown in logarithmic scale to emphasize that cavity remains in strong coupling above threshold based on the median energies of emission that is not part of the lasing lines (black dots). (c) Emission in momentum space above threshold. (d) Degree of polarization of the emission as a function of angle above and below threshold.

Fig. 4
Fig. 4

(a) Dependence of PL emission intensity at k = 0 as a function of the excitation pulse energy showing a lasing threshold at 6 μJ/cm2. A reduction in the emission linewidth from 7 meV to 0.5 meV is observed at the lasing threshold. (b) Emission spectrum below (0.8Eth excitation energy) and above (1.8Eth excitation energy) the lasing threshold.

Metrics