Abstract

We inscribe a Fabry-Perot (FP) resonator in the microfiber utilizing the 193-nm UV exposure and the phase mask technique. Some new characteristics including strong polarization dependence and large spectral dispersion in contrast to the conventional counterparts are measured, which are attributed to the two-fold symmetry of index change in the grating and the dispersion of the effective grating length, respectively. The thinner microfiber can generally generate stronger polarization dependence. The FP spectral dependencies on external strain, temperature, and refractive index are also investigated. Our fabricated structures can have potential of acting as photonic sensors or polarization related filters.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength diameter silica wires for low-loss optical wave guiding,” Nature426(6968), 816–819 (2003).
    [CrossRef] [PubMed]
  2. G. Brambilla, F. Xu, P. Horak, Y. Jung, F. Koizumi, N. P. Sessions, E. Koukharenko, X. Feng, G. S. Murugan, J. S. Wilkinson, and D. J. Richardson, “Optical fiber nanowires and microwires: Fabrication and applications,” Adv. Opt. Photon.1(1), 107–161 (2009).
    [CrossRef]
  3. C. E. Lee and H. F. Taylor, “Sensors for smart structures based on the Fabry-Perot interferometer,” in Fiber optic smart structures, (Eric Udd, New York, 1995), 249–269.
  4. T. Zhu, D. Wu, M. Liu, and D. W. Duan, “In-line fiber optic interferometric sensors in single-mode fibers,” Sensors (Basel)12(12), 10430–10449 (2012).
    [CrossRef] [PubMed]
  5. S. Legoubin, M. Douay, P. Bernage, P. Niay, S. Boj, and E. Delevaque, “Free spectral range variations of grating-based Fabry-Perot filters photowritten in optical fibers,” J. Opt. Soc. Am. A12(8), 1687–1694 (1995).
    [CrossRef]
  6. G. E. Town, K. Sugden, J. A. R. Williams, I. Bennion, and S. B. Poole, “Wide-band Fabry-Perot-like filters in optical fiber,” IEEE Photon. Technol. Lett.7(1), 78–80 (1995).
    [CrossRef]
  7. B. Jacobsson, V. Pasiskevicius, and F. Laurell, “Single-longitudinal-mode Nd-laser with a Bragg-grating Fabry-Perot cavity,” Opt. Express14(20), 9284–9292 (2006).
    [CrossRef] [PubMed]
  8. Y. O. Barmenkov, D. Zalvidea, S. Torres-Peiró, J. L. Cruz, and M. V. Andrés, “Effective length of short Fabry-Perot cavity formed by uniform fiber Bragg gratings,” Opt. Express14(14), 6394–6399 (2006).
    [CrossRef] [PubMed]
  9. S. C. Kaddu, D. J. Booth, D. D. Garchev, and S. F. Collins, “Intrinsic fibre Fabry-Perot sensors based on co-located Bragg gratings,” Opt. Commun.142(4-6), 189–192 (1997).
    [CrossRef]
  10. S. S. Wang, Z. F. Hu, Y. H. Li, and L. M. Tong, “All-fiber Fabry-Perot resonators based on microfiber Sagnac loop mirrors,” Opt. Lett.34(3), 253–255 (2009).
    [CrossRef] [PubMed]
  11. X. B. Zhang, J. L. Li, Y. Li, W. Y. Wang, F. F. Pang, Y. Q. Liu, and T. Y. Wang, “Sensing properties of intrinsic Fabry-Perot interferometers in fiber tapers,” Proc. SPIE8421, 842189, 842189-4 (2012).
    [CrossRef]
  12. W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett.86(15), 151122 (2005).
    [CrossRef]
  13. J. J. Zhang, Q. Z. Sun, R. B. Liang, J. H. Wo, D. M. Liu, and P. Shum, “Microfiber Fabry-Perot interferometer fabricated by taper-drawing technique and its application as a radio frequency interrogated refractive index sensor,” Opt. Lett.37(14), 2925–2927 (2012).
    [CrossRef] [PubMed]
  14. K. P. Nayak, F. Le Kien, Y. Kawai, K. Hakuta, K. Nakajima, H. T. Miyazaki, and Y. Sugimoto, “Cavity formation on an optical nanofiber using focused ion beam milling technique,” Opt. Express19(15), 14040–14050 (2011).
    [CrossRef] [PubMed]
  15. M. Ding, P. Wang, T. Lee, and G. Brambilla, “A microfiber cavity with minimal-volume confinement,” Appl. Phys. Lett.99(5), 051105 (2011).
    [CrossRef]
  16. Y. H. Li and L. M. Tong, “Mach-Zehnder interferometers assembled with optical microfibers or nanofibers,” Opt. Lett.33(4), 303–305 (2008).
    [CrossRef] [PubMed]
  17. J. Li, L. P. Sun, S. Gao, Z. Quan, Y. L. Chang, Y. Ran, L. Jin, and B. O. Guan, “Ultrasensitive refractive index sensors based on rectangular silica microfibers,” Opt. Lett.36(18), 3593–3595 (2011).
    [CrossRef] [PubMed]
  18. Y. Ran, L. Jin, Y. N. Tan, L. P. Sun, J. Li, and B. O. Guan, “High-efficiency ultraviolet-inscription of Bragg gratings in microfibers,” IEEE Photon. J.4(1), 181–186 (2012).
    [CrossRef]
  19. T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol.15(8), 1277–1294 (1997).
    [CrossRef]
  20. Y. Zhang, B. Lin, S. C. Tjin, H. Zhang, G. H. Wang, P. Shum, and X. L. Zhang, “Refractive index sensing based on higher-order mode reflection of a microfiber Bragg grating,” Opt. Express18(25), 26345–26350 (2010).
    [CrossRef] [PubMed]
  21. A. Kersey, M. Davis, H. Patrick, M. LeBlanc, K. Koo, C. Askins, M. Putnam, and E. Friebele, “Fiber grating sensors,” J. Lightwave Technol.15(8), 1442–1463 (1997).
    [CrossRef]
  22. R. C. Youngquist, J. L. Brooks, and H. J. Shaw, “Two-mode fiber modal coupler,” Opt. Lett.9(5), 177–179 (1984).
    [CrossRef] [PubMed]

2012 (4)

T. Zhu, D. Wu, M. Liu, and D. W. Duan, “In-line fiber optic interferometric sensors in single-mode fibers,” Sensors (Basel)12(12), 10430–10449 (2012).
[CrossRef] [PubMed]

Y. Ran, L. Jin, Y. N. Tan, L. P. Sun, J. Li, and B. O. Guan, “High-efficiency ultraviolet-inscription of Bragg gratings in microfibers,” IEEE Photon. J.4(1), 181–186 (2012).
[CrossRef]

X. B. Zhang, J. L. Li, Y. Li, W. Y. Wang, F. F. Pang, Y. Q. Liu, and T. Y. Wang, “Sensing properties of intrinsic Fabry-Perot interferometers in fiber tapers,” Proc. SPIE8421, 842189, 842189-4 (2012).
[CrossRef]

J. J. Zhang, Q. Z. Sun, R. B. Liang, J. H. Wo, D. M. Liu, and P. Shum, “Microfiber Fabry-Perot interferometer fabricated by taper-drawing technique and its application as a radio frequency interrogated refractive index sensor,” Opt. Lett.37(14), 2925–2927 (2012).
[CrossRef] [PubMed]

2011 (3)

2010 (1)

2009 (2)

2008 (1)

2006 (2)

2005 (1)

W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett.86(15), 151122 (2005).
[CrossRef]

2003 (1)

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength diameter silica wires for low-loss optical wave guiding,” Nature426(6968), 816–819 (2003).
[CrossRef] [PubMed]

1997 (3)

S. C. Kaddu, D. J. Booth, D. D. Garchev, and S. F. Collins, “Intrinsic fibre Fabry-Perot sensors based on co-located Bragg gratings,” Opt. Commun.142(4-6), 189–192 (1997).
[CrossRef]

T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol.15(8), 1277–1294 (1997).
[CrossRef]

A. Kersey, M. Davis, H. Patrick, M. LeBlanc, K. Koo, C. Askins, M. Putnam, and E. Friebele, “Fiber grating sensors,” J. Lightwave Technol.15(8), 1442–1463 (1997).
[CrossRef]

1995 (2)

G. E. Town, K. Sugden, J. A. R. Williams, I. Bennion, and S. B. Poole, “Wide-band Fabry-Perot-like filters in optical fiber,” IEEE Photon. Technol. Lett.7(1), 78–80 (1995).
[CrossRef]

S. Legoubin, M. Douay, P. Bernage, P. Niay, S. Boj, and E. Delevaque, “Free spectral range variations of grating-based Fabry-Perot filters photowritten in optical fibers,” J. Opt. Soc. Am. A12(8), 1687–1694 (1995).
[CrossRef]

1984 (1)

Andrés, M. V.

Ashcom, J. B.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength diameter silica wires for low-loss optical wave guiding,” Nature426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Askins, C.

A. Kersey, M. Davis, H. Patrick, M. LeBlanc, K. Koo, C. Askins, M. Putnam, and E. Friebele, “Fiber grating sensors,” J. Lightwave Technol.15(8), 1442–1463 (1997).
[CrossRef]

Barmenkov, Y. O.

Bennion, I.

G. E. Town, K. Sugden, J. A. R. Williams, I. Bennion, and S. B. Poole, “Wide-band Fabry-Perot-like filters in optical fiber,” IEEE Photon. Technol. Lett.7(1), 78–80 (1995).
[CrossRef]

Bernage, P.

Boj, S.

Booth, D. J.

S. C. Kaddu, D. J. Booth, D. D. Garchev, and S. F. Collins, “Intrinsic fibre Fabry-Perot sensors based on co-located Bragg gratings,” Opt. Commun.142(4-6), 189–192 (1997).
[CrossRef]

Brambilla, G.

Brooks, J. L.

Chang, Y. L.

Collins, S. F.

S. C. Kaddu, D. J. Booth, D. D. Garchev, and S. F. Collins, “Intrinsic fibre Fabry-Perot sensors based on co-located Bragg gratings,” Opt. Commun.142(4-6), 189–192 (1997).
[CrossRef]

Cruz, J. L.

Davis, M.

A. Kersey, M. Davis, H. Patrick, M. LeBlanc, K. Koo, C. Askins, M. Putnam, and E. Friebele, “Fiber grating sensors,” J. Lightwave Technol.15(8), 1442–1463 (1997).
[CrossRef]

Delevaque, E.

Ding, M.

M. Ding, P. Wang, T. Lee, and G. Brambilla, “A microfiber cavity with minimal-volume confinement,” Appl. Phys. Lett.99(5), 051105 (2011).
[CrossRef]

Douay, M.

Duan, D. W.

T. Zhu, D. Wu, M. Liu, and D. W. Duan, “In-line fiber optic interferometric sensors in single-mode fibers,” Sensors (Basel)12(12), 10430–10449 (2012).
[CrossRef] [PubMed]

Erdogan, T.

T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol.15(8), 1277–1294 (1997).
[CrossRef]

Feng, X.

Friebele, E.

A. Kersey, M. Davis, H. Patrick, M. LeBlanc, K. Koo, C. Askins, M. Putnam, and E. Friebele, “Fiber grating sensors,” J. Lightwave Technol.15(8), 1442–1463 (1997).
[CrossRef]

Gao, S.

Garchev, D. D.

S. C. Kaddu, D. J. Booth, D. D. Garchev, and S. F. Collins, “Intrinsic fibre Fabry-Perot sensors based on co-located Bragg gratings,” Opt. Commun.142(4-6), 189–192 (1997).
[CrossRef]

Gattass, R. R.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength diameter silica wires for low-loss optical wave guiding,” Nature426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Guan, B. O.

Y. Ran, L. Jin, Y. N. Tan, L. P. Sun, J. Li, and B. O. Guan, “High-efficiency ultraviolet-inscription of Bragg gratings in microfibers,” IEEE Photon. J.4(1), 181–186 (2012).
[CrossRef]

J. Li, L. P. Sun, S. Gao, Z. Quan, Y. L. Chang, Y. Ran, L. Jin, and B. O. Guan, “Ultrasensitive refractive index sensors based on rectangular silica microfibers,” Opt. Lett.36(18), 3593–3595 (2011).
[CrossRef] [PubMed]

Hakuta, K.

He, S.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength diameter silica wires for low-loss optical wave guiding,” Nature426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Horak, P.

Hu, Z. F.

Huang, Y.

W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett.86(15), 151122 (2005).
[CrossRef]

Jacobsson, B.

Jin, L.

Y. Ran, L. Jin, Y. N. Tan, L. P. Sun, J. Li, and B. O. Guan, “High-efficiency ultraviolet-inscription of Bragg gratings in microfibers,” IEEE Photon. J.4(1), 181–186 (2012).
[CrossRef]

J. Li, L. P. Sun, S. Gao, Z. Quan, Y. L. Chang, Y. Ran, L. Jin, and B. O. Guan, “Ultrasensitive refractive index sensors based on rectangular silica microfibers,” Opt. Lett.36(18), 3593–3595 (2011).
[CrossRef] [PubMed]

Jung, Y.

Kaddu, S. C.

S. C. Kaddu, D. J. Booth, D. D. Garchev, and S. F. Collins, “Intrinsic fibre Fabry-Perot sensors based on co-located Bragg gratings,” Opt. Commun.142(4-6), 189–192 (1997).
[CrossRef]

Kawai, Y.

Kersey, A.

A. Kersey, M. Davis, H. Patrick, M. LeBlanc, K. Koo, C. Askins, M. Putnam, and E. Friebele, “Fiber grating sensors,” J. Lightwave Technol.15(8), 1442–1463 (1997).
[CrossRef]

Koizumi, F.

Koo, K.

A. Kersey, M. Davis, H. Patrick, M. LeBlanc, K. Koo, C. Askins, M. Putnam, and E. Friebele, “Fiber grating sensors,” J. Lightwave Technol.15(8), 1442–1463 (1997).
[CrossRef]

Koukharenko, E.

Laurell, F.

Le Kien, F.

LeBlanc, M.

A. Kersey, M. Davis, H. Patrick, M. LeBlanc, K. Koo, C. Askins, M. Putnam, and E. Friebele, “Fiber grating sensors,” J. Lightwave Technol.15(8), 1442–1463 (1997).
[CrossRef]

Lee, R. K.

W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett.86(15), 151122 (2005).
[CrossRef]

Lee, T.

M. Ding, P. Wang, T. Lee, and G. Brambilla, “A microfiber cavity with minimal-volume confinement,” Appl. Phys. Lett.99(5), 051105 (2011).
[CrossRef]

Legoubin, S.

Li, J.

Y. Ran, L. Jin, Y. N. Tan, L. P. Sun, J. Li, and B. O. Guan, “High-efficiency ultraviolet-inscription of Bragg gratings in microfibers,” IEEE Photon. J.4(1), 181–186 (2012).
[CrossRef]

J. Li, L. P. Sun, S. Gao, Z. Quan, Y. L. Chang, Y. Ran, L. Jin, and B. O. Guan, “Ultrasensitive refractive index sensors based on rectangular silica microfibers,” Opt. Lett.36(18), 3593–3595 (2011).
[CrossRef] [PubMed]

Li, J. L.

X. B. Zhang, J. L. Li, Y. Li, W. Y. Wang, F. F. Pang, Y. Q. Liu, and T. Y. Wang, “Sensing properties of intrinsic Fabry-Perot interferometers in fiber tapers,” Proc. SPIE8421, 842189, 842189-4 (2012).
[CrossRef]

Li, Y.

X. B. Zhang, J. L. Li, Y. Li, W. Y. Wang, F. F. Pang, Y. Q. Liu, and T. Y. Wang, “Sensing properties of intrinsic Fabry-Perot interferometers in fiber tapers,” Proc. SPIE8421, 842189, 842189-4 (2012).
[CrossRef]

Li, Y. H.

Liang, R. B.

Liang, W.

W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett.86(15), 151122 (2005).
[CrossRef]

Lin, B.

Liu, D. M.

Liu, M.

T. Zhu, D. Wu, M. Liu, and D. W. Duan, “In-line fiber optic interferometric sensors in single-mode fibers,” Sensors (Basel)12(12), 10430–10449 (2012).
[CrossRef] [PubMed]

Liu, Y. Q.

X. B. Zhang, J. L. Li, Y. Li, W. Y. Wang, F. F. Pang, Y. Q. Liu, and T. Y. Wang, “Sensing properties of intrinsic Fabry-Perot interferometers in fiber tapers,” Proc. SPIE8421, 842189, 842189-4 (2012).
[CrossRef]

Lou, J.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength diameter silica wires for low-loss optical wave guiding,” Nature426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Maxwell, I.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength diameter silica wires for low-loss optical wave guiding,” Nature426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Mazur, E.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength diameter silica wires for low-loss optical wave guiding,” Nature426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Miyazaki, H. T.

Murugan, G. S.

Nakajima, K.

Nayak, K. P.

Niay, P.

Pang, F. F.

X. B. Zhang, J. L. Li, Y. Li, W. Y. Wang, F. F. Pang, Y. Q. Liu, and T. Y. Wang, “Sensing properties of intrinsic Fabry-Perot interferometers in fiber tapers,” Proc. SPIE8421, 842189, 842189-4 (2012).
[CrossRef]

Pasiskevicius, V.

Patrick, H.

A. Kersey, M. Davis, H. Patrick, M. LeBlanc, K. Koo, C. Askins, M. Putnam, and E. Friebele, “Fiber grating sensors,” J. Lightwave Technol.15(8), 1442–1463 (1997).
[CrossRef]

Poole, S. B.

G. E. Town, K. Sugden, J. A. R. Williams, I. Bennion, and S. B. Poole, “Wide-band Fabry-Perot-like filters in optical fiber,” IEEE Photon. Technol. Lett.7(1), 78–80 (1995).
[CrossRef]

Putnam, M.

A. Kersey, M. Davis, H. Patrick, M. LeBlanc, K. Koo, C. Askins, M. Putnam, and E. Friebele, “Fiber grating sensors,” J. Lightwave Technol.15(8), 1442–1463 (1997).
[CrossRef]

Quan, Z.

Ran, Y.

Y. Ran, L. Jin, Y. N. Tan, L. P. Sun, J. Li, and B. O. Guan, “High-efficiency ultraviolet-inscription of Bragg gratings in microfibers,” IEEE Photon. J.4(1), 181–186 (2012).
[CrossRef]

J. Li, L. P. Sun, S. Gao, Z. Quan, Y. L. Chang, Y. Ran, L. Jin, and B. O. Guan, “Ultrasensitive refractive index sensors based on rectangular silica microfibers,” Opt. Lett.36(18), 3593–3595 (2011).
[CrossRef] [PubMed]

Richardson, D. J.

Sessions, N. P.

Shaw, H. J.

Shen, M.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength diameter silica wires for low-loss optical wave guiding,” Nature426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Shum, P.

Sugden, K.

G. E. Town, K. Sugden, J. A. R. Williams, I. Bennion, and S. B. Poole, “Wide-band Fabry-Perot-like filters in optical fiber,” IEEE Photon. Technol. Lett.7(1), 78–80 (1995).
[CrossRef]

Sugimoto, Y.

Sun, L. P.

Y. Ran, L. Jin, Y. N. Tan, L. P. Sun, J. Li, and B. O. Guan, “High-efficiency ultraviolet-inscription of Bragg gratings in microfibers,” IEEE Photon. J.4(1), 181–186 (2012).
[CrossRef]

J. Li, L. P. Sun, S. Gao, Z. Quan, Y. L. Chang, Y. Ran, L. Jin, and B. O. Guan, “Ultrasensitive refractive index sensors based on rectangular silica microfibers,” Opt. Lett.36(18), 3593–3595 (2011).
[CrossRef] [PubMed]

Sun, Q. Z.

Tan, Y. N.

Y. Ran, L. Jin, Y. N. Tan, L. P. Sun, J. Li, and B. O. Guan, “High-efficiency ultraviolet-inscription of Bragg gratings in microfibers,” IEEE Photon. J.4(1), 181–186 (2012).
[CrossRef]

Tjin, S. C.

Tong, L.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength diameter silica wires for low-loss optical wave guiding,” Nature426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Tong, L. M.

Torres-Peiró, S.

Town, G. E.

G. E. Town, K. Sugden, J. A. R. Williams, I. Bennion, and S. B. Poole, “Wide-band Fabry-Perot-like filters in optical fiber,” IEEE Photon. Technol. Lett.7(1), 78–80 (1995).
[CrossRef]

Wang, G. H.

Wang, P.

M. Ding, P. Wang, T. Lee, and G. Brambilla, “A microfiber cavity with minimal-volume confinement,” Appl. Phys. Lett.99(5), 051105 (2011).
[CrossRef]

Wang, S. S.

Wang, T. Y.

X. B. Zhang, J. L. Li, Y. Li, W. Y. Wang, F. F. Pang, Y. Q. Liu, and T. Y. Wang, “Sensing properties of intrinsic Fabry-Perot interferometers in fiber tapers,” Proc. SPIE8421, 842189, 842189-4 (2012).
[CrossRef]

Wang, W. Y.

X. B. Zhang, J. L. Li, Y. Li, W. Y. Wang, F. F. Pang, Y. Q. Liu, and T. Y. Wang, “Sensing properties of intrinsic Fabry-Perot interferometers in fiber tapers,” Proc. SPIE8421, 842189, 842189-4 (2012).
[CrossRef]

Wilkinson, J. S.

Williams, J. A. R.

G. E. Town, K. Sugden, J. A. R. Williams, I. Bennion, and S. B. Poole, “Wide-band Fabry-Perot-like filters in optical fiber,” IEEE Photon. Technol. Lett.7(1), 78–80 (1995).
[CrossRef]

Wo, J. H.

Wu, D.

T. Zhu, D. Wu, M. Liu, and D. W. Duan, “In-line fiber optic interferometric sensors in single-mode fibers,” Sensors (Basel)12(12), 10430–10449 (2012).
[CrossRef] [PubMed]

Xu, F.

Xu, Y.

W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett.86(15), 151122 (2005).
[CrossRef]

Yariv, A.

W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett.86(15), 151122 (2005).
[CrossRef]

Youngquist, R. C.

Zalvidea, D.

Zhang, H.

Zhang, J. J.

Zhang, X. B.

X. B. Zhang, J. L. Li, Y. Li, W. Y. Wang, F. F. Pang, Y. Q. Liu, and T. Y. Wang, “Sensing properties of intrinsic Fabry-Perot interferometers in fiber tapers,” Proc. SPIE8421, 842189, 842189-4 (2012).
[CrossRef]

Zhang, X. L.

Zhang, Y.

Zhu, T.

T. Zhu, D. Wu, M. Liu, and D. W. Duan, “In-line fiber optic interferometric sensors in single-mode fibers,” Sensors (Basel)12(12), 10430–10449 (2012).
[CrossRef] [PubMed]

Adv. Opt. Photon. (1)

Appl. Phys. Lett. (2)

W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett.86(15), 151122 (2005).
[CrossRef]

M. Ding, P. Wang, T. Lee, and G. Brambilla, “A microfiber cavity with minimal-volume confinement,” Appl. Phys. Lett.99(5), 051105 (2011).
[CrossRef]

IEEE Photon. J. (1)

Y. Ran, L. Jin, Y. N. Tan, L. P. Sun, J. Li, and B. O. Guan, “High-efficiency ultraviolet-inscription of Bragg gratings in microfibers,” IEEE Photon. J.4(1), 181–186 (2012).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

G. E. Town, K. Sugden, J. A. R. Williams, I. Bennion, and S. B. Poole, “Wide-band Fabry-Perot-like filters in optical fiber,” IEEE Photon. Technol. Lett.7(1), 78–80 (1995).
[CrossRef]

J. Lightwave Technol. (2)

T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol.15(8), 1277–1294 (1997).
[CrossRef]

A. Kersey, M. Davis, H. Patrick, M. LeBlanc, K. Koo, C. Askins, M. Putnam, and E. Friebele, “Fiber grating sensors,” J. Lightwave Technol.15(8), 1442–1463 (1997).
[CrossRef]

J. Opt. Soc. Am. A (1)

Nature (1)

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength diameter silica wires for low-loss optical wave guiding,” Nature426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Opt. Commun. (1)

S. C. Kaddu, D. J. Booth, D. D. Garchev, and S. F. Collins, “Intrinsic fibre Fabry-Perot sensors based on co-located Bragg gratings,” Opt. Commun.142(4-6), 189–192 (1997).
[CrossRef]

Opt. Express (4)

Opt. Lett. (5)

Proc. SPIE (1)

X. B. Zhang, J. L. Li, Y. Li, W. Y. Wang, F. F. Pang, Y. Q. Liu, and T. Y. Wang, “Sensing properties of intrinsic Fabry-Perot interferometers in fiber tapers,” Proc. SPIE8421, 842189, 842189-4 (2012).
[CrossRef]

Sensors (Basel) (1)

T. Zhu, D. Wu, M. Liu, and D. W. Duan, “In-line fiber optic interferometric sensors in single-mode fibers,” Sensors (Basel)12(12), 10430–10449 (2012).
[CrossRef] [PubMed]

Other (1)

C. E. Lee and H. F. Taylor, “Sensors for smart structures based on the Fabry-Perot interferometer,” in Fiber optic smart structures, (Eric Udd, New York, 1995), 249–269.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic diagram of the microfiber FP resonator fabricated by UV laser exposure. The incident side has a larger index change than the shadow side of the microfiber.

Fig. 2
Fig. 2

(a) Typical transmission spectra of the x- and y-polarized states for an mFBG with d = 1.85. Insets are the mode field profiles. Distinct polarization dependence especially at band b is observed. (b) Primary linearly-polarized field sketches for the fundamental (LP01) and the second-order (LP11) modes.

Fig. 3
Fig. 3

(a) Transmission spectrum of FP cavity with microfiber diameter of 3.8μm. (b)Details of interferometric spectra (solid blue curve) and effective grating lengths (dashed red curve) in the grating bands.

Fig. 4
Fig. 4

Polarization-dependent transmission spectra in the microfiber FP resonator with d = 2.7μm and L0 = 0.25mm.

Fig. 5
Fig. 5

Peak wavelengths as functions of (a) applied strain and (b) temperature, respectively, at differential grating bands for a microfiber FP structure with d = 3.8μm and L0 = 0.25mm.

Fig. 6
Fig. 6

(a) Peak wavelengths as functions of external refractive index and (b) transmission spectra at differential grating bands for the microfiber FP resonator with d = 6.4μm and L0 = 0.25mm.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

κ= π λ Ge Δn E 1 E 2 * dxdy,
2 k 0 n ¯ ( L 0 +2 L eff )=2mπ,
Δλ= λ 2 2 n ¯ ( L 0 +2 L eff )( 1 n ¯ n ¯ λ 2 L eff L 0 +2 L eff λ )

Metrics