Abstract

The metallic-structure dependent localized surface plasmons (LSPs) coupling behaviors with InGaN QWs in a green LED epitaxial wafer are investigated by optical transmission, scanning electron microscopy (SEM) and photoluminescence (PL) measurements. Ag nanoparticles (NPs) are formed by thermal annealing Ag layer on the green LED wafer. SEM images show that for higher annealing temperature and/or thicker deposited Ag layer, larger Ag NPs can be produced, leading to the redshift of absorption peaks in the transmission spectra. Time resolved PL (TRPL) measurements indicate when LSP-MQW coupling occurs, PL decay rate is greatly enhanced especially at the resonant wavelength 560 nm. However, the PL intensity is suppressed by 3.5 folds compared to the bare LED. The resonant absorption and PL suppression are simulated by three dimension finite-difference-time-domain (FDTD), which suggests that Ag particle with smaller size and lower height lead to the larger dissipation of LSP.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. F. Feezell, J. S. Speck, S. P. DenBaars, and S. Nakamura, “Semipolar (20-2-1) InGaN/GaN light-emitting diodes for high-efficiency solid-state lighting,” J. Display Technol.9(4), 190–198 (2013).
    [CrossRef]
  2. R. M. Farrell, E. C. Young, F. Wu, S. P. DenBaars, and J. S. Speck, “Materials and growth issues for high-performance nonpolar and semipolar light-emitting devices,” Semicond. Sci. Technol.27(2), 024001 (2012).
    [CrossRef]
  3. H. P. Zhao, G. Y. Liu, J. Zhang, J. D. Poplawsky, V. Dierolf, and N. Tansu, “Approaches for high internal quantum efficiency green InGaN light-emitting diodes with large overlap quantum wells,” Opt. Express19(S4Suppl 4), A991–A1007 (2011).
    [CrossRef] [PubMed]
  4. J. Zhang and N. Tansu, “Optical gain and laser characteristics of InGaN quantum wells on ternary InGaN substrates,” IEEE Photon. J.5(2), 2600111 (2013).
    [CrossRef]
  5. C. K. Tan, J. Zhang, X. H. Li, G. Y. Liu, B. O. Tayo, and N. Tansu, “First-principle electronic properties of dilute-As GaNAs alloy for visible light emitters,” J. Display Technol.9(4), 272–279 (2013).
    [CrossRef]
  6. K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater.3(9), 601–605 (2004).
    [CrossRef] [PubMed]
  7. K. Okamoto, I. Niki, A. Scherer, Y. Narukawa, T. Mukai, and Y. Kawakami, “Surface plasmon enhanced spontaneous emission rate of InGaN/GaN quantum wells probed by time-resolved photoluminescence spectroscopy,” Appl. Phys. Lett.87(7), 071102 (2005).
    [CrossRef]
  8. M. K. Kwon, J. Y. Kim, B. H. Kim, I. K. Park, C. Y. Cho, C. C. Byeon, and S. J. Park, “Surface-plasmon-enhanced light-emitting diodes,” Adv. Mater.20(7), 1253–1257 (2008).
    [CrossRef]
  9. C. Y. Cho, M. K. Kwon, S. J. Lee, S. H. Han, J. W. Kang, S. E. Kang, D. Y. Lee, and S. J. Park, “Surface plasmon-enhanced light-emitting diodes using silver nanoparticles embedded in p-GaN,” Nanotechnology21(20), 205201 (2010).
    [CrossRef] [PubMed]
  10. C. Y. Cho, S. J. Lee, J. H. Song, S. H. Hong, S. M. Lee, Y. H. Cho, and S. J. Park, “Enhanced optical output power of green light-emitting diodes by surface plasmon of gold NPs,” Appl. Phys. Lett.98(5), 051106 (2011).
    [CrossRef]
  11. C. Y. Cho, K. S. Kim, S. J. Lee, M. K. Kwon, H. Ko, S. T. Kim, G. Y. Jung, and S. J. Park, “Surface plasmon-enhanced light-emitting diodes with silver NPs and SiO2 nano-disks embedded in p-GaN,” Appl. Phys. Lett.99(4), 041107 (2011).
    [CrossRef]
  12. D. M. Yeh, C. Y. Chen, Y. C. Lu, C. F. Huang, and C. C. Yang, “Formation of various metal nanostructures with thermal annealing to control the effective coupling energy between a surface plasmon and an InGaN/GaN quantum well,” Nanotechnology18(26), 265402 (2007).
    [CrossRef] [PubMed]
  13. D. M. Yeh, C. F. Huang, C. Y. Chen, Y. C. Lu, and C. C. Yang, “Surface plasmon coupling effect in an InGaN/GaN single-quantum-well light-emitting diode,” Appl. Phys. Lett.91(17), 171103 (2007).
    [CrossRef]
  14. D. M. Yeh, C. F. Huang, C. Y. Chen, Y. C. Lu, and C. C. Yang, “Localized surface plasmon-induced emission enhancement of a green light-emitting diode,” Nanotechnology19(34), 345201 (2008).
    [CrossRef] [PubMed]
  15. C. F. Lu, C. H. Liao, C. Y. Chen, C. Hsieh, Y. W. Kiang, and C. C. Yang, “Reduction in the efficiency droop effect of a light-emitting diode through surface plasmon coupling,” Appl. Phys. Lett.96(26), 261104 (2010).
    [CrossRef]
  16. J. Y. Wang, Y. W. Kiang, and C. C. Yang, “Emission enhancement behaviors in the coupling between surface plasmon polariton on a one-dimensional metallic grating and a light emitter,” Appl. Phys. Lett.91(23), 233104 (2007).
    [CrossRef]
  17. Y. Kuo, S. Y. Ting, C. H. Liao, J. J. Huang, C. Y. Chen, C. Hsieh, Y. C. Lu, C. Y. Chen, K. C. Shen, C. F. Lu, D. M. Yeh, J. Y. Wang, W. H. Chuang, Y. W. Kiang, and C. C. Yang, “Surface plasmon coupling with radiating dipole for enhancing the emission efficiency of a light-emitting diode,” Opt. Express19(S4Suppl 4), A914–A929 (2011).
    [CrossRef] [PubMed]
  18. S. A. Maier, Plasmonics: fundamentals and applications (Springer, 2007).
  19. C. Y. Chen, D. M. Yeh, Y. C. Lu, and C. C. Yang, “Dependence of resonant coupling between surface plasmons and an InGaN quantum well on metallic structure,” Appl. Phys. Lett.89(20), 203113 (2006).
    [CrossRef]
  20. C. W. Huang, H. Y. Tseng, C. Y. Chen, C. H. Liao, C. Hsieh, K. Y. Chen, H. Y. Lin, H. S. Chen, Y. L. Jung, Y. W. Kiang, and C. C. Yang, “Fabrication of surface metal nanoparticles and their induced surface plasmon coupling with subsurface InGaN/GaN quantum wells,” Nanotechnology22(47), 475201 (2011).
    [CrossRef] [PubMed]
  21. N. C. Das, “Tunable infrared plasmonic absorption by metallic NPs,” J. Appl. Phys.110(4), 046101 (2011).
    [CrossRef]
  22. H. P. Zhao, J. Zhang, G. Y. Liu, and N. Tansu, “Surface plasmon dispersion engineering via double-metallic Au/Ag layers for III-nitride based light-emitting diodes,” Appl. Phys. Lett.98(15), 151115 (2011).
    [CrossRef]
  23. J. Henson, J. DiMaria, E. Dimakis, T. D. Moustakas, and R. Paiella, “Plasmon-enhanced light emission based on lattice resonances of silver nanocylinder arrays,” Opt. Lett.37(1), 79–81 (2012).
    [CrossRef] [PubMed]
  24. S. Auer, W. J. Wan, X. Huang, A. G. Ramirez, and H. Cao, “Morphology-induced plasmonic resonances in silver-aluminum alloy thin films,” Appl. Phys. Lett.99(4), 041116 (2011).
    [CrossRef]
  25. J. H. Hsieh, C. Li, Y. Y. Wu, and S. C. Jang, “Optoelectronic properties of sputter-deposited Ag-SiO2 NP films by rapid thermal annealing,” Curr. Appl. Phys.11(1), S328–S332 (2011).
    [CrossRef]
  26. Z. Z. Chen, Z. X. Qin, Y. Z. Tong, X. D. Hu, T. J. Yu, Z. J. Yang, X. M. Ding, Z. H. Li, and G. Y. Zhang, “Thermal annealing effects on Ni/Au contacts to p type GaN in different ambient,” Mater. Sci. Eng. B100(2), 199–203 (2003).
    [CrossRef]
  27. J. F. Muth, J. H. Lee, I. K. Shmagin, R. M. Kolbas, H. C. Casey, B. P. Keller, U. K. Mishra, and S. P. DenBaars, “Absorption coefficient, energy gap, exciton binding energy, and recombination lifetime of GaN obtained from transmission measurements,” Appl. Phys. Lett.71(18), 2572–2574 (1997).
    [CrossRef]
  28. K. N. Tu, J. K. Mayer, and L. C. Feldman, Electronic thin film sciences: for electrical engineers and material scientists (Macmillan, 1992).
  29. J. Henson, E. Dimakis, J. DiMaria, R. Li, S. Minissale, L. Dal Negro, T. D. Moustakas, and R. Paiella, “Enhanced near-green light emission from InGaN quantum wells by use of tunable plasmonic resonances in silver nanoparticle arrays,” Opt. Express18(20), 21322–21329 (2010).
    [CrossRef] [PubMed]
  30. J. Tominaga, “The application of silver oxide thin films to plasmon photonic devices,” J. Phys. Condens. Matter15(25), R1101–R1122 (2003).
    [CrossRef]
  31. C. Y. Chen, Y. C. Lu, D. M. Yeh, and C. C. Yang, “Influence of the quantum-confined stark effect in an InGaN/GaN quantum well on its coupling with surface plasmon for light emission enhancement,” Appl. Phys. Lett.90(18), 183114 (2007).
    [CrossRef]
  32. C. K. Choi, Y. H. Kwon, B. D. Little, G. H. Gainer, J. J. Song, Y. C. Chang, S. Keller, U. K. Mishra, and S. P. DenBaars, “Time-resolved photoluminescence of InxGa1-xN/GaN multiple quantum well structures: effect of Si doping in the barriers,” Phys. Rev. B64(24), 245339 (2001).
    [CrossRef]
  33. T. F. Kuech and L. J. Mawst, “Nanofabrication of III–V semiconductors employing diblock copolymer lithography,” J. Phys. D Appl. Phys.43(18), 183001 (2010).
    [CrossRef]
  34. G. Y. Liu, H. P. Zhao, J. Zhang, J. H. Park, L. J. Mawst, and N. Tansu, “Selective area epitaxy of ultra-high density InGaN quantum dots by diblock copolymer lithography,” Nanoscale Res. Lett.6(1), 342–352 (2011).
    [CrossRef] [PubMed]
  35. X. H. Li, P. F. Zhu, G. Y. Liu, J. Zhang, R. Song, Y. K. Ee, P. Kumnorkaew, J. F. Gilchrist, and N. Tansu, “Light extraction efficiency enhancement of III-Nitride light-emitting diodes by using 2-D close-packed TiO2 microsphere Arrays,” J. Display Technol.9(5), 324–332 (2013).
    [CrossRef]

2013 (4)

2012 (2)

J. Henson, J. DiMaria, E. Dimakis, T. D. Moustakas, and R. Paiella, “Plasmon-enhanced light emission based on lattice resonances of silver nanocylinder arrays,” Opt. Lett.37(1), 79–81 (2012).
[CrossRef] [PubMed]

R. M. Farrell, E. C. Young, F. Wu, S. P. DenBaars, and J. S. Speck, “Materials and growth issues for high-performance nonpolar and semipolar light-emitting devices,” Semicond. Sci. Technol.27(2), 024001 (2012).
[CrossRef]

2011 (10)

H. P. Zhao, G. Y. Liu, J. Zhang, J. D. Poplawsky, V. Dierolf, and N. Tansu, “Approaches for high internal quantum efficiency green InGaN light-emitting diodes with large overlap quantum wells,” Opt. Express19(S4Suppl 4), A991–A1007 (2011).
[CrossRef] [PubMed]

C. Y. Cho, S. J. Lee, J. H. Song, S. H. Hong, S. M. Lee, Y. H. Cho, and S. J. Park, “Enhanced optical output power of green light-emitting diodes by surface plasmon of gold NPs,” Appl. Phys. Lett.98(5), 051106 (2011).
[CrossRef]

C. Y. Cho, K. S. Kim, S. J. Lee, M. K. Kwon, H. Ko, S. T. Kim, G. Y. Jung, and S. J. Park, “Surface plasmon-enhanced light-emitting diodes with silver NPs and SiO2 nano-disks embedded in p-GaN,” Appl. Phys. Lett.99(4), 041107 (2011).
[CrossRef]

Y. Kuo, S. Y. Ting, C. H. Liao, J. J. Huang, C. Y. Chen, C. Hsieh, Y. C. Lu, C. Y. Chen, K. C. Shen, C. F. Lu, D. M. Yeh, J. Y. Wang, W. H. Chuang, Y. W. Kiang, and C. C. Yang, “Surface plasmon coupling with radiating dipole for enhancing the emission efficiency of a light-emitting diode,” Opt. Express19(S4Suppl 4), A914–A929 (2011).
[CrossRef] [PubMed]

S. Auer, W. J. Wan, X. Huang, A. G. Ramirez, and H. Cao, “Morphology-induced plasmonic resonances in silver-aluminum alloy thin films,” Appl. Phys. Lett.99(4), 041116 (2011).
[CrossRef]

J. H. Hsieh, C. Li, Y. Y. Wu, and S. C. Jang, “Optoelectronic properties of sputter-deposited Ag-SiO2 NP films by rapid thermal annealing,” Curr. Appl. Phys.11(1), S328–S332 (2011).
[CrossRef]

C. W. Huang, H. Y. Tseng, C. Y. Chen, C. H. Liao, C. Hsieh, K. Y. Chen, H. Y. Lin, H. S. Chen, Y. L. Jung, Y. W. Kiang, and C. C. Yang, “Fabrication of surface metal nanoparticles and their induced surface plasmon coupling with subsurface InGaN/GaN quantum wells,” Nanotechnology22(47), 475201 (2011).
[CrossRef] [PubMed]

N. C. Das, “Tunable infrared plasmonic absorption by metallic NPs,” J. Appl. Phys.110(4), 046101 (2011).
[CrossRef]

H. P. Zhao, J. Zhang, G. Y. Liu, and N. Tansu, “Surface plasmon dispersion engineering via double-metallic Au/Ag layers for III-nitride based light-emitting diodes,” Appl. Phys. Lett.98(15), 151115 (2011).
[CrossRef]

G. Y. Liu, H. P. Zhao, J. Zhang, J. H. Park, L. J. Mawst, and N. Tansu, “Selective area epitaxy of ultra-high density InGaN quantum dots by diblock copolymer lithography,” Nanoscale Res. Lett.6(1), 342–352 (2011).
[CrossRef] [PubMed]

2010 (4)

T. F. Kuech and L. J. Mawst, “Nanofabrication of III–V semiconductors employing diblock copolymer lithography,” J. Phys. D Appl. Phys.43(18), 183001 (2010).
[CrossRef]

J. Henson, E. Dimakis, J. DiMaria, R. Li, S. Minissale, L. Dal Negro, T. D. Moustakas, and R. Paiella, “Enhanced near-green light emission from InGaN quantum wells by use of tunable plasmonic resonances in silver nanoparticle arrays,” Opt. Express18(20), 21322–21329 (2010).
[CrossRef] [PubMed]

C. F. Lu, C. H. Liao, C. Y. Chen, C. Hsieh, Y. W. Kiang, and C. C. Yang, “Reduction in the efficiency droop effect of a light-emitting diode through surface plasmon coupling,” Appl. Phys. Lett.96(26), 261104 (2010).
[CrossRef]

C. Y. Cho, M. K. Kwon, S. J. Lee, S. H. Han, J. W. Kang, S. E. Kang, D. Y. Lee, and S. J. Park, “Surface plasmon-enhanced light-emitting diodes using silver nanoparticles embedded in p-GaN,” Nanotechnology21(20), 205201 (2010).
[CrossRef] [PubMed]

2008 (2)

D. M. Yeh, C. F. Huang, C. Y. Chen, Y. C. Lu, and C. C. Yang, “Localized surface plasmon-induced emission enhancement of a green light-emitting diode,” Nanotechnology19(34), 345201 (2008).
[CrossRef] [PubMed]

M. K. Kwon, J. Y. Kim, B. H. Kim, I. K. Park, C. Y. Cho, C. C. Byeon, and S. J. Park, “Surface-plasmon-enhanced light-emitting diodes,” Adv. Mater.20(7), 1253–1257 (2008).
[CrossRef]

2007 (4)

J. Y. Wang, Y. W. Kiang, and C. C. Yang, “Emission enhancement behaviors in the coupling between surface plasmon polariton on a one-dimensional metallic grating and a light emitter,” Appl. Phys. Lett.91(23), 233104 (2007).
[CrossRef]

D. M. Yeh, C. Y. Chen, Y. C. Lu, C. F. Huang, and C. C. Yang, “Formation of various metal nanostructures with thermal annealing to control the effective coupling energy between a surface plasmon and an InGaN/GaN quantum well,” Nanotechnology18(26), 265402 (2007).
[CrossRef] [PubMed]

D. M. Yeh, C. F. Huang, C. Y. Chen, Y. C. Lu, and C. C. Yang, “Surface plasmon coupling effect in an InGaN/GaN single-quantum-well light-emitting diode,” Appl. Phys. Lett.91(17), 171103 (2007).
[CrossRef]

C. Y. Chen, Y. C. Lu, D. M. Yeh, and C. C. Yang, “Influence of the quantum-confined stark effect in an InGaN/GaN quantum well on its coupling with surface plasmon for light emission enhancement,” Appl. Phys. Lett.90(18), 183114 (2007).
[CrossRef]

2006 (1)

C. Y. Chen, D. M. Yeh, Y. C. Lu, and C. C. Yang, “Dependence of resonant coupling between surface plasmons and an InGaN quantum well on metallic structure,” Appl. Phys. Lett.89(20), 203113 (2006).
[CrossRef]

2005 (1)

K. Okamoto, I. Niki, A. Scherer, Y. Narukawa, T. Mukai, and Y. Kawakami, “Surface plasmon enhanced spontaneous emission rate of InGaN/GaN quantum wells probed by time-resolved photoluminescence spectroscopy,” Appl. Phys. Lett.87(7), 071102 (2005).
[CrossRef]

2004 (1)

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater.3(9), 601–605 (2004).
[CrossRef] [PubMed]

2003 (2)

J. Tominaga, “The application of silver oxide thin films to plasmon photonic devices,” J. Phys. Condens. Matter15(25), R1101–R1122 (2003).
[CrossRef]

Z. Z. Chen, Z. X. Qin, Y. Z. Tong, X. D. Hu, T. J. Yu, Z. J. Yang, X. M. Ding, Z. H. Li, and G. Y. Zhang, “Thermal annealing effects on Ni/Au contacts to p type GaN in different ambient,” Mater. Sci. Eng. B100(2), 199–203 (2003).
[CrossRef]

2001 (1)

C. K. Choi, Y. H. Kwon, B. D. Little, G. H. Gainer, J. J. Song, Y. C. Chang, S. Keller, U. K. Mishra, and S. P. DenBaars, “Time-resolved photoluminescence of InxGa1-xN/GaN multiple quantum well structures: effect of Si doping in the barriers,” Phys. Rev. B64(24), 245339 (2001).
[CrossRef]

1997 (1)

J. F. Muth, J. H. Lee, I. K. Shmagin, R. M. Kolbas, H. C. Casey, B. P. Keller, U. K. Mishra, and S. P. DenBaars, “Absorption coefficient, energy gap, exciton binding energy, and recombination lifetime of GaN obtained from transmission measurements,” Appl. Phys. Lett.71(18), 2572–2574 (1997).
[CrossRef]

Auer, S.

S. Auer, W. J. Wan, X. Huang, A. G. Ramirez, and H. Cao, “Morphology-induced plasmonic resonances in silver-aluminum alloy thin films,” Appl. Phys. Lett.99(4), 041116 (2011).
[CrossRef]

Byeon, C. C.

M. K. Kwon, J. Y. Kim, B. H. Kim, I. K. Park, C. Y. Cho, C. C. Byeon, and S. J. Park, “Surface-plasmon-enhanced light-emitting diodes,” Adv. Mater.20(7), 1253–1257 (2008).
[CrossRef]

Cao, H.

S. Auer, W. J. Wan, X. Huang, A. G. Ramirez, and H. Cao, “Morphology-induced plasmonic resonances in silver-aluminum alloy thin films,” Appl. Phys. Lett.99(4), 041116 (2011).
[CrossRef]

Casey, H. C.

J. F. Muth, J. H. Lee, I. K. Shmagin, R. M. Kolbas, H. C. Casey, B. P. Keller, U. K. Mishra, and S. P. DenBaars, “Absorption coefficient, energy gap, exciton binding energy, and recombination lifetime of GaN obtained from transmission measurements,” Appl. Phys. Lett.71(18), 2572–2574 (1997).
[CrossRef]

Chang, Y. C.

C. K. Choi, Y. H. Kwon, B. D. Little, G. H. Gainer, J. J. Song, Y. C. Chang, S. Keller, U. K. Mishra, and S. P. DenBaars, “Time-resolved photoluminescence of InxGa1-xN/GaN multiple quantum well structures: effect of Si doping in the barriers,” Phys. Rev. B64(24), 245339 (2001).
[CrossRef]

Chen, C. Y.

C. W. Huang, H. Y. Tseng, C. Y. Chen, C. H. Liao, C. Hsieh, K. Y. Chen, H. Y. Lin, H. S. Chen, Y. L. Jung, Y. W. Kiang, and C. C. Yang, “Fabrication of surface metal nanoparticles and their induced surface plasmon coupling with subsurface InGaN/GaN quantum wells,” Nanotechnology22(47), 475201 (2011).
[CrossRef] [PubMed]

Y. Kuo, S. Y. Ting, C. H. Liao, J. J. Huang, C. Y. Chen, C. Hsieh, Y. C. Lu, C. Y. Chen, K. C. Shen, C. F. Lu, D. M. Yeh, J. Y. Wang, W. H. Chuang, Y. W. Kiang, and C. C. Yang, “Surface plasmon coupling with radiating dipole for enhancing the emission efficiency of a light-emitting diode,” Opt. Express19(S4Suppl 4), A914–A929 (2011).
[CrossRef] [PubMed]

Y. Kuo, S. Y. Ting, C. H. Liao, J. J. Huang, C. Y. Chen, C. Hsieh, Y. C. Lu, C. Y. Chen, K. C. Shen, C. F. Lu, D. M. Yeh, J. Y. Wang, W. H. Chuang, Y. W. Kiang, and C. C. Yang, “Surface plasmon coupling with radiating dipole for enhancing the emission efficiency of a light-emitting diode,” Opt. Express19(S4Suppl 4), A914–A929 (2011).
[CrossRef] [PubMed]

C. F. Lu, C. H. Liao, C. Y. Chen, C. Hsieh, Y. W. Kiang, and C. C. Yang, “Reduction in the efficiency droop effect of a light-emitting diode through surface plasmon coupling,” Appl. Phys. Lett.96(26), 261104 (2010).
[CrossRef]

D. M. Yeh, C. F. Huang, C. Y. Chen, Y. C. Lu, and C. C. Yang, “Localized surface plasmon-induced emission enhancement of a green light-emitting diode,” Nanotechnology19(34), 345201 (2008).
[CrossRef] [PubMed]

D. M. Yeh, C. Y. Chen, Y. C. Lu, C. F. Huang, and C. C. Yang, “Formation of various metal nanostructures with thermal annealing to control the effective coupling energy between a surface plasmon and an InGaN/GaN quantum well,” Nanotechnology18(26), 265402 (2007).
[CrossRef] [PubMed]

D. M. Yeh, C. F. Huang, C. Y. Chen, Y. C. Lu, and C. C. Yang, “Surface plasmon coupling effect in an InGaN/GaN single-quantum-well light-emitting diode,” Appl. Phys. Lett.91(17), 171103 (2007).
[CrossRef]

C. Y. Chen, Y. C. Lu, D. M. Yeh, and C. C. Yang, “Influence of the quantum-confined stark effect in an InGaN/GaN quantum well on its coupling with surface plasmon for light emission enhancement,” Appl. Phys. Lett.90(18), 183114 (2007).
[CrossRef]

C. Y. Chen, D. M. Yeh, Y. C. Lu, and C. C. Yang, “Dependence of resonant coupling between surface plasmons and an InGaN quantum well on metallic structure,” Appl. Phys. Lett.89(20), 203113 (2006).
[CrossRef]

Chen, H. S.

C. W. Huang, H. Y. Tseng, C. Y. Chen, C. H. Liao, C. Hsieh, K. Y. Chen, H. Y. Lin, H. S. Chen, Y. L. Jung, Y. W. Kiang, and C. C. Yang, “Fabrication of surface metal nanoparticles and their induced surface plasmon coupling with subsurface InGaN/GaN quantum wells,” Nanotechnology22(47), 475201 (2011).
[CrossRef] [PubMed]

Chen, K. Y.

C. W. Huang, H. Y. Tseng, C. Y. Chen, C. H. Liao, C. Hsieh, K. Y. Chen, H. Y. Lin, H. S. Chen, Y. L. Jung, Y. W. Kiang, and C. C. Yang, “Fabrication of surface metal nanoparticles and their induced surface plasmon coupling with subsurface InGaN/GaN quantum wells,” Nanotechnology22(47), 475201 (2011).
[CrossRef] [PubMed]

Chen, Z. Z.

Z. Z. Chen, Z. X. Qin, Y. Z. Tong, X. D. Hu, T. J. Yu, Z. J. Yang, X. M. Ding, Z. H. Li, and G. Y. Zhang, “Thermal annealing effects on Ni/Au contacts to p type GaN in different ambient,” Mater. Sci. Eng. B100(2), 199–203 (2003).
[CrossRef]

Cho, C. Y.

C. Y. Cho, K. S. Kim, S. J. Lee, M. K. Kwon, H. Ko, S. T. Kim, G. Y. Jung, and S. J. Park, “Surface plasmon-enhanced light-emitting diodes with silver NPs and SiO2 nano-disks embedded in p-GaN,” Appl. Phys. Lett.99(4), 041107 (2011).
[CrossRef]

C. Y. Cho, S. J. Lee, J. H. Song, S. H. Hong, S. M. Lee, Y. H. Cho, and S. J. Park, “Enhanced optical output power of green light-emitting diodes by surface plasmon of gold NPs,” Appl. Phys. Lett.98(5), 051106 (2011).
[CrossRef]

C. Y. Cho, M. K. Kwon, S. J. Lee, S. H. Han, J. W. Kang, S. E. Kang, D. Y. Lee, and S. J. Park, “Surface plasmon-enhanced light-emitting diodes using silver nanoparticles embedded in p-GaN,” Nanotechnology21(20), 205201 (2010).
[CrossRef] [PubMed]

M. K. Kwon, J. Y. Kim, B. H. Kim, I. K. Park, C. Y. Cho, C. C. Byeon, and S. J. Park, “Surface-plasmon-enhanced light-emitting diodes,” Adv. Mater.20(7), 1253–1257 (2008).
[CrossRef]

Cho, Y. H.

C. Y. Cho, S. J. Lee, J. H. Song, S. H. Hong, S. M. Lee, Y. H. Cho, and S. J. Park, “Enhanced optical output power of green light-emitting diodes by surface plasmon of gold NPs,” Appl. Phys. Lett.98(5), 051106 (2011).
[CrossRef]

Choi, C. K.

C. K. Choi, Y. H. Kwon, B. D. Little, G. H. Gainer, J. J. Song, Y. C. Chang, S. Keller, U. K. Mishra, and S. P. DenBaars, “Time-resolved photoluminescence of InxGa1-xN/GaN multiple quantum well structures: effect of Si doping in the barriers,” Phys. Rev. B64(24), 245339 (2001).
[CrossRef]

Chuang, W. H.

Dal Negro, L.

Das, N. C.

N. C. Das, “Tunable infrared plasmonic absorption by metallic NPs,” J. Appl. Phys.110(4), 046101 (2011).
[CrossRef]

DenBaars, S. P.

D. F. Feezell, J. S. Speck, S. P. DenBaars, and S. Nakamura, “Semipolar (20-2-1) InGaN/GaN light-emitting diodes for high-efficiency solid-state lighting,” J. Display Technol.9(4), 190–198 (2013).
[CrossRef]

R. M. Farrell, E. C. Young, F. Wu, S. P. DenBaars, and J. S. Speck, “Materials and growth issues for high-performance nonpolar and semipolar light-emitting devices,” Semicond. Sci. Technol.27(2), 024001 (2012).
[CrossRef]

C. K. Choi, Y. H. Kwon, B. D. Little, G. H. Gainer, J. J. Song, Y. C. Chang, S. Keller, U. K. Mishra, and S. P. DenBaars, “Time-resolved photoluminescence of InxGa1-xN/GaN multiple quantum well structures: effect of Si doping in the barriers,” Phys. Rev. B64(24), 245339 (2001).
[CrossRef]

J. F. Muth, J. H. Lee, I. K. Shmagin, R. M. Kolbas, H. C. Casey, B. P. Keller, U. K. Mishra, and S. P. DenBaars, “Absorption coefficient, energy gap, exciton binding energy, and recombination lifetime of GaN obtained from transmission measurements,” Appl. Phys. Lett.71(18), 2572–2574 (1997).
[CrossRef]

Dierolf, V.

Dimakis, E.

DiMaria, J.

Ding, X. M.

Z. Z. Chen, Z. X. Qin, Y. Z. Tong, X. D. Hu, T. J. Yu, Z. J. Yang, X. M. Ding, Z. H. Li, and G. Y. Zhang, “Thermal annealing effects on Ni/Au contacts to p type GaN in different ambient,” Mater. Sci. Eng. B100(2), 199–203 (2003).
[CrossRef]

Ee, Y. K.

Farrell, R. M.

R. M. Farrell, E. C. Young, F. Wu, S. P. DenBaars, and J. S. Speck, “Materials and growth issues for high-performance nonpolar and semipolar light-emitting devices,” Semicond. Sci. Technol.27(2), 024001 (2012).
[CrossRef]

Feezell, D. F.

Gainer, G. H.

C. K. Choi, Y. H. Kwon, B. D. Little, G. H. Gainer, J. J. Song, Y. C. Chang, S. Keller, U. K. Mishra, and S. P. DenBaars, “Time-resolved photoluminescence of InxGa1-xN/GaN multiple quantum well structures: effect of Si doping in the barriers,” Phys. Rev. B64(24), 245339 (2001).
[CrossRef]

Gilchrist, J. F.

Han, S. H.

C. Y. Cho, M. K. Kwon, S. J. Lee, S. H. Han, J. W. Kang, S. E. Kang, D. Y. Lee, and S. J. Park, “Surface plasmon-enhanced light-emitting diodes using silver nanoparticles embedded in p-GaN,” Nanotechnology21(20), 205201 (2010).
[CrossRef] [PubMed]

Henson, J.

Hong, S. H.

C. Y. Cho, S. J. Lee, J. H. Song, S. H. Hong, S. M. Lee, Y. H. Cho, and S. J. Park, “Enhanced optical output power of green light-emitting diodes by surface plasmon of gold NPs,” Appl. Phys. Lett.98(5), 051106 (2011).
[CrossRef]

Hsieh, C.

C. W. Huang, H. Y. Tseng, C. Y. Chen, C. H. Liao, C. Hsieh, K. Y. Chen, H. Y. Lin, H. S. Chen, Y. L. Jung, Y. W. Kiang, and C. C. Yang, “Fabrication of surface metal nanoparticles and their induced surface plasmon coupling with subsurface InGaN/GaN quantum wells,” Nanotechnology22(47), 475201 (2011).
[CrossRef] [PubMed]

Y. Kuo, S. Y. Ting, C. H. Liao, J. J. Huang, C. Y. Chen, C. Hsieh, Y. C. Lu, C. Y. Chen, K. C. Shen, C. F. Lu, D. M. Yeh, J. Y. Wang, W. H. Chuang, Y. W. Kiang, and C. C. Yang, “Surface plasmon coupling with radiating dipole for enhancing the emission efficiency of a light-emitting diode,” Opt. Express19(S4Suppl 4), A914–A929 (2011).
[CrossRef] [PubMed]

C. F. Lu, C. H. Liao, C. Y. Chen, C. Hsieh, Y. W. Kiang, and C. C. Yang, “Reduction in the efficiency droop effect of a light-emitting diode through surface plasmon coupling,” Appl. Phys. Lett.96(26), 261104 (2010).
[CrossRef]

Hsieh, J. H.

J. H. Hsieh, C. Li, Y. Y. Wu, and S. C. Jang, “Optoelectronic properties of sputter-deposited Ag-SiO2 NP films by rapid thermal annealing,” Curr. Appl. Phys.11(1), S328–S332 (2011).
[CrossRef]

Hu, X. D.

Z. Z. Chen, Z. X. Qin, Y. Z. Tong, X. D. Hu, T. J. Yu, Z. J. Yang, X. M. Ding, Z. H. Li, and G. Y. Zhang, “Thermal annealing effects on Ni/Au contacts to p type GaN in different ambient,” Mater. Sci. Eng. B100(2), 199–203 (2003).
[CrossRef]

Huang, C. F.

D. M. Yeh, C. F. Huang, C. Y. Chen, Y. C. Lu, and C. C. Yang, “Localized surface plasmon-induced emission enhancement of a green light-emitting diode,” Nanotechnology19(34), 345201 (2008).
[CrossRef] [PubMed]

D. M. Yeh, C. F. Huang, C. Y. Chen, Y. C. Lu, and C. C. Yang, “Surface plasmon coupling effect in an InGaN/GaN single-quantum-well light-emitting diode,” Appl. Phys. Lett.91(17), 171103 (2007).
[CrossRef]

D. M. Yeh, C. Y. Chen, Y. C. Lu, C. F. Huang, and C. C. Yang, “Formation of various metal nanostructures with thermal annealing to control the effective coupling energy between a surface plasmon and an InGaN/GaN quantum well,” Nanotechnology18(26), 265402 (2007).
[CrossRef] [PubMed]

Huang, C. W.

C. W. Huang, H. Y. Tseng, C. Y. Chen, C. H. Liao, C. Hsieh, K. Y. Chen, H. Y. Lin, H. S. Chen, Y. L. Jung, Y. W. Kiang, and C. C. Yang, “Fabrication of surface metal nanoparticles and their induced surface plasmon coupling with subsurface InGaN/GaN quantum wells,” Nanotechnology22(47), 475201 (2011).
[CrossRef] [PubMed]

Huang, J. J.

Huang, X.

S. Auer, W. J. Wan, X. Huang, A. G. Ramirez, and H. Cao, “Morphology-induced plasmonic resonances in silver-aluminum alloy thin films,” Appl. Phys. Lett.99(4), 041116 (2011).
[CrossRef]

Jang, S. C.

J. H. Hsieh, C. Li, Y. Y. Wu, and S. C. Jang, “Optoelectronic properties of sputter-deposited Ag-SiO2 NP films by rapid thermal annealing,” Curr. Appl. Phys.11(1), S328–S332 (2011).
[CrossRef]

Jung, G. Y.

C. Y. Cho, K. S. Kim, S. J. Lee, M. K. Kwon, H. Ko, S. T. Kim, G. Y. Jung, and S. J. Park, “Surface plasmon-enhanced light-emitting diodes with silver NPs and SiO2 nano-disks embedded in p-GaN,” Appl. Phys. Lett.99(4), 041107 (2011).
[CrossRef]

Jung, Y. L.

C. W. Huang, H. Y. Tseng, C. Y. Chen, C. H. Liao, C. Hsieh, K. Y. Chen, H. Y. Lin, H. S. Chen, Y. L. Jung, Y. W. Kiang, and C. C. Yang, “Fabrication of surface metal nanoparticles and their induced surface plasmon coupling with subsurface InGaN/GaN quantum wells,” Nanotechnology22(47), 475201 (2011).
[CrossRef] [PubMed]

Kang, J. W.

C. Y. Cho, M. K. Kwon, S. J. Lee, S. H. Han, J. W. Kang, S. E. Kang, D. Y. Lee, and S. J. Park, “Surface plasmon-enhanced light-emitting diodes using silver nanoparticles embedded in p-GaN,” Nanotechnology21(20), 205201 (2010).
[CrossRef] [PubMed]

Kang, S. E.

C. Y. Cho, M. K. Kwon, S. J. Lee, S. H. Han, J. W. Kang, S. E. Kang, D. Y. Lee, and S. J. Park, “Surface plasmon-enhanced light-emitting diodes using silver nanoparticles embedded in p-GaN,” Nanotechnology21(20), 205201 (2010).
[CrossRef] [PubMed]

Kawakami, Y.

K. Okamoto, I. Niki, A. Scherer, Y. Narukawa, T. Mukai, and Y. Kawakami, “Surface plasmon enhanced spontaneous emission rate of InGaN/GaN quantum wells probed by time-resolved photoluminescence spectroscopy,” Appl. Phys. Lett.87(7), 071102 (2005).
[CrossRef]

Keller, B. P.

J. F. Muth, J. H. Lee, I. K. Shmagin, R. M. Kolbas, H. C. Casey, B. P. Keller, U. K. Mishra, and S. P. DenBaars, “Absorption coefficient, energy gap, exciton binding energy, and recombination lifetime of GaN obtained from transmission measurements,” Appl. Phys. Lett.71(18), 2572–2574 (1997).
[CrossRef]

Keller, S.

C. K. Choi, Y. H. Kwon, B. D. Little, G. H. Gainer, J. J. Song, Y. C. Chang, S. Keller, U. K. Mishra, and S. P. DenBaars, “Time-resolved photoluminescence of InxGa1-xN/GaN multiple quantum well structures: effect of Si doping in the barriers,” Phys. Rev. B64(24), 245339 (2001).
[CrossRef]

Kiang, Y. W.

C. W. Huang, H. Y. Tseng, C. Y. Chen, C. H. Liao, C. Hsieh, K. Y. Chen, H. Y. Lin, H. S. Chen, Y. L. Jung, Y. W. Kiang, and C. C. Yang, “Fabrication of surface metal nanoparticles and their induced surface plasmon coupling with subsurface InGaN/GaN quantum wells,” Nanotechnology22(47), 475201 (2011).
[CrossRef] [PubMed]

Y. Kuo, S. Y. Ting, C. H. Liao, J. J. Huang, C. Y. Chen, C. Hsieh, Y. C. Lu, C. Y. Chen, K. C. Shen, C. F. Lu, D. M. Yeh, J. Y. Wang, W. H. Chuang, Y. W. Kiang, and C. C. Yang, “Surface plasmon coupling with radiating dipole for enhancing the emission efficiency of a light-emitting diode,” Opt. Express19(S4Suppl 4), A914–A929 (2011).
[CrossRef] [PubMed]

C. F. Lu, C. H. Liao, C. Y. Chen, C. Hsieh, Y. W. Kiang, and C. C. Yang, “Reduction in the efficiency droop effect of a light-emitting diode through surface plasmon coupling,” Appl. Phys. Lett.96(26), 261104 (2010).
[CrossRef]

J. Y. Wang, Y. W. Kiang, and C. C. Yang, “Emission enhancement behaviors in the coupling between surface plasmon polariton on a one-dimensional metallic grating and a light emitter,” Appl. Phys. Lett.91(23), 233104 (2007).
[CrossRef]

Kim, B. H.

M. K. Kwon, J. Y. Kim, B. H. Kim, I. K. Park, C. Y. Cho, C. C. Byeon, and S. J. Park, “Surface-plasmon-enhanced light-emitting diodes,” Adv. Mater.20(7), 1253–1257 (2008).
[CrossRef]

Kim, J. Y.

M. K. Kwon, J. Y. Kim, B. H. Kim, I. K. Park, C. Y. Cho, C. C. Byeon, and S. J. Park, “Surface-plasmon-enhanced light-emitting diodes,” Adv. Mater.20(7), 1253–1257 (2008).
[CrossRef]

Kim, K. S.

C. Y. Cho, K. S. Kim, S. J. Lee, M. K. Kwon, H. Ko, S. T. Kim, G. Y. Jung, and S. J. Park, “Surface plasmon-enhanced light-emitting diodes with silver NPs and SiO2 nano-disks embedded in p-GaN,” Appl. Phys. Lett.99(4), 041107 (2011).
[CrossRef]

Kim, S. T.

C. Y. Cho, K. S. Kim, S. J. Lee, M. K. Kwon, H. Ko, S. T. Kim, G. Y. Jung, and S. J. Park, “Surface plasmon-enhanced light-emitting diodes with silver NPs and SiO2 nano-disks embedded in p-GaN,” Appl. Phys. Lett.99(4), 041107 (2011).
[CrossRef]

Ko, H.

C. Y. Cho, K. S. Kim, S. J. Lee, M. K. Kwon, H. Ko, S. T. Kim, G. Y. Jung, and S. J. Park, “Surface plasmon-enhanced light-emitting diodes with silver NPs and SiO2 nano-disks embedded in p-GaN,” Appl. Phys. Lett.99(4), 041107 (2011).
[CrossRef]

Kolbas, R. M.

J. F. Muth, J. H. Lee, I. K. Shmagin, R. M. Kolbas, H. C. Casey, B. P. Keller, U. K. Mishra, and S. P. DenBaars, “Absorption coefficient, energy gap, exciton binding energy, and recombination lifetime of GaN obtained from transmission measurements,” Appl. Phys. Lett.71(18), 2572–2574 (1997).
[CrossRef]

Kuech, T. F.

T. F. Kuech and L. J. Mawst, “Nanofabrication of III–V semiconductors employing diblock copolymer lithography,” J. Phys. D Appl. Phys.43(18), 183001 (2010).
[CrossRef]

Kumnorkaew, P.

Kuo, Y.

Kwon, M. K.

C. Y. Cho, K. S. Kim, S. J. Lee, M. K. Kwon, H. Ko, S. T. Kim, G. Y. Jung, and S. J. Park, “Surface plasmon-enhanced light-emitting diodes with silver NPs and SiO2 nano-disks embedded in p-GaN,” Appl. Phys. Lett.99(4), 041107 (2011).
[CrossRef]

C. Y. Cho, M. K. Kwon, S. J. Lee, S. H. Han, J. W. Kang, S. E. Kang, D. Y. Lee, and S. J. Park, “Surface plasmon-enhanced light-emitting diodes using silver nanoparticles embedded in p-GaN,” Nanotechnology21(20), 205201 (2010).
[CrossRef] [PubMed]

M. K. Kwon, J. Y. Kim, B. H. Kim, I. K. Park, C. Y. Cho, C. C. Byeon, and S. J. Park, “Surface-plasmon-enhanced light-emitting diodes,” Adv. Mater.20(7), 1253–1257 (2008).
[CrossRef]

Kwon, Y. H.

C. K. Choi, Y. H. Kwon, B. D. Little, G. H. Gainer, J. J. Song, Y. C. Chang, S. Keller, U. K. Mishra, and S. P. DenBaars, “Time-resolved photoluminescence of InxGa1-xN/GaN multiple quantum well structures: effect of Si doping in the barriers,” Phys. Rev. B64(24), 245339 (2001).
[CrossRef]

Lee, D. Y.

C. Y. Cho, M. K. Kwon, S. J. Lee, S. H. Han, J. W. Kang, S. E. Kang, D. Y. Lee, and S. J. Park, “Surface plasmon-enhanced light-emitting diodes using silver nanoparticles embedded in p-GaN,” Nanotechnology21(20), 205201 (2010).
[CrossRef] [PubMed]

Lee, J. H.

J. F. Muth, J. H. Lee, I. K. Shmagin, R. M. Kolbas, H. C. Casey, B. P. Keller, U. K. Mishra, and S. P. DenBaars, “Absorption coefficient, energy gap, exciton binding energy, and recombination lifetime of GaN obtained from transmission measurements,” Appl. Phys. Lett.71(18), 2572–2574 (1997).
[CrossRef]

Lee, S. J.

C. Y. Cho, S. J. Lee, J. H. Song, S. H. Hong, S. M. Lee, Y. H. Cho, and S. J. Park, “Enhanced optical output power of green light-emitting diodes by surface plasmon of gold NPs,” Appl. Phys. Lett.98(5), 051106 (2011).
[CrossRef]

C. Y. Cho, K. S. Kim, S. J. Lee, M. K. Kwon, H. Ko, S. T. Kim, G. Y. Jung, and S. J. Park, “Surface plasmon-enhanced light-emitting diodes with silver NPs and SiO2 nano-disks embedded in p-GaN,” Appl. Phys. Lett.99(4), 041107 (2011).
[CrossRef]

C. Y. Cho, M. K. Kwon, S. J. Lee, S. H. Han, J. W. Kang, S. E. Kang, D. Y. Lee, and S. J. Park, “Surface plasmon-enhanced light-emitting diodes using silver nanoparticles embedded in p-GaN,” Nanotechnology21(20), 205201 (2010).
[CrossRef] [PubMed]

Lee, S. M.

C. Y. Cho, S. J. Lee, J. H. Song, S. H. Hong, S. M. Lee, Y. H. Cho, and S. J. Park, “Enhanced optical output power of green light-emitting diodes by surface plasmon of gold NPs,” Appl. Phys. Lett.98(5), 051106 (2011).
[CrossRef]

Li, C.

J. H. Hsieh, C. Li, Y. Y. Wu, and S. C. Jang, “Optoelectronic properties of sputter-deposited Ag-SiO2 NP films by rapid thermal annealing,” Curr. Appl. Phys.11(1), S328–S332 (2011).
[CrossRef]

Li, R.

Li, X. H.

Li, Z. H.

Z. Z. Chen, Z. X. Qin, Y. Z. Tong, X. D. Hu, T. J. Yu, Z. J. Yang, X. M. Ding, Z. H. Li, and G. Y. Zhang, “Thermal annealing effects on Ni/Au contacts to p type GaN in different ambient,” Mater. Sci. Eng. B100(2), 199–203 (2003).
[CrossRef]

Liao, C. H.

C. W. Huang, H. Y. Tseng, C. Y. Chen, C. H. Liao, C. Hsieh, K. Y. Chen, H. Y. Lin, H. S. Chen, Y. L. Jung, Y. W. Kiang, and C. C. Yang, “Fabrication of surface metal nanoparticles and their induced surface plasmon coupling with subsurface InGaN/GaN quantum wells,” Nanotechnology22(47), 475201 (2011).
[CrossRef] [PubMed]

Y. Kuo, S. Y. Ting, C. H. Liao, J. J. Huang, C. Y. Chen, C. Hsieh, Y. C. Lu, C. Y. Chen, K. C. Shen, C. F. Lu, D. M. Yeh, J. Y. Wang, W. H. Chuang, Y. W. Kiang, and C. C. Yang, “Surface plasmon coupling with radiating dipole for enhancing the emission efficiency of a light-emitting diode,” Opt. Express19(S4Suppl 4), A914–A929 (2011).
[CrossRef] [PubMed]

C. F. Lu, C. H. Liao, C. Y. Chen, C. Hsieh, Y. W. Kiang, and C. C. Yang, “Reduction in the efficiency droop effect of a light-emitting diode through surface plasmon coupling,” Appl. Phys. Lett.96(26), 261104 (2010).
[CrossRef]

Lin, H. Y.

C. W. Huang, H. Y. Tseng, C. Y. Chen, C. H. Liao, C. Hsieh, K. Y. Chen, H. Y. Lin, H. S. Chen, Y. L. Jung, Y. W. Kiang, and C. C. Yang, “Fabrication of surface metal nanoparticles and their induced surface plasmon coupling with subsurface InGaN/GaN quantum wells,” Nanotechnology22(47), 475201 (2011).
[CrossRef] [PubMed]

Little, B. D.

C. K. Choi, Y. H. Kwon, B. D. Little, G. H. Gainer, J. J. Song, Y. C. Chang, S. Keller, U. K. Mishra, and S. P. DenBaars, “Time-resolved photoluminescence of InxGa1-xN/GaN multiple quantum well structures: effect of Si doping in the barriers,” Phys. Rev. B64(24), 245339 (2001).
[CrossRef]

Liu, G. Y.

Lu, C. F.

Lu, Y. C.

Y. Kuo, S. Y. Ting, C. H. Liao, J. J. Huang, C. Y. Chen, C. Hsieh, Y. C. Lu, C. Y. Chen, K. C. Shen, C. F. Lu, D. M. Yeh, J. Y. Wang, W. H. Chuang, Y. W. Kiang, and C. C. Yang, “Surface plasmon coupling with radiating dipole for enhancing the emission efficiency of a light-emitting diode,” Opt. Express19(S4Suppl 4), A914–A929 (2011).
[CrossRef] [PubMed]

D. M. Yeh, C. F. Huang, C. Y. Chen, Y. C. Lu, and C. C. Yang, “Localized surface plasmon-induced emission enhancement of a green light-emitting diode,” Nanotechnology19(34), 345201 (2008).
[CrossRef] [PubMed]

D. M. Yeh, C. Y. Chen, Y. C. Lu, C. F. Huang, and C. C. Yang, “Formation of various metal nanostructures with thermal annealing to control the effective coupling energy between a surface plasmon and an InGaN/GaN quantum well,” Nanotechnology18(26), 265402 (2007).
[CrossRef] [PubMed]

D. M. Yeh, C. F. Huang, C. Y. Chen, Y. C. Lu, and C. C. Yang, “Surface plasmon coupling effect in an InGaN/GaN single-quantum-well light-emitting diode,” Appl. Phys. Lett.91(17), 171103 (2007).
[CrossRef]

C. Y. Chen, Y. C. Lu, D. M. Yeh, and C. C. Yang, “Influence of the quantum-confined stark effect in an InGaN/GaN quantum well on its coupling with surface plasmon for light emission enhancement,” Appl. Phys. Lett.90(18), 183114 (2007).
[CrossRef]

C. Y. Chen, D. M. Yeh, Y. C. Lu, and C. C. Yang, “Dependence of resonant coupling between surface plasmons and an InGaN quantum well on metallic structure,” Appl. Phys. Lett.89(20), 203113 (2006).
[CrossRef]

Mawst, L. J.

G. Y. Liu, H. P. Zhao, J. Zhang, J. H. Park, L. J. Mawst, and N. Tansu, “Selective area epitaxy of ultra-high density InGaN quantum dots by diblock copolymer lithography,” Nanoscale Res. Lett.6(1), 342–352 (2011).
[CrossRef] [PubMed]

T. F. Kuech and L. J. Mawst, “Nanofabrication of III–V semiconductors employing diblock copolymer lithography,” J. Phys. D Appl. Phys.43(18), 183001 (2010).
[CrossRef]

Minissale, S.

Mishra, U. K.

C. K. Choi, Y. H. Kwon, B. D. Little, G. H. Gainer, J. J. Song, Y. C. Chang, S. Keller, U. K. Mishra, and S. P. DenBaars, “Time-resolved photoluminescence of InxGa1-xN/GaN multiple quantum well structures: effect of Si doping in the barriers,” Phys. Rev. B64(24), 245339 (2001).
[CrossRef]

J. F. Muth, J. H. Lee, I. K. Shmagin, R. M. Kolbas, H. C. Casey, B. P. Keller, U. K. Mishra, and S. P. DenBaars, “Absorption coefficient, energy gap, exciton binding energy, and recombination lifetime of GaN obtained from transmission measurements,” Appl. Phys. Lett.71(18), 2572–2574 (1997).
[CrossRef]

Moustakas, T. D.

Mukai, T.

K. Okamoto, I. Niki, A. Scherer, Y. Narukawa, T. Mukai, and Y. Kawakami, “Surface plasmon enhanced spontaneous emission rate of InGaN/GaN quantum wells probed by time-resolved photoluminescence spectroscopy,” Appl. Phys. Lett.87(7), 071102 (2005).
[CrossRef]

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater.3(9), 601–605 (2004).
[CrossRef] [PubMed]

Muth, J. F.

J. F. Muth, J. H. Lee, I. K. Shmagin, R. M. Kolbas, H. C. Casey, B. P. Keller, U. K. Mishra, and S. P. DenBaars, “Absorption coefficient, energy gap, exciton binding energy, and recombination lifetime of GaN obtained from transmission measurements,” Appl. Phys. Lett.71(18), 2572–2574 (1997).
[CrossRef]

Nakamura, S.

Narukawa, Y.

K. Okamoto, I. Niki, A. Scherer, Y. Narukawa, T. Mukai, and Y. Kawakami, “Surface plasmon enhanced spontaneous emission rate of InGaN/GaN quantum wells probed by time-resolved photoluminescence spectroscopy,” Appl. Phys. Lett.87(7), 071102 (2005).
[CrossRef]

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater.3(9), 601–605 (2004).
[CrossRef] [PubMed]

Niki, I.

K. Okamoto, I. Niki, A. Scherer, Y. Narukawa, T. Mukai, and Y. Kawakami, “Surface plasmon enhanced spontaneous emission rate of InGaN/GaN quantum wells probed by time-resolved photoluminescence spectroscopy,” Appl. Phys. Lett.87(7), 071102 (2005).
[CrossRef]

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater.3(9), 601–605 (2004).
[CrossRef] [PubMed]

Okamoto, K.

K. Okamoto, I. Niki, A. Scherer, Y. Narukawa, T. Mukai, and Y. Kawakami, “Surface plasmon enhanced spontaneous emission rate of InGaN/GaN quantum wells probed by time-resolved photoluminescence spectroscopy,” Appl. Phys. Lett.87(7), 071102 (2005).
[CrossRef]

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater.3(9), 601–605 (2004).
[CrossRef] [PubMed]

Paiella, R.

Park, I. K.

M. K. Kwon, J. Y. Kim, B. H. Kim, I. K. Park, C. Y. Cho, C. C. Byeon, and S. J. Park, “Surface-plasmon-enhanced light-emitting diodes,” Adv. Mater.20(7), 1253–1257 (2008).
[CrossRef]

Park, J. H.

G. Y. Liu, H. P. Zhao, J. Zhang, J. H. Park, L. J. Mawst, and N. Tansu, “Selective area epitaxy of ultra-high density InGaN quantum dots by diblock copolymer lithography,” Nanoscale Res. Lett.6(1), 342–352 (2011).
[CrossRef] [PubMed]

Park, S. J.

C. Y. Cho, K. S. Kim, S. J. Lee, M. K. Kwon, H. Ko, S. T. Kim, G. Y. Jung, and S. J. Park, “Surface plasmon-enhanced light-emitting diodes with silver NPs and SiO2 nano-disks embedded in p-GaN,” Appl. Phys. Lett.99(4), 041107 (2011).
[CrossRef]

C. Y. Cho, S. J. Lee, J. H. Song, S. H. Hong, S. M. Lee, Y. H. Cho, and S. J. Park, “Enhanced optical output power of green light-emitting diodes by surface plasmon of gold NPs,” Appl. Phys. Lett.98(5), 051106 (2011).
[CrossRef]

C. Y. Cho, M. K. Kwon, S. J. Lee, S. H. Han, J. W. Kang, S. E. Kang, D. Y. Lee, and S. J. Park, “Surface plasmon-enhanced light-emitting diodes using silver nanoparticles embedded in p-GaN,” Nanotechnology21(20), 205201 (2010).
[CrossRef] [PubMed]

M. K. Kwon, J. Y. Kim, B. H. Kim, I. K. Park, C. Y. Cho, C. C. Byeon, and S. J. Park, “Surface-plasmon-enhanced light-emitting diodes,” Adv. Mater.20(7), 1253–1257 (2008).
[CrossRef]

Poplawsky, J. D.

Qin, Z. X.

Z. Z. Chen, Z. X. Qin, Y. Z. Tong, X. D. Hu, T. J. Yu, Z. J. Yang, X. M. Ding, Z. H. Li, and G. Y. Zhang, “Thermal annealing effects on Ni/Au contacts to p type GaN in different ambient,” Mater. Sci. Eng. B100(2), 199–203 (2003).
[CrossRef]

Ramirez, A. G.

S. Auer, W. J. Wan, X. Huang, A. G. Ramirez, and H. Cao, “Morphology-induced plasmonic resonances in silver-aluminum alloy thin films,” Appl. Phys. Lett.99(4), 041116 (2011).
[CrossRef]

Scherer, A.

K. Okamoto, I. Niki, A. Scherer, Y. Narukawa, T. Mukai, and Y. Kawakami, “Surface plasmon enhanced spontaneous emission rate of InGaN/GaN quantum wells probed by time-resolved photoluminescence spectroscopy,” Appl. Phys. Lett.87(7), 071102 (2005).
[CrossRef]

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater.3(9), 601–605 (2004).
[CrossRef] [PubMed]

Shen, K. C.

Shmagin, I. K.

J. F. Muth, J. H. Lee, I. K. Shmagin, R. M. Kolbas, H. C. Casey, B. P. Keller, U. K. Mishra, and S. P. DenBaars, “Absorption coefficient, energy gap, exciton binding energy, and recombination lifetime of GaN obtained from transmission measurements,” Appl. Phys. Lett.71(18), 2572–2574 (1997).
[CrossRef]

Shvartser, A.

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater.3(9), 601–605 (2004).
[CrossRef] [PubMed]

Song, J. H.

C. Y. Cho, S. J. Lee, J. H. Song, S. H. Hong, S. M. Lee, Y. H. Cho, and S. J. Park, “Enhanced optical output power of green light-emitting diodes by surface plasmon of gold NPs,” Appl. Phys. Lett.98(5), 051106 (2011).
[CrossRef]

Song, J. J.

C. K. Choi, Y. H. Kwon, B. D. Little, G. H. Gainer, J. J. Song, Y. C. Chang, S. Keller, U. K. Mishra, and S. P. DenBaars, “Time-resolved photoluminescence of InxGa1-xN/GaN multiple quantum well structures: effect of Si doping in the barriers,” Phys. Rev. B64(24), 245339 (2001).
[CrossRef]

Song, R.

Speck, J. S.

D. F. Feezell, J. S. Speck, S. P. DenBaars, and S. Nakamura, “Semipolar (20-2-1) InGaN/GaN light-emitting diodes for high-efficiency solid-state lighting,” J. Display Technol.9(4), 190–198 (2013).
[CrossRef]

R. M. Farrell, E. C. Young, F. Wu, S. P. DenBaars, and J. S. Speck, “Materials and growth issues for high-performance nonpolar and semipolar light-emitting devices,” Semicond. Sci. Technol.27(2), 024001 (2012).
[CrossRef]

Tan, C. K.

Tansu, N.

J. Zhang and N. Tansu, “Optical gain and laser characteristics of InGaN quantum wells on ternary InGaN substrates,” IEEE Photon. J.5(2), 2600111 (2013).
[CrossRef]

C. K. Tan, J. Zhang, X. H. Li, G. Y. Liu, B. O. Tayo, and N. Tansu, “First-principle electronic properties of dilute-As GaNAs alloy for visible light emitters,” J. Display Technol.9(4), 272–279 (2013).
[CrossRef]

X. H. Li, P. F. Zhu, G. Y. Liu, J. Zhang, R. Song, Y. K. Ee, P. Kumnorkaew, J. F. Gilchrist, and N. Tansu, “Light extraction efficiency enhancement of III-Nitride light-emitting diodes by using 2-D close-packed TiO2 microsphere Arrays,” J. Display Technol.9(5), 324–332 (2013).
[CrossRef]

G. Y. Liu, H. P. Zhao, J. Zhang, J. H. Park, L. J. Mawst, and N. Tansu, “Selective area epitaxy of ultra-high density InGaN quantum dots by diblock copolymer lithography,” Nanoscale Res. Lett.6(1), 342–352 (2011).
[CrossRef] [PubMed]

H. P. Zhao, G. Y. Liu, J. Zhang, J. D. Poplawsky, V. Dierolf, and N. Tansu, “Approaches for high internal quantum efficiency green InGaN light-emitting diodes with large overlap quantum wells,” Opt. Express19(S4Suppl 4), A991–A1007 (2011).
[CrossRef] [PubMed]

H. P. Zhao, J. Zhang, G. Y. Liu, and N. Tansu, “Surface plasmon dispersion engineering via double-metallic Au/Ag layers for III-nitride based light-emitting diodes,” Appl. Phys. Lett.98(15), 151115 (2011).
[CrossRef]

Tayo, B. O.

Ting, S. Y.

Tominaga, J.

J. Tominaga, “The application of silver oxide thin films to plasmon photonic devices,” J. Phys. Condens. Matter15(25), R1101–R1122 (2003).
[CrossRef]

Tong, Y. Z.

Z. Z. Chen, Z. X. Qin, Y. Z. Tong, X. D. Hu, T. J. Yu, Z. J. Yang, X. M. Ding, Z. H. Li, and G. Y. Zhang, “Thermal annealing effects on Ni/Au contacts to p type GaN in different ambient,” Mater. Sci. Eng. B100(2), 199–203 (2003).
[CrossRef]

Tseng, H. Y.

C. W. Huang, H. Y. Tseng, C. Y. Chen, C. H. Liao, C. Hsieh, K. Y. Chen, H. Y. Lin, H. S. Chen, Y. L. Jung, Y. W. Kiang, and C. C. Yang, “Fabrication of surface metal nanoparticles and their induced surface plasmon coupling with subsurface InGaN/GaN quantum wells,” Nanotechnology22(47), 475201 (2011).
[CrossRef] [PubMed]

Wan, W. J.

S. Auer, W. J. Wan, X. Huang, A. G. Ramirez, and H. Cao, “Morphology-induced plasmonic resonances in silver-aluminum alloy thin films,” Appl. Phys. Lett.99(4), 041116 (2011).
[CrossRef]

Wang, J. Y.

Wu, F.

R. M. Farrell, E. C. Young, F. Wu, S. P. DenBaars, and J. S. Speck, “Materials and growth issues for high-performance nonpolar and semipolar light-emitting devices,” Semicond. Sci. Technol.27(2), 024001 (2012).
[CrossRef]

Wu, Y. Y.

J. H. Hsieh, C. Li, Y. Y. Wu, and S. C. Jang, “Optoelectronic properties of sputter-deposited Ag-SiO2 NP films by rapid thermal annealing,” Curr. Appl. Phys.11(1), S328–S332 (2011).
[CrossRef]

Yang, C. C.

C. W. Huang, H. Y. Tseng, C. Y. Chen, C. H. Liao, C. Hsieh, K. Y. Chen, H. Y. Lin, H. S. Chen, Y. L. Jung, Y. W. Kiang, and C. C. Yang, “Fabrication of surface metal nanoparticles and their induced surface plasmon coupling with subsurface InGaN/GaN quantum wells,” Nanotechnology22(47), 475201 (2011).
[CrossRef] [PubMed]

Y. Kuo, S. Y. Ting, C. H. Liao, J. J. Huang, C. Y. Chen, C. Hsieh, Y. C. Lu, C. Y. Chen, K. C. Shen, C. F. Lu, D. M. Yeh, J. Y. Wang, W. H. Chuang, Y. W. Kiang, and C. C. Yang, “Surface plasmon coupling with radiating dipole for enhancing the emission efficiency of a light-emitting diode,” Opt. Express19(S4Suppl 4), A914–A929 (2011).
[CrossRef] [PubMed]

C. F. Lu, C. H. Liao, C. Y. Chen, C. Hsieh, Y. W. Kiang, and C. C. Yang, “Reduction in the efficiency droop effect of a light-emitting diode through surface plasmon coupling,” Appl. Phys. Lett.96(26), 261104 (2010).
[CrossRef]

D. M. Yeh, C. F. Huang, C. Y. Chen, Y. C. Lu, and C. C. Yang, “Localized surface plasmon-induced emission enhancement of a green light-emitting diode,” Nanotechnology19(34), 345201 (2008).
[CrossRef] [PubMed]

D. M. Yeh, C. Y. Chen, Y. C. Lu, C. F. Huang, and C. C. Yang, “Formation of various metal nanostructures with thermal annealing to control the effective coupling energy between a surface plasmon and an InGaN/GaN quantum well,” Nanotechnology18(26), 265402 (2007).
[CrossRef] [PubMed]

J. Y. Wang, Y. W. Kiang, and C. C. Yang, “Emission enhancement behaviors in the coupling between surface plasmon polariton on a one-dimensional metallic grating and a light emitter,” Appl. Phys. Lett.91(23), 233104 (2007).
[CrossRef]

D. M. Yeh, C. F. Huang, C. Y. Chen, Y. C. Lu, and C. C. Yang, “Surface plasmon coupling effect in an InGaN/GaN single-quantum-well light-emitting diode,” Appl. Phys. Lett.91(17), 171103 (2007).
[CrossRef]

C. Y. Chen, Y. C. Lu, D. M. Yeh, and C. C. Yang, “Influence of the quantum-confined stark effect in an InGaN/GaN quantum well on its coupling with surface plasmon for light emission enhancement,” Appl. Phys. Lett.90(18), 183114 (2007).
[CrossRef]

C. Y. Chen, D. M. Yeh, Y. C. Lu, and C. C. Yang, “Dependence of resonant coupling between surface plasmons and an InGaN quantum well on metallic structure,” Appl. Phys. Lett.89(20), 203113 (2006).
[CrossRef]

Yang, Z. J.

Z. Z. Chen, Z. X. Qin, Y. Z. Tong, X. D. Hu, T. J. Yu, Z. J. Yang, X. M. Ding, Z. H. Li, and G. Y. Zhang, “Thermal annealing effects on Ni/Au contacts to p type GaN in different ambient,” Mater. Sci. Eng. B100(2), 199–203 (2003).
[CrossRef]

Yeh, D. M.

Y. Kuo, S. Y. Ting, C. H. Liao, J. J. Huang, C. Y. Chen, C. Hsieh, Y. C. Lu, C. Y. Chen, K. C. Shen, C. F. Lu, D. M. Yeh, J. Y. Wang, W. H. Chuang, Y. W. Kiang, and C. C. Yang, “Surface plasmon coupling with radiating dipole for enhancing the emission efficiency of a light-emitting diode,” Opt. Express19(S4Suppl 4), A914–A929 (2011).
[CrossRef] [PubMed]

D. M. Yeh, C. F. Huang, C. Y. Chen, Y. C. Lu, and C. C. Yang, “Localized surface plasmon-induced emission enhancement of a green light-emitting diode,” Nanotechnology19(34), 345201 (2008).
[CrossRef] [PubMed]

D. M. Yeh, C. Y. Chen, Y. C. Lu, C. F. Huang, and C. C. Yang, “Formation of various metal nanostructures with thermal annealing to control the effective coupling energy between a surface plasmon and an InGaN/GaN quantum well,” Nanotechnology18(26), 265402 (2007).
[CrossRef] [PubMed]

D. M. Yeh, C. F. Huang, C. Y. Chen, Y. C. Lu, and C. C. Yang, “Surface plasmon coupling effect in an InGaN/GaN single-quantum-well light-emitting diode,” Appl. Phys. Lett.91(17), 171103 (2007).
[CrossRef]

C. Y. Chen, Y. C. Lu, D. M. Yeh, and C. C. Yang, “Influence of the quantum-confined stark effect in an InGaN/GaN quantum well on its coupling with surface plasmon for light emission enhancement,” Appl. Phys. Lett.90(18), 183114 (2007).
[CrossRef]

C. Y. Chen, D. M. Yeh, Y. C. Lu, and C. C. Yang, “Dependence of resonant coupling between surface plasmons and an InGaN quantum well on metallic structure,” Appl. Phys. Lett.89(20), 203113 (2006).
[CrossRef]

Young, E. C.

R. M. Farrell, E. C. Young, F. Wu, S. P. DenBaars, and J. S. Speck, “Materials and growth issues for high-performance nonpolar and semipolar light-emitting devices,” Semicond. Sci. Technol.27(2), 024001 (2012).
[CrossRef]

Yu, T. J.

Z. Z. Chen, Z. X. Qin, Y. Z. Tong, X. D. Hu, T. J. Yu, Z. J. Yang, X. M. Ding, Z. H. Li, and G. Y. Zhang, “Thermal annealing effects on Ni/Au contacts to p type GaN in different ambient,” Mater. Sci. Eng. B100(2), 199–203 (2003).
[CrossRef]

Zhang, G. Y.

Z. Z. Chen, Z. X. Qin, Y. Z. Tong, X. D. Hu, T. J. Yu, Z. J. Yang, X. M. Ding, Z. H. Li, and G. Y. Zhang, “Thermal annealing effects on Ni/Au contacts to p type GaN in different ambient,” Mater. Sci. Eng. B100(2), 199–203 (2003).
[CrossRef]

Zhang, J.

X. H. Li, P. F. Zhu, G. Y. Liu, J. Zhang, R. Song, Y. K. Ee, P. Kumnorkaew, J. F. Gilchrist, and N. Tansu, “Light extraction efficiency enhancement of III-Nitride light-emitting diodes by using 2-D close-packed TiO2 microsphere Arrays,” J. Display Technol.9(5), 324–332 (2013).
[CrossRef]

J. Zhang and N. Tansu, “Optical gain and laser characteristics of InGaN quantum wells on ternary InGaN substrates,” IEEE Photon. J.5(2), 2600111 (2013).
[CrossRef]

C. K. Tan, J. Zhang, X. H. Li, G. Y. Liu, B. O. Tayo, and N. Tansu, “First-principle electronic properties of dilute-As GaNAs alloy for visible light emitters,” J. Display Technol.9(4), 272–279 (2013).
[CrossRef]

H. P. Zhao, G. Y. Liu, J. Zhang, J. D. Poplawsky, V. Dierolf, and N. Tansu, “Approaches for high internal quantum efficiency green InGaN light-emitting diodes with large overlap quantum wells,” Opt. Express19(S4Suppl 4), A991–A1007 (2011).
[CrossRef] [PubMed]

H. P. Zhao, J. Zhang, G. Y. Liu, and N. Tansu, “Surface plasmon dispersion engineering via double-metallic Au/Ag layers for III-nitride based light-emitting diodes,” Appl. Phys. Lett.98(15), 151115 (2011).
[CrossRef]

G. Y. Liu, H. P. Zhao, J. Zhang, J. H. Park, L. J. Mawst, and N. Tansu, “Selective area epitaxy of ultra-high density InGaN quantum dots by diblock copolymer lithography,” Nanoscale Res. Lett.6(1), 342–352 (2011).
[CrossRef] [PubMed]

Zhao, H. P.

G. Y. Liu, H. P. Zhao, J. Zhang, J. H. Park, L. J. Mawst, and N. Tansu, “Selective area epitaxy of ultra-high density InGaN quantum dots by diblock copolymer lithography,” Nanoscale Res. Lett.6(1), 342–352 (2011).
[CrossRef] [PubMed]

H. P. Zhao, J. Zhang, G. Y. Liu, and N. Tansu, “Surface plasmon dispersion engineering via double-metallic Au/Ag layers for III-nitride based light-emitting diodes,” Appl. Phys. Lett.98(15), 151115 (2011).
[CrossRef]

H. P. Zhao, G. Y. Liu, J. Zhang, J. D. Poplawsky, V. Dierolf, and N. Tansu, “Approaches for high internal quantum efficiency green InGaN light-emitting diodes with large overlap quantum wells,” Opt. Express19(S4Suppl 4), A991–A1007 (2011).
[CrossRef] [PubMed]

Zhu, P. F.

Adv. Mater. (1)

M. K. Kwon, J. Y. Kim, B. H. Kim, I. K. Park, C. Y. Cho, C. C. Byeon, and S. J. Park, “Surface-plasmon-enhanced light-emitting diodes,” Adv. Mater.20(7), 1253–1257 (2008).
[CrossRef]

Appl. Phys. Lett. (11)

K. Okamoto, I. Niki, A. Scherer, Y. Narukawa, T. Mukai, and Y. Kawakami, “Surface plasmon enhanced spontaneous emission rate of InGaN/GaN quantum wells probed by time-resolved photoluminescence spectroscopy,” Appl. Phys. Lett.87(7), 071102 (2005).
[CrossRef]

C. Y. Cho, S. J. Lee, J. H. Song, S. H. Hong, S. M. Lee, Y. H. Cho, and S. J. Park, “Enhanced optical output power of green light-emitting diodes by surface plasmon of gold NPs,” Appl. Phys. Lett.98(5), 051106 (2011).
[CrossRef]

C. Y. Cho, K. S. Kim, S. J. Lee, M. K. Kwon, H. Ko, S. T. Kim, G. Y. Jung, and S. J. Park, “Surface plasmon-enhanced light-emitting diodes with silver NPs and SiO2 nano-disks embedded in p-GaN,” Appl. Phys. Lett.99(4), 041107 (2011).
[CrossRef]

D. M. Yeh, C. F. Huang, C. Y. Chen, Y. C. Lu, and C. C. Yang, “Surface plasmon coupling effect in an InGaN/GaN single-quantum-well light-emitting diode,” Appl. Phys. Lett.91(17), 171103 (2007).
[CrossRef]

C. F. Lu, C. H. Liao, C. Y. Chen, C. Hsieh, Y. W. Kiang, and C. C. Yang, “Reduction in the efficiency droop effect of a light-emitting diode through surface plasmon coupling,” Appl. Phys. Lett.96(26), 261104 (2010).
[CrossRef]

J. Y. Wang, Y. W. Kiang, and C. C. Yang, “Emission enhancement behaviors in the coupling between surface plasmon polariton on a one-dimensional metallic grating and a light emitter,” Appl. Phys. Lett.91(23), 233104 (2007).
[CrossRef]

C. Y. Chen, D. M. Yeh, Y. C. Lu, and C. C. Yang, “Dependence of resonant coupling between surface plasmons and an InGaN quantum well on metallic structure,” Appl. Phys. Lett.89(20), 203113 (2006).
[CrossRef]

H. P. Zhao, J. Zhang, G. Y. Liu, and N. Tansu, “Surface plasmon dispersion engineering via double-metallic Au/Ag layers for III-nitride based light-emitting diodes,” Appl. Phys. Lett.98(15), 151115 (2011).
[CrossRef]

S. Auer, W. J. Wan, X. Huang, A. G. Ramirez, and H. Cao, “Morphology-induced plasmonic resonances in silver-aluminum alloy thin films,” Appl. Phys. Lett.99(4), 041116 (2011).
[CrossRef]

J. F. Muth, J. H. Lee, I. K. Shmagin, R. M. Kolbas, H. C. Casey, B. P. Keller, U. K. Mishra, and S. P. DenBaars, “Absorption coefficient, energy gap, exciton binding energy, and recombination lifetime of GaN obtained from transmission measurements,” Appl. Phys. Lett.71(18), 2572–2574 (1997).
[CrossRef]

C. Y. Chen, Y. C. Lu, D. M. Yeh, and C. C. Yang, “Influence of the quantum-confined stark effect in an InGaN/GaN quantum well on its coupling with surface plasmon for light emission enhancement,” Appl. Phys. Lett.90(18), 183114 (2007).
[CrossRef]

Curr. Appl. Phys. (1)

J. H. Hsieh, C. Li, Y. Y. Wu, and S. C. Jang, “Optoelectronic properties of sputter-deposited Ag-SiO2 NP films by rapid thermal annealing,” Curr. Appl. Phys.11(1), S328–S332 (2011).
[CrossRef]

IEEE Photon. J. (1)

J. Zhang and N. Tansu, “Optical gain and laser characteristics of InGaN quantum wells on ternary InGaN substrates,” IEEE Photon. J.5(2), 2600111 (2013).
[CrossRef]

J. Appl. Phys. (1)

N. C. Das, “Tunable infrared plasmonic absorption by metallic NPs,” J. Appl. Phys.110(4), 046101 (2011).
[CrossRef]

J. Display Technol. (3)

J. Phys. Condens. Matter (1)

J. Tominaga, “The application of silver oxide thin films to plasmon photonic devices,” J. Phys. Condens. Matter15(25), R1101–R1122 (2003).
[CrossRef]

J. Phys. D Appl. Phys. (1)

T. F. Kuech and L. J. Mawst, “Nanofabrication of III–V semiconductors employing diblock copolymer lithography,” J. Phys. D Appl. Phys.43(18), 183001 (2010).
[CrossRef]

Mater. Sci. Eng. B (1)

Z. Z. Chen, Z. X. Qin, Y. Z. Tong, X. D. Hu, T. J. Yu, Z. J. Yang, X. M. Ding, Z. H. Li, and G. Y. Zhang, “Thermal annealing effects on Ni/Au contacts to p type GaN in different ambient,” Mater. Sci. Eng. B100(2), 199–203 (2003).
[CrossRef]

Nanoscale Res. Lett. (1)

G. Y. Liu, H. P. Zhao, J. Zhang, J. H. Park, L. J. Mawst, and N. Tansu, “Selective area epitaxy of ultra-high density InGaN quantum dots by diblock copolymer lithography,” Nanoscale Res. Lett.6(1), 342–352 (2011).
[CrossRef] [PubMed]

Nanotechnology (4)

C. W. Huang, H. Y. Tseng, C. Y. Chen, C. H. Liao, C. Hsieh, K. Y. Chen, H. Y. Lin, H. S. Chen, Y. L. Jung, Y. W. Kiang, and C. C. Yang, “Fabrication of surface metal nanoparticles and their induced surface plasmon coupling with subsurface InGaN/GaN quantum wells,” Nanotechnology22(47), 475201 (2011).
[CrossRef] [PubMed]

C. Y. Cho, M. K. Kwon, S. J. Lee, S. H. Han, J. W. Kang, S. E. Kang, D. Y. Lee, and S. J. Park, “Surface plasmon-enhanced light-emitting diodes using silver nanoparticles embedded in p-GaN,” Nanotechnology21(20), 205201 (2010).
[CrossRef] [PubMed]

D. M. Yeh, C. F. Huang, C. Y. Chen, Y. C. Lu, and C. C. Yang, “Localized surface plasmon-induced emission enhancement of a green light-emitting diode,” Nanotechnology19(34), 345201 (2008).
[CrossRef] [PubMed]

D. M. Yeh, C. Y. Chen, Y. C. Lu, C. F. Huang, and C. C. Yang, “Formation of various metal nanostructures with thermal annealing to control the effective coupling energy between a surface plasmon and an InGaN/GaN quantum well,” Nanotechnology18(26), 265402 (2007).
[CrossRef] [PubMed]

Nat. Mater. (1)

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater.3(9), 601–605 (2004).
[CrossRef] [PubMed]

Opt. Express (3)

Opt. Lett. (1)

Phys. Rev. B (1)

C. K. Choi, Y. H. Kwon, B. D. Little, G. H. Gainer, J. J. Song, Y. C. Chang, S. Keller, U. K. Mishra, and S. P. DenBaars, “Time-resolved photoluminescence of InxGa1-xN/GaN multiple quantum well structures: effect of Si doping in the barriers,” Phys. Rev. B64(24), 245339 (2001).
[CrossRef]

Semicond. Sci. Technol. (1)

R. M. Farrell, E. C. Young, F. Wu, S. P. DenBaars, and J. S. Speck, “Materials and growth issues for high-performance nonpolar and semipolar light-emitting devices,” Semicond. Sci. Technol.27(2), 024001 (2012).
[CrossRef]

Other (2)

S. A. Maier, Plasmonics: fundamentals and applications (Springer, 2007).

K. N. Tu, J. K. Mayer, and L. C. Feldman, Electronic thin film sciences: for electrical engineers and material scientists (Macmillan, 1992).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(a) Transmission spectra of Ag structures on the LED epitaxial wafer formed by annealed 10 nm Ag film under different temperature. (b) Absorption peak, FWHM and peak intensity in transmission spectra of Ag structured samples as a function of temperature.

Fig. 2
Fig. 2

Top-view SEM images of six Ag structures on the blue LED epitaxial wafer, including (a) a 10 nm-thick as deposited Ag film, thermally annealed nanostructures of the Ag film under (b) 200°C for 30 min, (c) 300°C for 10 min, (d) 400°C for 10 min, (e) 500°C for 10 min, and (f) 600°C for 10 min.

Fig. 3
Fig. 3

The schematic structure of the Ag-particle on GaN in 3D FDTD simulation. The red frame corresponds to the TFSF source. The yellow ones are the monitors for scattering and dissipation of the electromagnetic wave.

Fig. 4
Fig. 4

(a) The dependence of absorption spectra on α of Ag NP with a diameter of 60 nm on 3 nm-thick residual Ag film. (b) The right absorption peaks of 60 nm-diameter Ag NP with different accessorial structures are plotted against α.

Fig. 5
Fig. 5

PL spectra for the bare LED wafer, LED wafers coated with Ag NPs and 8 nm-thick as deposited Ag film, respectively.

Fig. 6
Fig. 6

(a) Time dependent PL intensity at 560 nm of bare GaN and sample coated with annealed Ag layer. (b) The fast decay times, deduced from time-resolved PL, of the bare sample and the Ag-coated sample are plotted against wavelength.

Fig. 7
Fig. 7

(a) Dissipation and scattering intensities and (b) electric field distribution for Ag NP with 60 nm-diameter, α = 1, 1.33, 1.66. (c) Dissipation and scattering intensities and (d) electric field distribution for Ag NP with 150 nm-diameter, α = 1, 1.46, 1.93. The residual Ag films for both models are 3 nm-thick.

Metrics