Abstract

An ytterbium-doped mode-locked fiber laser was demonstrated with a chirped fiber Bragg grating for dispersion management. The cavity net dispersion could be changed from large normal dispersion (2.4 ps2) to large anomalous dispersion (−2.0 ps2), depending on the direction of the chirped Bragg grating in laser cavity. The proposed fiber lasers with large normal dispersion generated stable pulses with a pulse width of <1.1 ns and a pulse energy of 1.5 nJ. The laser with large anomalous dispersion generated wavelength-tunable soliton with a pulse width of 2.7 ps and pulse energy of 0.13 nJ. A theoretical model was established and used to verify the experimental observations.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. M. Mitschke and L. F. Mollenauer, “Ultrashort pulses from the soliton laser,” Opt. Lett.12(6), 407–409 (1987).
    [CrossRef] [PubMed]
  2. V. Cautaerts, D. J. Richardson, R. Paschotta, and D. C. Hanna, “Stretched pulse Yb3+silica fiber laser,” Opt. Lett.22(5), 316–318 (1997).
    [CrossRef] [PubMed]
  3. F. Ö. Ilday, J. R. Buckley, H. Lim, F. W. Wise, and W. G. Clark, “Generation of 50-fs, 5-nJ pulses at 1.03 μm from a wave-breaking-free fiber laser,” Opt. Lett.28(15), 1365–1367 (2003).
    [CrossRef] [PubMed]
  4. F. Ö. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, “Self-similar evolution of parabolic pulses in a laser,” Phys. Rev. Lett.92(21), 213902 (2004).
    [CrossRef] [PubMed]
  5. A. Chong, W. H. Renninger, and F. W. Wise, “All-normal-dispersion femtosecond fiber laser with pulse energy above 20 nJ,” Opt. Lett.32(16), 2408–2410 (2007).
    [CrossRef] [PubMed]
  6. H. Lim, F. Ö. Ilday, and F. W. Wise, “Generation of 2-nJ pulses from a femtosecond ytterbium fiber laser,” Opt. Lett.28(8), 660–662 (2003).
    [CrossRef] [PubMed]
  7. H. Lim, F. Ilday, and F. Wise, “Femtosecond ytterbium fiber laser with photonic crystal fiber for dispersion control,” Opt. Express10(25), 1497–1502 (2002).
    [CrossRef] [PubMed]
  8. M. Rusu, R. Herda, S. Kivistö, and O. G. Okhotnikov, “Fiber taper for dispersion management in a mode-locked ytterbium fiber laser,” Opt. Lett.31(15), 2257–2259 (2006).
    [CrossRef] [PubMed]
  9. S. Ramachandran, S. Ghalmi, J. W. Nicholson, M. F. Yan, P. Wisk, E. Monberg, and F. V. Dimarcello, “Anomalous dispersion in a solid, silica-based fiber,” Opt. Lett.31(17), 2532–2534 (2006).
    [CrossRef] [PubMed]
  10. S. Barcelos, M. N. Zervas, and R. I. Laming, “Characteristics of chirped fiber gratings for dispersion compensation,” Opt. Fiber Technol.2(2), 213–215 (1996).
    [CrossRef]
  11. M. E. Fermann, K. Sugden, and I. Bennion, “High-power soliton fiber laser based on pulse width control with chirped fiber Bragg gratings,” Opt. Lett.20(2), 172–174 (1995).
    [CrossRef] [PubMed]
  12. O. Katz, Y. Sintov, Y. Nafcha, and Y. Glick, “Passively mode-locked ytterbium fiber laser utilizing chirped-fiber-Bragg-gratings for dispersion control,” Opt. Commun.269(1), 156–165 (2007).
    [CrossRef]
  13. B. Orta, M. Plötner, T. Schreiber, J. Limpert, and A. Tünnermann, “Experimental and numerical study of pulse dynamics in positive net-cavity dispersion modelocked Yb-doped fiber lasers,” Opt. Express15, 15595–15602 (2007).
    [CrossRef] [PubMed]
  14. E. Kelleher, J. C. Travers, Z. Sun, A. C. Ferrari, K. M. Golant, S. V. Popov, and J. R. Taylor, “Bismuth fiber integrated laser mode-locked by carbon nanotubes,” Laser Phys. Lett.7(11), 790–794 (2010).
    [CrossRef]
  15. R. Gumenyuk, I. Vartiainen, H. Tuovinen, and O. G. Okhotnikov, “Dissipative dispersion-managed soliton 2 μm thulium/holmium fiber laser,” Opt. Lett.36(5), 609–611 (2011).
    [CrossRef] [PubMed]
  16. E. J. R. Kelleher, J. C. Travers, Z. Sun, A. G. Rozhin, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “Nanosecond-pulse fiber lasers mode-locked with nanotubes,” Appl. Phys. Lett.95(11), 111108 (2009).
    [CrossRef]
  17. A. Komarov, H. Leblond, and F. Sanchez, “Theoretical analysis of the operating regime of a passively-mode-locked fiber laser through nonlinear polarization rotation,” Phys. Rev. A72(6), 063811 (2005).
    [CrossRef]
  18. C. Tu, W. Guo, Y. Li, S. Zhang, and F. Lu, “Stable multiwavelength and passively mode-locked Yb-doped fiber laser based on nonlinear polarization rotation,” Opt. Commun.280(2), 448–452 (2007).
    [CrossRef]
  19. L. M. Zhao and D. Y. Tang, “Generation of 15-nJ bunched noise-like pulses with 93-nm bandwidth in an erbium-doped fiber ring laser,” Appl. Phys. B83(4), 553–557 (2006).
    [CrossRef]
  20. D. von der Linde, “Characterization of the noise in continuously operating mode-locked lasers,” Appl. Phys. B39(4), 201–217 (1986).
    [CrossRef]
  21. A. Chong, W. H. Renninger, and F. W. Wise, “Properties of normal-dispersion femtosecond fiber lasers,” J. Opt. Soc. Am. B25(2), 140–148 (2008).
    [CrossRef]
  22. H. A. Haus, “Mode-locking of lasers,” IEEE J. Sel. Top. Quantum Electron.6(6), 1173–1185 (2000).
    [CrossRef]

2011 (1)

2010 (1)

E. Kelleher, J. C. Travers, Z. Sun, A. C. Ferrari, K. M. Golant, S. V. Popov, and J. R. Taylor, “Bismuth fiber integrated laser mode-locked by carbon nanotubes,” Laser Phys. Lett.7(11), 790–794 (2010).
[CrossRef]

2009 (1)

E. J. R. Kelleher, J. C. Travers, Z. Sun, A. G. Rozhin, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “Nanosecond-pulse fiber lasers mode-locked with nanotubes,” Appl. Phys. Lett.95(11), 111108 (2009).
[CrossRef]

2008 (1)

2007 (4)

C. Tu, W. Guo, Y. Li, S. Zhang, and F. Lu, “Stable multiwavelength and passively mode-locked Yb-doped fiber laser based on nonlinear polarization rotation,” Opt. Commun.280(2), 448–452 (2007).
[CrossRef]

A. Chong, W. H. Renninger, and F. W. Wise, “All-normal-dispersion femtosecond fiber laser with pulse energy above 20 nJ,” Opt. Lett.32(16), 2408–2410 (2007).
[CrossRef] [PubMed]

O. Katz, Y. Sintov, Y. Nafcha, and Y. Glick, “Passively mode-locked ytterbium fiber laser utilizing chirped-fiber-Bragg-gratings for dispersion control,” Opt. Commun.269(1), 156–165 (2007).
[CrossRef]

B. Orta, M. Plötner, T. Schreiber, J. Limpert, and A. Tünnermann, “Experimental and numerical study of pulse dynamics in positive net-cavity dispersion modelocked Yb-doped fiber lasers,” Opt. Express15, 15595–15602 (2007).
[CrossRef] [PubMed]

2006 (3)

2005 (1)

A. Komarov, H. Leblond, and F. Sanchez, “Theoretical analysis of the operating regime of a passively-mode-locked fiber laser through nonlinear polarization rotation,” Phys. Rev. A72(6), 063811 (2005).
[CrossRef]

2004 (1)

F. Ö. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, “Self-similar evolution of parabolic pulses in a laser,” Phys. Rev. Lett.92(21), 213902 (2004).
[CrossRef] [PubMed]

2003 (2)

2002 (1)

2000 (1)

H. A. Haus, “Mode-locking of lasers,” IEEE J. Sel. Top. Quantum Electron.6(6), 1173–1185 (2000).
[CrossRef]

1997 (1)

1996 (1)

S. Barcelos, M. N. Zervas, and R. I. Laming, “Characteristics of chirped fiber gratings for dispersion compensation,” Opt. Fiber Technol.2(2), 213–215 (1996).
[CrossRef]

1995 (1)

1987 (1)

1986 (1)

D. von der Linde, “Characterization of the noise in continuously operating mode-locked lasers,” Appl. Phys. B39(4), 201–217 (1986).
[CrossRef]

Barcelos, S.

S. Barcelos, M. N. Zervas, and R. I. Laming, “Characteristics of chirped fiber gratings for dispersion compensation,” Opt. Fiber Technol.2(2), 213–215 (1996).
[CrossRef]

Bennion, I.

Buckley, J. R.

F. Ö. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, “Self-similar evolution of parabolic pulses in a laser,” Phys. Rev. Lett.92(21), 213902 (2004).
[CrossRef] [PubMed]

F. Ö. Ilday, J. R. Buckley, H. Lim, F. W. Wise, and W. G. Clark, “Generation of 50-fs, 5-nJ pulses at 1.03 μm from a wave-breaking-free fiber laser,” Opt. Lett.28(15), 1365–1367 (2003).
[CrossRef] [PubMed]

Cautaerts, V.

Chong, A.

Clark, W. G.

F. Ö. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, “Self-similar evolution of parabolic pulses in a laser,” Phys. Rev. Lett.92(21), 213902 (2004).
[CrossRef] [PubMed]

F. Ö. Ilday, J. R. Buckley, H. Lim, F. W. Wise, and W. G. Clark, “Generation of 50-fs, 5-nJ pulses at 1.03 μm from a wave-breaking-free fiber laser,” Opt. Lett.28(15), 1365–1367 (2003).
[CrossRef] [PubMed]

Dimarcello, F. V.

Fermann, M. E.

Ferrari, A. C.

E. Kelleher, J. C. Travers, Z. Sun, A. C. Ferrari, K. M. Golant, S. V. Popov, and J. R. Taylor, “Bismuth fiber integrated laser mode-locked by carbon nanotubes,” Laser Phys. Lett.7(11), 790–794 (2010).
[CrossRef]

E. J. R. Kelleher, J. C. Travers, Z. Sun, A. G. Rozhin, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “Nanosecond-pulse fiber lasers mode-locked with nanotubes,” Appl. Phys. Lett.95(11), 111108 (2009).
[CrossRef]

Ghalmi, S.

Glick, Y.

O. Katz, Y. Sintov, Y. Nafcha, and Y. Glick, “Passively mode-locked ytterbium fiber laser utilizing chirped-fiber-Bragg-gratings for dispersion control,” Opt. Commun.269(1), 156–165 (2007).
[CrossRef]

Golant, K. M.

E. Kelleher, J. C. Travers, Z. Sun, A. C. Ferrari, K. M. Golant, S. V. Popov, and J. R. Taylor, “Bismuth fiber integrated laser mode-locked by carbon nanotubes,” Laser Phys. Lett.7(11), 790–794 (2010).
[CrossRef]

Gumenyuk, R.

Guo, W.

C. Tu, W. Guo, Y. Li, S. Zhang, and F. Lu, “Stable multiwavelength and passively mode-locked Yb-doped fiber laser based on nonlinear polarization rotation,” Opt. Commun.280(2), 448–452 (2007).
[CrossRef]

Hanna, D. C.

Haus, H. A.

H. A. Haus, “Mode-locking of lasers,” IEEE J. Sel. Top. Quantum Electron.6(6), 1173–1185 (2000).
[CrossRef]

Herda, R.

Ilday, F.

Ilday, F. Ö.

Katz, O.

O. Katz, Y. Sintov, Y. Nafcha, and Y. Glick, “Passively mode-locked ytterbium fiber laser utilizing chirped-fiber-Bragg-gratings for dispersion control,” Opt. Commun.269(1), 156–165 (2007).
[CrossRef]

Kelleher, E.

E. Kelleher, J. C. Travers, Z. Sun, A. C. Ferrari, K. M. Golant, S. V. Popov, and J. R. Taylor, “Bismuth fiber integrated laser mode-locked by carbon nanotubes,” Laser Phys. Lett.7(11), 790–794 (2010).
[CrossRef]

Kelleher, E. J. R.

E. J. R. Kelleher, J. C. Travers, Z. Sun, A. G. Rozhin, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “Nanosecond-pulse fiber lasers mode-locked with nanotubes,” Appl. Phys. Lett.95(11), 111108 (2009).
[CrossRef]

Kivistö, S.

Komarov, A.

A. Komarov, H. Leblond, and F. Sanchez, “Theoretical analysis of the operating regime of a passively-mode-locked fiber laser through nonlinear polarization rotation,” Phys. Rev. A72(6), 063811 (2005).
[CrossRef]

Laming, R. I.

S. Barcelos, M. N. Zervas, and R. I. Laming, “Characteristics of chirped fiber gratings for dispersion compensation,” Opt. Fiber Technol.2(2), 213–215 (1996).
[CrossRef]

Leblond, H.

A. Komarov, H. Leblond, and F. Sanchez, “Theoretical analysis of the operating regime of a passively-mode-locked fiber laser through nonlinear polarization rotation,” Phys. Rev. A72(6), 063811 (2005).
[CrossRef]

Li, Y.

C. Tu, W. Guo, Y. Li, S. Zhang, and F. Lu, “Stable multiwavelength and passively mode-locked Yb-doped fiber laser based on nonlinear polarization rotation,” Opt. Commun.280(2), 448–452 (2007).
[CrossRef]

Lim, H.

Limpert, J.

Lu, F.

C. Tu, W. Guo, Y. Li, S. Zhang, and F. Lu, “Stable multiwavelength and passively mode-locked Yb-doped fiber laser based on nonlinear polarization rotation,” Opt. Commun.280(2), 448–452 (2007).
[CrossRef]

Mitschke, F. M.

Mollenauer, L. F.

Monberg, E.

Nafcha, Y.

O. Katz, Y. Sintov, Y. Nafcha, and Y. Glick, “Passively mode-locked ytterbium fiber laser utilizing chirped-fiber-Bragg-gratings for dispersion control,” Opt. Commun.269(1), 156–165 (2007).
[CrossRef]

Nicholson, J. W.

Okhotnikov, O. G.

Orta, B.

Paschotta, R.

Plötner, M.

Popov, S. V.

E. Kelleher, J. C. Travers, Z. Sun, A. C. Ferrari, K. M. Golant, S. V. Popov, and J. R. Taylor, “Bismuth fiber integrated laser mode-locked by carbon nanotubes,” Laser Phys. Lett.7(11), 790–794 (2010).
[CrossRef]

E. J. R. Kelleher, J. C. Travers, Z. Sun, A. G. Rozhin, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “Nanosecond-pulse fiber lasers mode-locked with nanotubes,” Appl. Phys. Lett.95(11), 111108 (2009).
[CrossRef]

Ramachandran, S.

Renninger, W. H.

Richardson, D. J.

Rozhin, A. G.

E. J. R. Kelleher, J. C. Travers, Z. Sun, A. G. Rozhin, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “Nanosecond-pulse fiber lasers mode-locked with nanotubes,” Appl. Phys. Lett.95(11), 111108 (2009).
[CrossRef]

Rusu, M.

Sanchez, F.

A. Komarov, H. Leblond, and F. Sanchez, “Theoretical analysis of the operating regime of a passively-mode-locked fiber laser through nonlinear polarization rotation,” Phys. Rev. A72(6), 063811 (2005).
[CrossRef]

Schreiber, T.

Sintov, Y.

O. Katz, Y. Sintov, Y. Nafcha, and Y. Glick, “Passively mode-locked ytterbium fiber laser utilizing chirped-fiber-Bragg-gratings for dispersion control,” Opt. Commun.269(1), 156–165 (2007).
[CrossRef]

Sugden, K.

Sun, Z.

E. Kelleher, J. C. Travers, Z. Sun, A. C. Ferrari, K. M. Golant, S. V. Popov, and J. R. Taylor, “Bismuth fiber integrated laser mode-locked by carbon nanotubes,” Laser Phys. Lett.7(11), 790–794 (2010).
[CrossRef]

E. J. R. Kelleher, J. C. Travers, Z. Sun, A. G. Rozhin, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “Nanosecond-pulse fiber lasers mode-locked with nanotubes,” Appl. Phys. Lett.95(11), 111108 (2009).
[CrossRef]

Tang, D. Y.

L. M. Zhao and D. Y. Tang, “Generation of 15-nJ bunched noise-like pulses with 93-nm bandwidth in an erbium-doped fiber ring laser,” Appl. Phys. B83(4), 553–557 (2006).
[CrossRef]

Taylor, J. R.

E. Kelleher, J. C. Travers, Z. Sun, A. C. Ferrari, K. M. Golant, S. V. Popov, and J. R. Taylor, “Bismuth fiber integrated laser mode-locked by carbon nanotubes,” Laser Phys. Lett.7(11), 790–794 (2010).
[CrossRef]

E. J. R. Kelleher, J. C. Travers, Z. Sun, A. G. Rozhin, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “Nanosecond-pulse fiber lasers mode-locked with nanotubes,” Appl. Phys. Lett.95(11), 111108 (2009).
[CrossRef]

Travers, J. C.

E. Kelleher, J. C. Travers, Z. Sun, A. C. Ferrari, K. M. Golant, S. V. Popov, and J. R. Taylor, “Bismuth fiber integrated laser mode-locked by carbon nanotubes,” Laser Phys. Lett.7(11), 790–794 (2010).
[CrossRef]

E. J. R. Kelleher, J. C. Travers, Z. Sun, A. G. Rozhin, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “Nanosecond-pulse fiber lasers mode-locked with nanotubes,” Appl. Phys. Lett.95(11), 111108 (2009).
[CrossRef]

Tu, C.

C. Tu, W. Guo, Y. Li, S. Zhang, and F. Lu, “Stable multiwavelength and passively mode-locked Yb-doped fiber laser based on nonlinear polarization rotation,” Opt. Commun.280(2), 448–452 (2007).
[CrossRef]

Tünnermann, A.

Tuovinen, H.

Vartiainen, I.

von der Linde, D.

D. von der Linde, “Characterization of the noise in continuously operating mode-locked lasers,” Appl. Phys. B39(4), 201–217 (1986).
[CrossRef]

Wise, F.

Wise, F. W.

Wisk, P.

Yan, M. F.

Zervas, M. N.

S. Barcelos, M. N. Zervas, and R. I. Laming, “Characteristics of chirped fiber gratings for dispersion compensation,” Opt. Fiber Technol.2(2), 213–215 (1996).
[CrossRef]

Zhang, S.

C. Tu, W. Guo, Y. Li, S. Zhang, and F. Lu, “Stable multiwavelength and passively mode-locked Yb-doped fiber laser based on nonlinear polarization rotation,” Opt. Commun.280(2), 448–452 (2007).
[CrossRef]

Zhao, L. M.

L. M. Zhao and D. Y. Tang, “Generation of 15-nJ bunched noise-like pulses with 93-nm bandwidth in an erbium-doped fiber ring laser,” Appl. Phys. B83(4), 553–557 (2006).
[CrossRef]

Appl. Phys. B (2)

L. M. Zhao and D. Y. Tang, “Generation of 15-nJ bunched noise-like pulses with 93-nm bandwidth in an erbium-doped fiber ring laser,” Appl. Phys. B83(4), 553–557 (2006).
[CrossRef]

D. von der Linde, “Characterization of the noise in continuously operating mode-locked lasers,” Appl. Phys. B39(4), 201–217 (1986).
[CrossRef]

Appl. Phys. Lett. (1)

E. J. R. Kelleher, J. C. Travers, Z. Sun, A. G. Rozhin, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “Nanosecond-pulse fiber lasers mode-locked with nanotubes,” Appl. Phys. Lett.95(11), 111108 (2009).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

H. A. Haus, “Mode-locking of lasers,” IEEE J. Sel. Top. Quantum Electron.6(6), 1173–1185 (2000).
[CrossRef]

J. Opt. Soc. Am. B (1)

Laser Phys. Lett. (1)

E. Kelleher, J. C. Travers, Z. Sun, A. C. Ferrari, K. M. Golant, S. V. Popov, and J. R. Taylor, “Bismuth fiber integrated laser mode-locked by carbon nanotubes,” Laser Phys. Lett.7(11), 790–794 (2010).
[CrossRef]

Opt. Commun. (2)

O. Katz, Y. Sintov, Y. Nafcha, and Y. Glick, “Passively mode-locked ytterbium fiber laser utilizing chirped-fiber-Bragg-gratings for dispersion control,” Opt. Commun.269(1), 156–165 (2007).
[CrossRef]

C. Tu, W. Guo, Y. Li, S. Zhang, and F. Lu, “Stable multiwavelength and passively mode-locked Yb-doped fiber laser based on nonlinear polarization rotation,” Opt. Commun.280(2), 448–452 (2007).
[CrossRef]

Opt. Express (2)

Opt. Fiber Technol. (1)

S. Barcelos, M. N. Zervas, and R. I. Laming, “Characteristics of chirped fiber gratings for dispersion compensation,” Opt. Fiber Technol.2(2), 213–215 (1996).
[CrossRef]

Opt. Lett. (9)

M. E. Fermann, K. Sugden, and I. Bennion, “High-power soliton fiber laser based on pulse width control with chirped fiber Bragg gratings,” Opt. Lett.20(2), 172–174 (1995).
[CrossRef] [PubMed]

R. Gumenyuk, I. Vartiainen, H. Tuovinen, and O. G. Okhotnikov, “Dissipative dispersion-managed soliton 2 μm thulium/holmium fiber laser,” Opt. Lett.36(5), 609–611 (2011).
[CrossRef] [PubMed]

M. Rusu, R. Herda, S. Kivistö, and O. G. Okhotnikov, “Fiber taper for dispersion management in a mode-locked ytterbium fiber laser,” Opt. Lett.31(15), 2257–2259 (2006).
[CrossRef] [PubMed]

S. Ramachandran, S. Ghalmi, J. W. Nicholson, M. F. Yan, P. Wisk, E. Monberg, and F. V. Dimarcello, “Anomalous dispersion in a solid, silica-based fiber,” Opt. Lett.31(17), 2532–2534 (2006).
[CrossRef] [PubMed]

A. Chong, W. H. Renninger, and F. W. Wise, “All-normal-dispersion femtosecond fiber laser with pulse energy above 20 nJ,” Opt. Lett.32(16), 2408–2410 (2007).
[CrossRef] [PubMed]

H. Lim, F. Ö. Ilday, and F. W. Wise, “Generation of 2-nJ pulses from a femtosecond ytterbium fiber laser,” Opt. Lett.28(8), 660–662 (2003).
[CrossRef] [PubMed]

F. M. Mitschke and L. F. Mollenauer, “Ultrashort pulses from the soliton laser,” Opt. Lett.12(6), 407–409 (1987).
[CrossRef] [PubMed]

V. Cautaerts, D. J. Richardson, R. Paschotta, and D. C. Hanna, “Stretched pulse Yb3+silica fiber laser,” Opt. Lett.22(5), 316–318 (1997).
[CrossRef] [PubMed]

F. Ö. Ilday, J. R. Buckley, H. Lim, F. W. Wise, and W. G. Clark, “Generation of 50-fs, 5-nJ pulses at 1.03 μm from a wave-breaking-free fiber laser,” Opt. Lett.28(15), 1365–1367 (2003).
[CrossRef] [PubMed]

Phys. Rev. A (1)

A. Komarov, H. Leblond, and F. Sanchez, “Theoretical analysis of the operating regime of a passively-mode-locked fiber laser through nonlinear polarization rotation,” Phys. Rev. A72(6), 063811 (2005).
[CrossRef]

Phys. Rev. Lett. (1)

F. Ö. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, “Self-similar evolution of parabolic pulses in a laser,” Phys. Rev. Lett.92(21), 213902 (2004).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Experimental configuration of the mode-locked fiber laser and the reflection spectrum of the cFBG

Fig. 2
Fig. 2

(a) The mode-locked pulse train; (b) the radio-frequency spectrum at the fundamental frequency; inset, rf spectrum at harmonic frequency; (c) single pulse shape of the laser at the maximum output power; and (d) output spectrum of the laser emission.

Fig. 3
Fig. 3

(a) Output power of the mode-locked fiber laser with respect to the pump power. (b) Tunable output spectrum of the laser. (c) Autocorrelation trace of the mode locked laser, inset, emitted pulse train at the maximum output power. (d) The radio-frequency (RF) spectrum around the fundamental repetition. Inset: RF spectrum at harmonic repetition rates of the laser.

Fig. 4
Fig. 4

(a) Simulated mode-locked pulses at different cavity dispersion; (b) simulated output spectra of the mode-locked fiber laser at different cavity dispersion.

Fig. 5
Fig. 5

Simulated output spectrum width and pulse width as a function of cavity dispersion. Inset: detailed pulse shape when the net cavity dispersion approaches to zero.

Fig. 6
Fig. 6

Output spectrum and pulse shape of the mode-locked fiber laser at (a) −2 ps2, and (b) 2.4 ps2 cavity dispersion.

Tables (1)

Tables Icon

Table 1 Parameters used in the simulation

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

A Z = i 2 β 2 2 A T 2 +iγ | A | 2 A+ 1 2 gA+ g T 2 2 2 2 A T 2 ;
g= g 0 1+ E ESAT , T 2 = 2 Δω g .
T SA = 1 α S 1+ P P S

Metrics