Abstract

We explore the design space for optimizing CMOS compatible waveguide crossings on a silicon photonics platform. This paper presents simulated and experimental excess loss and crosstalk suppression data for vertically integrated silicon nitride over silicon-on-insulator waveguide crossings. Experimental results show crosstalk suppression exceeding −49/-44 dB with simulation results as low as −65/-60 dB for the TE/TM mode in a waveguide crossing with a 410 nm vertical gap.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R.-J. Essiambr and R. W. Tkach, “Capacity trends and limits of optical communication networks,” Proc. IEEE100(5), 1035–1055 (2012).
    [CrossRef]
  2. A. Alduino and M. Paniccia, “Interconnects: wiring electronics with light,” Nat. Photonics1(3), 153–155 (2007).
    [CrossRef]
  3. M. Lipson, “Guiding, modulating, and emitting light on Silicon – challenges and opportunities,” J. Lightwave Technol.23(12), 4222 - 4238 (2005).
    [CrossRef]
  4. A. Biberman, K. Preston, G. Hendry, N. Sherwood-Droz, J. Chan, J. S. Levy, H. Wang, M. Lipson, and K. Bergman, “CMOS-compatible scalable photonic switch architecture using 3D-integrated deposited silicon materials for high-performance data center networks," in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2011, OSA Technical Digest (CD) (Optical Society of America, 2011), paper OMM2.
  5. S. Lan and H. Ishikawa, “Broadband waveguide intersections with low cross talk in photonic crystal circuits,” Opt. Lett.27(17), 1567–1569 (2002).
    [CrossRef] [PubMed]
  6. Y. Jiao, S. F. Mingaleev, M. Schillinger, D. A. B. Miller, S. Fan, and K. Busch, “Wannier basis design and optimization of a photonic crystal waveguide crossing,” IEEE Photon. Technol. Lett.17(9), 1875–1877 (2005).
    [CrossRef]
  7. P. J. Bock, P. Cheben, J. H. Schmid, J. Lapointe, A. Delâge, D.-X. Xu, S. Janz, A. Densmore, and T. J. Hall, “Subwavelength grating crossings for silicon wire waveguides,” Opt. Express18(15), 16146–16155 (2010).
    [CrossRef] [PubMed]
  8. C. E. Rubio-Mercedes, H. E. Hernandez-Figueroa, I. T. Lima, and V. F. Rodriguez-Esquerre, “Simulation of segmented waveguide crossing using the 2D Finite Element Method,” IEEE Photon. Conf., (IEEE, 2011), 819–820.
    [CrossRef]
  9. S. G. Johnson, C. Manolatou, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and H. A. Haus, “Elimination of cross talk in waveguide intersections,” Opt. Lett.23(23), 1855–1857 (1998).
    [CrossRef] [PubMed]
  10. W. Ding, D. Tang, Y. Liu, L. Chen, and X. Sun, “Compact and low crosstalk waveguide crossing using impedance matched metamaterial,” Appl. Phys. Lett.96(11), 111114 (2010).
    [CrossRef]
  11. C. Manolatou, S. G. Johnson, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, “High-density integrated optics,” J. Lightwave Technol.17(9), 1682–1692 (1999).
    [CrossRef]
  12. Y. Sakamaki, T. Saida, M. Tamura, T. Hashimoto, and H. Takahashi, “Low loss and low crosstalk waveguide crossings designed by wavefront matching method,” IEEE Photon. Technol. Lett.18(19), 2005–2007 (2006).
    [CrossRef]
  13. Y. Sakamaki, T. Saida, T. Hashimoto, S. Kamei, and H. Takahashi, “Loss reduction of waveguide crossings by wavefront matching method and their application to integrated optical circuits,” J. Lightwave Technol.27(13), 2257–2263 (2009).
    [CrossRef]
  14. H. Liu, H. Tam, P. K. A. Wai, and E. Pun, “Low-loss waveguide crossing using a multimode interference structure,” Opt. Commun.241(1-3), 99–104 (2004).
    [CrossRef]
  15. H. Chen and A. W. Poon, “Low-loss multimode-interference-based crossings for silicon wire waveguides,” IEEE Photon. Technol. Lett.18(21), 2260–2262 (2006).
    [CrossRef]
  16. M. A. Popovic, E. P. Ippen, and F. X. Kartner, “Low-loss Bloch waves in open structures and highly compact, efficient Si waveguide-crossing arrays,” IEEE/LEOS Annual Meeting, 56–57 (2007).
    [CrossRef]
  17. W. Bogaerts, P. Dumon, D. Van Thourhout, and R. Baets, “Low-loss, low-cross-talk crossings for silicon-on-insulator nanophotonic waveguides,” Opt. Lett.32(19), 2801–2803 (2007).
    [CrossRef] [PubMed]
  18. P. Sanchis, P. Villalba, F. Cuesta, A. Håkansson, A. Griol, J. V. Galán, A. Brimont, and J. Martí, “Highly efficient crossing structure for silicon-on-insulator waveguides,” Opt. Lett.34(18), 2760–2762 (2009).
    [CrossRef] [PubMed]
  19. T. Fukazawa, T. Hirano, F. Ohno, and T. Baba, “Low loss intersection of Si photonic wire waveguides,” Jpn. J. Appl. Phys.43(2), 646–647 (2004).
    [CrossRef]
  20. H. G. Bukkems, C. G. P. Herben, M. K. Smit, F. H. Groen, and I. Moerman, “Minimization of the loss of intersecting waveguides in InP-based photonic integrated circuits,” IEEE Photon. Technol. Lett.11(11), 1420–1422 (1999).
    [CrossRef]
  21. D. Tanaka, Y. Ikuma, and H. Tsuda, “Low loss, small crosstalk offset crossing structure of Si wire waveguide,” IEEE/LEOS Winter Topicals Meeting Series (IEEE, 2009), 36–37.
  22. A. V. Tsarev, “Efficient silicon wire waveguide crossing with negligible loss and crosstalk,” Opt. Express19(15), 13732–13737 (2011).
    [CrossRef] [PubMed]
  23. P. Sanchis, J. V. Galan, A. Griol, J. Marti, M. A. Piqueras, and J. M. Perdigues, “Low-crosstalk in silicon-on-insulator waveguide crossings with optimized-angle,” IEEE Photon. Technol. Lett.19(20), 1583–1585 (2007).
    [CrossRef]
  24. P. Koonath, T. Indukuri, and B. Jalali, “Monolithic 3-D Silicon photonics,” J. Lightwave Technol.24(1796), 4 (2006).
    [CrossRef]
  25. R. Sun, M. Beals, A. Pomerene, J. Cheng, C. Y. Hong, L. Kimerling, and J. Michel, “Impedance matching vertical optical waveguide couplers for dense high index contrast circuits,” Opt. Express16(16), 11682–11690 (2008).
    [CrossRef] [PubMed]
  26. Y. Hatakeyama, T. Hanai, S. Suzuki, and Y. Kokubun, “Loss-less multilevel crossing of busline waveguide in vertically coupled microring resonator filter,” IEEE Photon. Technol. Lett.16(2), 473–475 (2004).
    [CrossRef]
  27. K. Watanabe, Y. Hashizume, Y. Nasu, Y. Sakamaki, M. Kohtoku, M. Itoh, and Y. Inoue, “Low-loss three-dimensional waveguide crossings using adiabatic interlayer coupling,” Electron. Lett.44(1356), 23 (2008).
    [CrossRef]
  28. B. Liu, A. Shakouri, P. Abraham, and J. E. Bowers, “Optical Add/Drop Multiplexers based on X-crossing vertical coupler filters,” IEEE Photon. Technol. Lett.12(4), 410–412 (2000).
    [CrossRef]
  29. M.-C. Tien, J. F. Bauters, M. J. R. Heck, D. T. Spencer, D. J. Blumenthal, and J. E. Bowers, “Ultra-high quality factor planar Si3N4 ring resonators on Si substrates,” Opt. Express19(14), 13551–13556 (2011).
    [CrossRef] [PubMed]
  30. R.D. Kekatpure, Applied Photonic Microsystems Group, Sandia National Laboratories, 1515 Eubank SE, Albuquerque, N.M. 87123, A. Jones, D.C. Trotter, A. Starbuck, C. DeRose, and A.L. Lentine are preparing a manuscript to be called, “Design and characterization of inverse tapers for efficient fiber to waveguide coupling.”
  31. S. Huey, B. Chandrasekaran, D. Bennett, S. Tsai, K. Xu, J. Qian, S. Dhandapani, J. David, B. Swedek, and L. Karuppiah, “CMP process control for advanced CMOS device integration,” ECS Trans.44, 543–552 (2012).
    [CrossRef]
  32. A. Yariv, “Universal relations for coupling of optical power between microresonators and dielectric waveguides,” Electron. Lett.36(4), 321–322 (2000).
    [CrossRef]
  33. http://www.lumerical.com/tcad-products/fdtd/ .

2012 (2)

R.-J. Essiambr and R. W. Tkach, “Capacity trends and limits of optical communication networks,” Proc. IEEE100(5), 1035–1055 (2012).
[CrossRef]

S. Huey, B. Chandrasekaran, D. Bennett, S. Tsai, K. Xu, J. Qian, S. Dhandapani, J. David, B. Swedek, and L. Karuppiah, “CMP process control for advanced CMOS device integration,” ECS Trans.44, 543–552 (2012).
[CrossRef]

2011 (2)

2010 (2)

P. J. Bock, P. Cheben, J. H. Schmid, J. Lapointe, A. Delâge, D.-X. Xu, S. Janz, A. Densmore, and T. J. Hall, “Subwavelength grating crossings for silicon wire waveguides,” Opt. Express18(15), 16146–16155 (2010).
[CrossRef] [PubMed]

W. Ding, D. Tang, Y. Liu, L. Chen, and X. Sun, “Compact and low crosstalk waveguide crossing using impedance matched metamaterial,” Appl. Phys. Lett.96(11), 111114 (2010).
[CrossRef]

2009 (2)

2008 (2)

R. Sun, M. Beals, A. Pomerene, J. Cheng, C. Y. Hong, L. Kimerling, and J. Michel, “Impedance matching vertical optical waveguide couplers for dense high index contrast circuits,” Opt. Express16(16), 11682–11690 (2008).
[CrossRef] [PubMed]

K. Watanabe, Y. Hashizume, Y. Nasu, Y. Sakamaki, M. Kohtoku, M. Itoh, and Y. Inoue, “Low-loss three-dimensional waveguide crossings using adiabatic interlayer coupling,” Electron. Lett.44(1356), 23 (2008).
[CrossRef]

2007 (3)

P. Sanchis, J. V. Galan, A. Griol, J. Marti, M. A. Piqueras, and J. M. Perdigues, “Low-crosstalk in silicon-on-insulator waveguide crossings with optimized-angle,” IEEE Photon. Technol. Lett.19(20), 1583–1585 (2007).
[CrossRef]

W. Bogaerts, P. Dumon, D. Van Thourhout, and R. Baets, “Low-loss, low-cross-talk crossings for silicon-on-insulator nanophotonic waveguides,” Opt. Lett.32(19), 2801–2803 (2007).
[CrossRef] [PubMed]

A. Alduino and M. Paniccia, “Interconnects: wiring electronics with light,” Nat. Photonics1(3), 153–155 (2007).
[CrossRef]

2006 (3)

H. Chen and A. W. Poon, “Low-loss multimode-interference-based crossings for silicon wire waveguides,” IEEE Photon. Technol. Lett.18(21), 2260–2262 (2006).
[CrossRef]

Y. Sakamaki, T. Saida, M. Tamura, T. Hashimoto, and H. Takahashi, “Low loss and low crosstalk waveguide crossings designed by wavefront matching method,” IEEE Photon. Technol. Lett.18(19), 2005–2007 (2006).
[CrossRef]

P. Koonath, T. Indukuri, and B. Jalali, “Monolithic 3-D Silicon photonics,” J. Lightwave Technol.24(1796), 4 (2006).
[CrossRef]

2005 (2)

Y. Jiao, S. F. Mingaleev, M. Schillinger, D. A. B. Miller, S. Fan, and K. Busch, “Wannier basis design and optimization of a photonic crystal waveguide crossing,” IEEE Photon. Technol. Lett.17(9), 1875–1877 (2005).
[CrossRef]

M. Lipson, “Guiding, modulating, and emitting light on Silicon – challenges and opportunities,” J. Lightwave Technol.23(12), 4222 - 4238 (2005).
[CrossRef]

2004 (3)

H. Liu, H. Tam, P. K. A. Wai, and E. Pun, “Low-loss waveguide crossing using a multimode interference structure,” Opt. Commun.241(1-3), 99–104 (2004).
[CrossRef]

T. Fukazawa, T. Hirano, F. Ohno, and T. Baba, “Low loss intersection of Si photonic wire waveguides,” Jpn. J. Appl. Phys.43(2), 646–647 (2004).
[CrossRef]

Y. Hatakeyama, T. Hanai, S. Suzuki, and Y. Kokubun, “Loss-less multilevel crossing of busline waveguide in vertically coupled microring resonator filter,” IEEE Photon. Technol. Lett.16(2), 473–475 (2004).
[CrossRef]

2002 (1)

2000 (2)

B. Liu, A. Shakouri, P. Abraham, and J. E. Bowers, “Optical Add/Drop Multiplexers based on X-crossing vertical coupler filters,” IEEE Photon. Technol. Lett.12(4), 410–412 (2000).
[CrossRef]

A. Yariv, “Universal relations for coupling of optical power between microresonators and dielectric waveguides,” Electron. Lett.36(4), 321–322 (2000).
[CrossRef]

1999 (2)

C. Manolatou, S. G. Johnson, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, “High-density integrated optics,” J. Lightwave Technol.17(9), 1682–1692 (1999).
[CrossRef]

H. G. Bukkems, C. G. P. Herben, M. K. Smit, F. H. Groen, and I. Moerman, “Minimization of the loss of intersecting waveguides in InP-based photonic integrated circuits,” IEEE Photon. Technol. Lett.11(11), 1420–1422 (1999).
[CrossRef]

1998 (1)

Abraham, P.

B. Liu, A. Shakouri, P. Abraham, and J. E. Bowers, “Optical Add/Drop Multiplexers based on X-crossing vertical coupler filters,” IEEE Photon. Technol. Lett.12(4), 410–412 (2000).
[CrossRef]

Alduino, A.

A. Alduino and M. Paniccia, “Interconnects: wiring electronics with light,” Nat. Photonics1(3), 153–155 (2007).
[CrossRef]

Baba, T.

T. Fukazawa, T. Hirano, F. Ohno, and T. Baba, “Low loss intersection of Si photonic wire waveguides,” Jpn. J. Appl. Phys.43(2), 646–647 (2004).
[CrossRef]

Baets, R.

Bauters, J. F.

Beals, M.

Bennett, D.

S. Huey, B. Chandrasekaran, D. Bennett, S. Tsai, K. Xu, J. Qian, S. Dhandapani, J. David, B. Swedek, and L. Karuppiah, “CMP process control for advanced CMOS device integration,” ECS Trans.44, 543–552 (2012).
[CrossRef]

Blumenthal, D. J.

Bock, P. J.

Bogaerts, W.

Bowers, J. E.

M.-C. Tien, J. F. Bauters, M. J. R. Heck, D. T. Spencer, D. J. Blumenthal, and J. E. Bowers, “Ultra-high quality factor planar Si3N4 ring resonators on Si substrates,” Opt. Express19(14), 13551–13556 (2011).
[CrossRef] [PubMed]

B. Liu, A. Shakouri, P. Abraham, and J. E. Bowers, “Optical Add/Drop Multiplexers based on X-crossing vertical coupler filters,” IEEE Photon. Technol. Lett.12(4), 410–412 (2000).
[CrossRef]

Brimont, A.

Bukkems, H. G.

H. G. Bukkems, C. G. P. Herben, M. K. Smit, F. H. Groen, and I. Moerman, “Minimization of the loss of intersecting waveguides in InP-based photonic integrated circuits,” IEEE Photon. Technol. Lett.11(11), 1420–1422 (1999).
[CrossRef]

Busch, K.

Y. Jiao, S. F. Mingaleev, M. Schillinger, D. A. B. Miller, S. Fan, and K. Busch, “Wannier basis design and optimization of a photonic crystal waveguide crossing,” IEEE Photon. Technol. Lett.17(9), 1875–1877 (2005).
[CrossRef]

Chandrasekaran, B.

S. Huey, B. Chandrasekaran, D. Bennett, S. Tsai, K. Xu, J. Qian, S. Dhandapani, J. David, B. Swedek, and L. Karuppiah, “CMP process control for advanced CMOS device integration,” ECS Trans.44, 543–552 (2012).
[CrossRef]

Cheben, P.

Chen, H.

H. Chen and A. W. Poon, “Low-loss multimode-interference-based crossings for silicon wire waveguides,” IEEE Photon. Technol. Lett.18(21), 2260–2262 (2006).
[CrossRef]

Chen, L.

W. Ding, D. Tang, Y. Liu, L. Chen, and X. Sun, “Compact and low crosstalk waveguide crossing using impedance matched metamaterial,” Appl. Phys. Lett.96(11), 111114 (2010).
[CrossRef]

Cheng, J.

Cuesta, F.

David, J.

S. Huey, B. Chandrasekaran, D. Bennett, S. Tsai, K. Xu, J. Qian, S. Dhandapani, J. David, B. Swedek, and L. Karuppiah, “CMP process control for advanced CMOS device integration,” ECS Trans.44, 543–552 (2012).
[CrossRef]

Delâge, A.

Densmore, A.

Dhandapani, S.

S. Huey, B. Chandrasekaran, D. Bennett, S. Tsai, K. Xu, J. Qian, S. Dhandapani, J. David, B. Swedek, and L. Karuppiah, “CMP process control for advanced CMOS device integration,” ECS Trans.44, 543–552 (2012).
[CrossRef]

Ding, W.

W. Ding, D. Tang, Y. Liu, L. Chen, and X. Sun, “Compact and low crosstalk waveguide crossing using impedance matched metamaterial,” Appl. Phys. Lett.96(11), 111114 (2010).
[CrossRef]

Dumon, P.

Essiambr, R.-J.

R.-J. Essiambr and R. W. Tkach, “Capacity trends and limits of optical communication networks,” Proc. IEEE100(5), 1035–1055 (2012).
[CrossRef]

Fan, S.

Fukazawa, T.

T. Fukazawa, T. Hirano, F. Ohno, and T. Baba, “Low loss intersection of Si photonic wire waveguides,” Jpn. J. Appl. Phys.43(2), 646–647 (2004).
[CrossRef]

Galan, J. V.

P. Sanchis, J. V. Galan, A. Griol, J. Marti, M. A. Piqueras, and J. M. Perdigues, “Low-crosstalk in silicon-on-insulator waveguide crossings with optimized-angle,” IEEE Photon. Technol. Lett.19(20), 1583–1585 (2007).
[CrossRef]

Galán, J. V.

Griol, A.

P. Sanchis, P. Villalba, F. Cuesta, A. Håkansson, A. Griol, J. V. Galán, A. Brimont, and J. Martí, “Highly efficient crossing structure for silicon-on-insulator waveguides,” Opt. Lett.34(18), 2760–2762 (2009).
[CrossRef] [PubMed]

P. Sanchis, J. V. Galan, A. Griol, J. Marti, M. A. Piqueras, and J. M. Perdigues, “Low-crosstalk in silicon-on-insulator waveguide crossings with optimized-angle,” IEEE Photon. Technol. Lett.19(20), 1583–1585 (2007).
[CrossRef]

Groen, F. H.

H. G. Bukkems, C. G. P. Herben, M. K. Smit, F. H. Groen, and I. Moerman, “Minimization of the loss of intersecting waveguides in InP-based photonic integrated circuits,” IEEE Photon. Technol. Lett.11(11), 1420–1422 (1999).
[CrossRef]

Håkansson, A.

Hall, T. J.

Hanai, T.

Y. Hatakeyama, T. Hanai, S. Suzuki, and Y. Kokubun, “Loss-less multilevel crossing of busline waveguide in vertically coupled microring resonator filter,” IEEE Photon. Technol. Lett.16(2), 473–475 (2004).
[CrossRef]

Hashimoto, T.

Y. Sakamaki, T. Saida, T. Hashimoto, S. Kamei, and H. Takahashi, “Loss reduction of waveguide crossings by wavefront matching method and their application to integrated optical circuits,” J. Lightwave Technol.27(13), 2257–2263 (2009).
[CrossRef]

Y. Sakamaki, T. Saida, M. Tamura, T. Hashimoto, and H. Takahashi, “Low loss and low crosstalk waveguide crossings designed by wavefront matching method,” IEEE Photon. Technol. Lett.18(19), 2005–2007 (2006).
[CrossRef]

Hashizume, Y.

K. Watanabe, Y. Hashizume, Y. Nasu, Y. Sakamaki, M. Kohtoku, M. Itoh, and Y. Inoue, “Low-loss three-dimensional waveguide crossings using adiabatic interlayer coupling,” Electron. Lett.44(1356), 23 (2008).
[CrossRef]

Hatakeyama, Y.

Y. Hatakeyama, T. Hanai, S. Suzuki, and Y. Kokubun, “Loss-less multilevel crossing of busline waveguide in vertically coupled microring resonator filter,” IEEE Photon. Technol. Lett.16(2), 473–475 (2004).
[CrossRef]

Haus, H. A.

Heck, M. J. R.

Herben, C. G. P.

H. G. Bukkems, C. G. P. Herben, M. K. Smit, F. H. Groen, and I. Moerman, “Minimization of the loss of intersecting waveguides in InP-based photonic integrated circuits,” IEEE Photon. Technol. Lett.11(11), 1420–1422 (1999).
[CrossRef]

Hernandez-Figueroa, H. E.

C. E. Rubio-Mercedes, H. E. Hernandez-Figueroa, I. T. Lima, and V. F. Rodriguez-Esquerre, “Simulation of segmented waveguide crossing using the 2D Finite Element Method,” IEEE Photon. Conf., (IEEE, 2011), 819–820.
[CrossRef]

Hirano, T.

T. Fukazawa, T. Hirano, F. Ohno, and T. Baba, “Low loss intersection of Si photonic wire waveguides,” Jpn. J. Appl. Phys.43(2), 646–647 (2004).
[CrossRef]

Hong, C. Y.

Huey, S.

S. Huey, B. Chandrasekaran, D. Bennett, S. Tsai, K. Xu, J. Qian, S. Dhandapani, J. David, B. Swedek, and L. Karuppiah, “CMP process control for advanced CMOS device integration,” ECS Trans.44, 543–552 (2012).
[CrossRef]

Ikuma, Y.

D. Tanaka, Y. Ikuma, and H. Tsuda, “Low loss, small crosstalk offset crossing structure of Si wire waveguide,” IEEE/LEOS Winter Topicals Meeting Series (IEEE, 2009), 36–37.

Indukuri, T.

P. Koonath, T. Indukuri, and B. Jalali, “Monolithic 3-D Silicon photonics,” J. Lightwave Technol.24(1796), 4 (2006).
[CrossRef]

Inoue, Y.

K. Watanabe, Y. Hashizume, Y. Nasu, Y. Sakamaki, M. Kohtoku, M. Itoh, and Y. Inoue, “Low-loss three-dimensional waveguide crossings using adiabatic interlayer coupling,” Electron. Lett.44(1356), 23 (2008).
[CrossRef]

Ishikawa, H.

Itoh, M.

K. Watanabe, Y. Hashizume, Y. Nasu, Y. Sakamaki, M. Kohtoku, M. Itoh, and Y. Inoue, “Low-loss three-dimensional waveguide crossings using adiabatic interlayer coupling,” Electron. Lett.44(1356), 23 (2008).
[CrossRef]

Jalali, B.

P. Koonath, T. Indukuri, and B. Jalali, “Monolithic 3-D Silicon photonics,” J. Lightwave Technol.24(1796), 4 (2006).
[CrossRef]

Janz, S.

Jiao, Y.

Y. Jiao, S. F. Mingaleev, M. Schillinger, D. A. B. Miller, S. Fan, and K. Busch, “Wannier basis design and optimization of a photonic crystal waveguide crossing,” IEEE Photon. Technol. Lett.17(9), 1875–1877 (2005).
[CrossRef]

Joannopoulos, J. D.

Johnson, S. G.

Kamei, S.

Karuppiah, L.

S. Huey, B. Chandrasekaran, D. Bennett, S. Tsai, K. Xu, J. Qian, S. Dhandapani, J. David, B. Swedek, and L. Karuppiah, “CMP process control for advanced CMOS device integration,” ECS Trans.44, 543–552 (2012).
[CrossRef]

Kimerling, L.

Kohtoku, M.

K. Watanabe, Y. Hashizume, Y. Nasu, Y. Sakamaki, M. Kohtoku, M. Itoh, and Y. Inoue, “Low-loss three-dimensional waveguide crossings using adiabatic interlayer coupling,” Electron. Lett.44(1356), 23 (2008).
[CrossRef]

Kokubun, Y.

Y. Hatakeyama, T. Hanai, S. Suzuki, and Y. Kokubun, “Loss-less multilevel crossing of busline waveguide in vertically coupled microring resonator filter,” IEEE Photon. Technol. Lett.16(2), 473–475 (2004).
[CrossRef]

Koonath, P.

P. Koonath, T. Indukuri, and B. Jalali, “Monolithic 3-D Silicon photonics,” J. Lightwave Technol.24(1796), 4 (2006).
[CrossRef]

Lan, S.

Lapointe, J.

Lima, I. T.

C. E. Rubio-Mercedes, H. E. Hernandez-Figueroa, I. T. Lima, and V. F. Rodriguez-Esquerre, “Simulation of segmented waveguide crossing using the 2D Finite Element Method,” IEEE Photon. Conf., (IEEE, 2011), 819–820.
[CrossRef]

Lipson, M.

Liu, B.

B. Liu, A. Shakouri, P. Abraham, and J. E. Bowers, “Optical Add/Drop Multiplexers based on X-crossing vertical coupler filters,” IEEE Photon. Technol. Lett.12(4), 410–412 (2000).
[CrossRef]

Liu, H.

H. Liu, H. Tam, P. K. A. Wai, and E. Pun, “Low-loss waveguide crossing using a multimode interference structure,” Opt. Commun.241(1-3), 99–104 (2004).
[CrossRef]

Liu, Y.

W. Ding, D. Tang, Y. Liu, L. Chen, and X. Sun, “Compact and low crosstalk waveguide crossing using impedance matched metamaterial,” Appl. Phys. Lett.96(11), 111114 (2010).
[CrossRef]

Manolatou, C.

Marti, J.

P. Sanchis, J. V. Galan, A. Griol, J. Marti, M. A. Piqueras, and J. M. Perdigues, “Low-crosstalk in silicon-on-insulator waveguide crossings with optimized-angle,” IEEE Photon. Technol. Lett.19(20), 1583–1585 (2007).
[CrossRef]

Martí, J.

Michel, J.

Miller, D. A. B.

Y. Jiao, S. F. Mingaleev, M. Schillinger, D. A. B. Miller, S. Fan, and K. Busch, “Wannier basis design and optimization of a photonic crystal waveguide crossing,” IEEE Photon. Technol. Lett.17(9), 1875–1877 (2005).
[CrossRef]

Mingaleev, S. F.

Y. Jiao, S. F. Mingaleev, M. Schillinger, D. A. B. Miller, S. Fan, and K. Busch, “Wannier basis design and optimization of a photonic crystal waveguide crossing,” IEEE Photon. Technol. Lett.17(9), 1875–1877 (2005).
[CrossRef]

Moerman, I.

H. G. Bukkems, C. G. P. Herben, M. K. Smit, F. H. Groen, and I. Moerman, “Minimization of the loss of intersecting waveguides in InP-based photonic integrated circuits,” IEEE Photon. Technol. Lett.11(11), 1420–1422 (1999).
[CrossRef]

Nasu, Y.

K. Watanabe, Y. Hashizume, Y. Nasu, Y. Sakamaki, M. Kohtoku, M. Itoh, and Y. Inoue, “Low-loss three-dimensional waveguide crossings using adiabatic interlayer coupling,” Electron. Lett.44(1356), 23 (2008).
[CrossRef]

Ohno, F.

T. Fukazawa, T. Hirano, F. Ohno, and T. Baba, “Low loss intersection of Si photonic wire waveguides,” Jpn. J. Appl. Phys.43(2), 646–647 (2004).
[CrossRef]

Paniccia, M.

A. Alduino and M. Paniccia, “Interconnects: wiring electronics with light,” Nat. Photonics1(3), 153–155 (2007).
[CrossRef]

Perdigues, J. M.

P. Sanchis, J. V. Galan, A. Griol, J. Marti, M. A. Piqueras, and J. M. Perdigues, “Low-crosstalk in silicon-on-insulator waveguide crossings with optimized-angle,” IEEE Photon. Technol. Lett.19(20), 1583–1585 (2007).
[CrossRef]

Piqueras, M. A.

P. Sanchis, J. V. Galan, A. Griol, J. Marti, M. A. Piqueras, and J. M. Perdigues, “Low-crosstalk in silicon-on-insulator waveguide crossings with optimized-angle,” IEEE Photon. Technol. Lett.19(20), 1583–1585 (2007).
[CrossRef]

Pomerene, A.

Poon, A. W.

H. Chen and A. W. Poon, “Low-loss multimode-interference-based crossings for silicon wire waveguides,” IEEE Photon. Technol. Lett.18(21), 2260–2262 (2006).
[CrossRef]

Pun, E.

H. Liu, H. Tam, P. K. A. Wai, and E. Pun, “Low-loss waveguide crossing using a multimode interference structure,” Opt. Commun.241(1-3), 99–104 (2004).
[CrossRef]

Qian, J.

S. Huey, B. Chandrasekaran, D. Bennett, S. Tsai, K. Xu, J. Qian, S. Dhandapani, J. David, B. Swedek, and L. Karuppiah, “CMP process control for advanced CMOS device integration,” ECS Trans.44, 543–552 (2012).
[CrossRef]

Rodriguez-Esquerre, V. F.

C. E. Rubio-Mercedes, H. E. Hernandez-Figueroa, I. T. Lima, and V. F. Rodriguez-Esquerre, “Simulation of segmented waveguide crossing using the 2D Finite Element Method,” IEEE Photon. Conf., (IEEE, 2011), 819–820.
[CrossRef]

Rubio-Mercedes, C. E.

C. E. Rubio-Mercedes, H. E. Hernandez-Figueroa, I. T. Lima, and V. F. Rodriguez-Esquerre, “Simulation of segmented waveguide crossing using the 2D Finite Element Method,” IEEE Photon. Conf., (IEEE, 2011), 819–820.
[CrossRef]

Saida, T.

Y. Sakamaki, T. Saida, T. Hashimoto, S. Kamei, and H. Takahashi, “Loss reduction of waveguide crossings by wavefront matching method and their application to integrated optical circuits,” J. Lightwave Technol.27(13), 2257–2263 (2009).
[CrossRef]

Y. Sakamaki, T. Saida, M. Tamura, T. Hashimoto, and H. Takahashi, “Low loss and low crosstalk waveguide crossings designed by wavefront matching method,” IEEE Photon. Technol. Lett.18(19), 2005–2007 (2006).
[CrossRef]

Sakamaki, Y.

Y. Sakamaki, T. Saida, T. Hashimoto, S. Kamei, and H. Takahashi, “Loss reduction of waveguide crossings by wavefront matching method and their application to integrated optical circuits,” J. Lightwave Technol.27(13), 2257–2263 (2009).
[CrossRef]

K. Watanabe, Y. Hashizume, Y. Nasu, Y. Sakamaki, M. Kohtoku, M. Itoh, and Y. Inoue, “Low-loss three-dimensional waveguide crossings using adiabatic interlayer coupling,” Electron. Lett.44(1356), 23 (2008).
[CrossRef]

Y. Sakamaki, T. Saida, M. Tamura, T. Hashimoto, and H. Takahashi, “Low loss and low crosstalk waveguide crossings designed by wavefront matching method,” IEEE Photon. Technol. Lett.18(19), 2005–2007 (2006).
[CrossRef]

Sanchis, P.

P. Sanchis, P. Villalba, F. Cuesta, A. Håkansson, A. Griol, J. V. Galán, A. Brimont, and J. Martí, “Highly efficient crossing structure for silicon-on-insulator waveguides,” Opt. Lett.34(18), 2760–2762 (2009).
[CrossRef] [PubMed]

P. Sanchis, J. V. Galan, A. Griol, J. Marti, M. A. Piqueras, and J. M. Perdigues, “Low-crosstalk in silicon-on-insulator waveguide crossings with optimized-angle,” IEEE Photon. Technol. Lett.19(20), 1583–1585 (2007).
[CrossRef]

Schillinger, M.

Y. Jiao, S. F. Mingaleev, M. Schillinger, D. A. B. Miller, S. Fan, and K. Busch, “Wannier basis design and optimization of a photonic crystal waveguide crossing,” IEEE Photon. Technol. Lett.17(9), 1875–1877 (2005).
[CrossRef]

Schmid, J. H.

Shakouri, A.

B. Liu, A. Shakouri, P. Abraham, and J. E. Bowers, “Optical Add/Drop Multiplexers based on X-crossing vertical coupler filters,” IEEE Photon. Technol. Lett.12(4), 410–412 (2000).
[CrossRef]

Smit, M. K.

H. G. Bukkems, C. G. P. Herben, M. K. Smit, F. H. Groen, and I. Moerman, “Minimization of the loss of intersecting waveguides in InP-based photonic integrated circuits,” IEEE Photon. Technol. Lett.11(11), 1420–1422 (1999).
[CrossRef]

Spencer, D. T.

Sun, R.

Sun, X.

W. Ding, D. Tang, Y. Liu, L. Chen, and X. Sun, “Compact and low crosstalk waveguide crossing using impedance matched metamaterial,” Appl. Phys. Lett.96(11), 111114 (2010).
[CrossRef]

Suzuki, S.

Y. Hatakeyama, T. Hanai, S. Suzuki, and Y. Kokubun, “Loss-less multilevel crossing of busline waveguide in vertically coupled microring resonator filter,” IEEE Photon. Technol. Lett.16(2), 473–475 (2004).
[CrossRef]

Swedek, B.

S. Huey, B. Chandrasekaran, D. Bennett, S. Tsai, K. Xu, J. Qian, S. Dhandapani, J. David, B. Swedek, and L. Karuppiah, “CMP process control for advanced CMOS device integration,” ECS Trans.44, 543–552 (2012).
[CrossRef]

Takahashi, H.

Y. Sakamaki, T. Saida, T. Hashimoto, S. Kamei, and H. Takahashi, “Loss reduction of waveguide crossings by wavefront matching method and their application to integrated optical circuits,” J. Lightwave Technol.27(13), 2257–2263 (2009).
[CrossRef]

Y. Sakamaki, T. Saida, M. Tamura, T. Hashimoto, and H. Takahashi, “Low loss and low crosstalk waveguide crossings designed by wavefront matching method,” IEEE Photon. Technol. Lett.18(19), 2005–2007 (2006).
[CrossRef]

Tam, H.

H. Liu, H. Tam, P. K. A. Wai, and E. Pun, “Low-loss waveguide crossing using a multimode interference structure,” Opt. Commun.241(1-3), 99–104 (2004).
[CrossRef]

Tamura, M.

Y. Sakamaki, T. Saida, M. Tamura, T. Hashimoto, and H. Takahashi, “Low loss and low crosstalk waveguide crossings designed by wavefront matching method,” IEEE Photon. Technol. Lett.18(19), 2005–2007 (2006).
[CrossRef]

Tanaka, D.

D. Tanaka, Y. Ikuma, and H. Tsuda, “Low loss, small crosstalk offset crossing structure of Si wire waveguide,” IEEE/LEOS Winter Topicals Meeting Series (IEEE, 2009), 36–37.

Tang, D.

W. Ding, D. Tang, Y. Liu, L. Chen, and X. Sun, “Compact and low crosstalk waveguide crossing using impedance matched metamaterial,” Appl. Phys. Lett.96(11), 111114 (2010).
[CrossRef]

Tien, M.-C.

Tkach, R. W.

R.-J. Essiambr and R. W. Tkach, “Capacity trends and limits of optical communication networks,” Proc. IEEE100(5), 1035–1055 (2012).
[CrossRef]

Tsai, S.

S. Huey, B. Chandrasekaran, D. Bennett, S. Tsai, K. Xu, J. Qian, S. Dhandapani, J. David, B. Swedek, and L. Karuppiah, “CMP process control for advanced CMOS device integration,” ECS Trans.44, 543–552 (2012).
[CrossRef]

Tsarev, A. V.

Tsuda, H.

D. Tanaka, Y. Ikuma, and H. Tsuda, “Low loss, small crosstalk offset crossing structure of Si wire waveguide,” IEEE/LEOS Winter Topicals Meeting Series (IEEE, 2009), 36–37.

Van Thourhout, D.

Villalba, P.

Villeneuve, P. R.

Wai, P. K. A.

H. Liu, H. Tam, P. K. A. Wai, and E. Pun, “Low-loss waveguide crossing using a multimode interference structure,” Opt. Commun.241(1-3), 99–104 (2004).
[CrossRef]

Watanabe, K.

K. Watanabe, Y. Hashizume, Y. Nasu, Y. Sakamaki, M. Kohtoku, M. Itoh, and Y. Inoue, “Low-loss three-dimensional waveguide crossings using adiabatic interlayer coupling,” Electron. Lett.44(1356), 23 (2008).
[CrossRef]

Xu, D.-X.

Xu, K.

S. Huey, B. Chandrasekaran, D. Bennett, S. Tsai, K. Xu, J. Qian, S. Dhandapani, J. David, B. Swedek, and L. Karuppiah, “CMP process control for advanced CMOS device integration,” ECS Trans.44, 543–552 (2012).
[CrossRef]

Yariv, A.

A. Yariv, “Universal relations for coupling of optical power between microresonators and dielectric waveguides,” Electron. Lett.36(4), 321–322 (2000).
[CrossRef]

Appl. Phys. Lett. (1)

W. Ding, D. Tang, Y. Liu, L. Chen, and X. Sun, “Compact and low crosstalk waveguide crossing using impedance matched metamaterial,” Appl. Phys. Lett.96(11), 111114 (2010).
[CrossRef]

ECS Trans. (1)

S. Huey, B. Chandrasekaran, D. Bennett, S. Tsai, K. Xu, J. Qian, S. Dhandapani, J. David, B. Swedek, and L. Karuppiah, “CMP process control for advanced CMOS device integration,” ECS Trans.44, 543–552 (2012).
[CrossRef]

Electron. Lett. (2)

A. Yariv, “Universal relations for coupling of optical power between microresonators and dielectric waveguides,” Electron. Lett.36(4), 321–322 (2000).
[CrossRef]

K. Watanabe, Y. Hashizume, Y. Nasu, Y. Sakamaki, M. Kohtoku, M. Itoh, and Y. Inoue, “Low-loss three-dimensional waveguide crossings using adiabatic interlayer coupling,” Electron. Lett.44(1356), 23 (2008).
[CrossRef]

IEEE Photon. Technol. Lett. (7)

B. Liu, A. Shakouri, P. Abraham, and J. E. Bowers, “Optical Add/Drop Multiplexers based on X-crossing vertical coupler filters,” IEEE Photon. Technol. Lett.12(4), 410–412 (2000).
[CrossRef]

H. G. Bukkems, C. G. P. Herben, M. K. Smit, F. H. Groen, and I. Moerman, “Minimization of the loss of intersecting waveguides in InP-based photonic integrated circuits,” IEEE Photon. Technol. Lett.11(11), 1420–1422 (1999).
[CrossRef]

P. Sanchis, J. V. Galan, A. Griol, J. Marti, M. A. Piqueras, and J. M. Perdigues, “Low-crosstalk in silicon-on-insulator waveguide crossings with optimized-angle,” IEEE Photon. Technol. Lett.19(20), 1583–1585 (2007).
[CrossRef]

Y. Hatakeyama, T. Hanai, S. Suzuki, and Y. Kokubun, “Loss-less multilevel crossing of busline waveguide in vertically coupled microring resonator filter,” IEEE Photon. Technol. Lett.16(2), 473–475 (2004).
[CrossRef]

Y. Sakamaki, T. Saida, M. Tamura, T. Hashimoto, and H. Takahashi, “Low loss and low crosstalk waveguide crossings designed by wavefront matching method,” IEEE Photon. Technol. Lett.18(19), 2005–2007 (2006).
[CrossRef]

H. Chen and A. W. Poon, “Low-loss multimode-interference-based crossings for silicon wire waveguides,” IEEE Photon. Technol. Lett.18(21), 2260–2262 (2006).
[CrossRef]

Y. Jiao, S. F. Mingaleev, M. Schillinger, D. A. B. Miller, S. Fan, and K. Busch, “Wannier basis design and optimization of a photonic crystal waveguide crossing,” IEEE Photon. Technol. Lett.17(9), 1875–1877 (2005).
[CrossRef]

J. Lightwave Technol. (4)

Jpn. J. Appl. Phys. (1)

T. Fukazawa, T. Hirano, F. Ohno, and T. Baba, “Low loss intersection of Si photonic wire waveguides,” Jpn. J. Appl. Phys.43(2), 646–647 (2004).
[CrossRef]

Nat. Photonics (1)

A. Alduino and M. Paniccia, “Interconnects: wiring electronics with light,” Nat. Photonics1(3), 153–155 (2007).
[CrossRef]

Opt. Commun. (1)

H. Liu, H. Tam, P. K. A. Wai, and E. Pun, “Low-loss waveguide crossing using a multimode interference structure,” Opt. Commun.241(1-3), 99–104 (2004).
[CrossRef]

Opt. Express (4)

Opt. Lett. (4)

Proc. IEEE (1)

R.-J. Essiambr and R. W. Tkach, “Capacity trends and limits of optical communication networks,” Proc. IEEE100(5), 1035–1055 (2012).
[CrossRef]

Other (6)

A. Biberman, K. Preston, G. Hendry, N. Sherwood-Droz, J. Chan, J. S. Levy, H. Wang, M. Lipson, and K. Bergman, “CMOS-compatible scalable photonic switch architecture using 3D-integrated deposited silicon materials for high-performance data center networks," in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2011, OSA Technical Digest (CD) (Optical Society of America, 2011), paper OMM2.

C. E. Rubio-Mercedes, H. E. Hernandez-Figueroa, I. T. Lima, and V. F. Rodriguez-Esquerre, “Simulation of segmented waveguide crossing using the 2D Finite Element Method,” IEEE Photon. Conf., (IEEE, 2011), 819–820.
[CrossRef]

M. A. Popovic, E. P. Ippen, and F. X. Kartner, “Low-loss Bloch waves in open structures and highly compact, efficient Si waveguide-crossing arrays,” IEEE/LEOS Annual Meeting, 56–57 (2007).
[CrossRef]

http://www.lumerical.com/tcad-products/fdtd/ .

R.D. Kekatpure, Applied Photonic Microsystems Group, Sandia National Laboratories, 1515 Eubank SE, Albuquerque, N.M. 87123, A. Jones, D.C. Trotter, A. Starbuck, C. DeRose, and A.L. Lentine are preparing a manuscript to be called, “Design and characterization of inverse tapers for efficient fiber to waveguide coupling.”

D. Tanaka, Y. Ikuma, and H. Tsuda, “Low loss, small crosstalk offset crossing structure of Si wire waveguide,” IEEE/LEOS Winter Topicals Meeting Series (IEEE, 2009), 36–37.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Routing portion of a 16 port non-blocking Banyan switch matrix with NOS crossings at various angles; for N ports, the maximum number of waveguide crossings is given by N/2 + 1.

Fig. 2
Fig. 2

Schematic of the crossing (a), cross-sectional view of the crossing region perpendicular to the silicon nitride (b) and silicon (c) waveguides, and top-down schematic view of the waveguide crossing (d).

Fig. 3
Fig. 3

Simulated TE (a,b) and TM (c,d) normalized modal field amplitudes for the isolated silicon (a,c) and silicon nitride (b,d) waveguides. The silicon waveguides are 230 X 400 nm while the silicon nitride waveguides are 250 X 1200 nm (waveguide borders represented by dark lines).

Fig. 4
Fig. 4

TE (a-c) and TM (d-f) normalized modal field amplitudes within the crossing region perpendicular to the silicon waveguide (refer to Fig. 2(c)) for waveguide crossings with 0 (a,d), 150 (b,e), and 400 nm (c,f) vertical gaps. The silicon and silicon nitride waveguide booundaries are represented by dark lines.

Fig. 5
Fig. 5

TE (a-c) and TM (d-f) normalized modal field amplitudes within the crossing region perpendicular to the silicon nitride (refer to Fig. 2(b)) for waveguide crossings with 0 (a,d), 150 (b,e), and 400 (c,f) nm vertical gaps. The silicon and silicon nitride waveguide booundaries are represented by dark lines.

Fig. 6
Fig. 6

Normalized field amplitude propagating through the silicon waveguide with 0 (a,c) and 400 nm (b,d) gaps for TE (a,b) and TM (c,d) polarizations. The rectangle above the silicon waveguide represents the nitride waveguide borders.

Fig. 7
Fig. 7

Normalized field amplitude propagating through the nitride waveguide with 0 (a,c) and 400 nm (b,c) gaps for TE (a,b) and TM (c,d) polarizations. The silicon waveguide is shown in black below the nitride waveguide.

Fig. 8
Fig. 8

Excess loss as a function of gap for silicon (a) and silicon nitride (b) input ports over the 1500 to 1600 nm wavelength range for TE and TM polarizations.

Fig. 9
Fig. 9

Crosstalk vs. gap for silicon and silicon nitride input ports over the 1500 to 1600 nm wavelength range for TE (a) and TM (b) polarizations.

Fig. 10
Fig. 10

Comparison of vertical transition (solid lines) and crossing loss (dashed green lines, number of crossings traversed in bold) for TE (a) and TM (b) modes. All crossing loss measurements are for the silicon nitride input.

Fig. 11
Fig. 11

Schematic of the optical test setup.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

X T 1 = κ 13 κ 13 + κ 14 κ 13 κ 14 and X T 2 = κ 14 κ 23 + κ 24 κ 24 κ 23 .
EX T 1 P 13 P 14 = η 1 η 3 L 1 L 3 κ 13 P 0 η 1 η 4 L 1 L 4 κ 14 P 0 = η 3 L 3 κ 13 η 4 L 4 κ 14 .
EX T 2 P 24 P 23 = η 2 η 4 L 2 L 4 κ 24 P 0 η 2 η 3 L 2 L 3 κ 23 P 0 = η 4 L 4 κ 24 η 3 L 3 κ 23 .
EX T 1 ×EX T 2 η 3 L 3 κ 13 η 4 L 4 κ 14 × η 4 L 4 κ 24 η 3 L 3 κ 23 = κ 13 κ 14 κ 24 κ 23 X T 1 ×X T 2 .
EX T T E min = [ min( η 1 η 3 L 1 L 3 κ 13 P 0 ) max( η 1 η 4 L 1 L 4 κ 14 P 0 ) ] TE = 75 dBm 29 dBm 46 dB.
EX T T M min =  [ min( η 1 η 3 L 1 L 3 κ 13 P 0 ) max( η 1 η 4 L 1 L 4 κ 14 P 0 ) ] TM = 75 dBm 26 dBm 49 dB.

Metrics