Abstract

We report a strain sensing approach that utilizes wrinkled patterns on poly (dimethylsiloxane) (PDMS) as an optical grating to measure thermally-induced strain of different materials. The mechanism for the strain sensing and the effect of PDMS grating on strain sensing are discussed. By bonding the PDMS grating onto a copper or silicon substrate, the coefficient of thermal expansion (CTE) of the substrates can be deduced by measuring the diffraction angle change due to the change in PDMS grating periodicity when thermal strain is introduced. The measured CTEs agree well with the known reference values.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Efimenko, M. Rackaitis, E. Manias, A. Vaziri, L. Mahadevan, and J. Genzer, “Nested self-similar wrinkling patterns in skins,” Nat. Mater. 4(4), 293–297 (2005).
    [CrossRef] [PubMed]
  2. X. Y. Jiang, S. Takayama, X. P. Qian, E. Ostuni, H. K. Wu, N. Bowden, P. LeDuc, D. E. Ingber, and G. M. Whitesides, “Controlling mammalian cell spreading and cytoskeletal arrangement with conveniently fabricated continuous wavy features on poly(dimethylsiloxane),” Langmuir 18(8), 3273–3280 (2002).
    [CrossRef]
  3. P. Uttayarat, G. K. Toworfe, F. Dietrich, P. I. Lelkes, and R. J. Composto, “Topographic guidance of endothelial cells on silicone surfaces with micro- to nanogrooves: Orientation of actin filaments and focal adhesions,” J. Biomed. Mater. Res. A 75A(3), 668–680 (2005).
    [CrossRef] [PubMed]
  4. C. H. Lu, H. Mohwald, and A. Fery, “A lithography-free method for directed colloidal crystal assembly based on wrinkling,” Soft Matter 3(12), 1530–1536 (2007).
    [CrossRef]
  5. A. Schweikart and A. Fery, “Controlled wrinkling as a novel method for the fabrication of patterned surfaces,” Mikrochim. Acta 165(3-4), 249–263 (2009).
    [CrossRef]
  6. S. Wagner, S. P. Lacour, J. Jones, P.-I. Hsu, J. C. Sturm, T. Li, and Z. Suo, “Electronic skin: architecture and components,” Physica E 25(2-3), 326–334 (2004).
    [CrossRef]
  7. S. P. Lacour, S. Wagner, Z. Huang, and Z. Suo, “Stretchable gold conductors on elastomeric substrates,” Appl. Phys. Lett. 82(15), 2404–2406 (2003).
    [CrossRef]
  8. S. P. Lacour, J. Jones, Z. Suo, and S. Wagner, “Design and performance of thin metal film interconnects for skin-like electronic circuits,” IEEE Electron Device Lett. 25(4), 179–181 (2004).
    [CrossRef]
  9. S. P. Lacour, J. Jones, S. Wagner, T. Li, and Z. Suo, “Stretchable interconnects for elastic electronic surfaces,” Proc. IEEE 93(8), 1459–1467 (2005).
    [CrossRef]
  10. S. P. Lacour, S. Wagner, R. J. Narayan, T. Li, and Z. Suo, “Stiff subcircuit islands of diamondlike carbon for stretchable electronics,” J. Appl. Phys. 100(1), 014913 (2006).
    [CrossRef]
  11. C. Yu and H. Jiang, “Forming wrinkled stiff films on polymeric substrates at room temperature for stretchable interconnects applications,” Thin Solid Films 519(2), 818–822 (2010).
    [CrossRef]
  12. W. M. Choi, J. Song, D.-Y. Khang, H. Jiang, Y. Y. Huang, and J. A. Rogers, “Biaxially stretchable “wavy” silicon nanomembranes,” Nano Lett. 7(6), 1655–1663 (2007).
    [CrossRef] [PubMed]
  13. D.-Y. Khang, H. Jiang, Y. Huang, and J. A. Rogers, “A stretchable form of single-crystal silicon for high-performance electronics on rubber substrates,” Science 311(5758), 208–212 (2006).
    [CrossRef] [PubMed]
  14. H. Q. Jiang, Y. G. Sun, J. A. Rogers, and Y. G. Huang, “Mechanics of precisely controlled thin film buckling on elastomeric substrate,” Appl. Phys. Lett. 90(13), 133119 (2007).
    [CrossRef]
  15. K. M. Choi and J. A. Rogers, “A photocurable poly(dimethylsiloxane) chemistry designed for soft lithographic molding and printing in the nanometer regime,” J. Am. Chem. Soc. 125(14), 4060–4061 (2003).
    [CrossRef] [PubMed]
  16. H. Jiang, D.-Y. Khang, J. Song, Y. Sun, Y. Huang, and J. A. Rogers, “Finite deformation mechanics in buckled thin films on compliant supports,” Proc. Natl. Acad. Sci. U.S.A. 104(40), 15607–15612 (2007).
    [CrossRef] [PubMed]
  17. C. Yu, C. Masarapu, J. Rong, B. Wei, and H. Jiang, “Stretchable Supercapacitors Based on Buckled Single-Walled Carbon - Nanotube Macrofilms,” Adv. Mater. 21(47), 4793–4797 (2009).
    [CrossRef] [PubMed]
  18. C. Yu, Z. Wang, H. Yu, and H. Jiang, “A stretchable temperature sensor based on elastically buckled thin film devices on elastomeric substrates,” Appl. Phys. Lett. 95(14), 141912 (2009).
    [CrossRef]
  19. C. M. Stafford, C. Harrison, K. L. Beers, A. Karim, E. J. Amis, M. R. VanLandingham, H. C. Kim, W. Volksen, R. D. Miller, and E. E. Simonyi, “A buckling-based metrology for measuring the elastic moduli of polymeric thin films,” Nat. Mater. 3(8), 545–550 (2004).
    [CrossRef] [PubMed]
  20. J. L. Wilbur, R. J. Jackman, G. M. Whitesides, E. L. Cheung, L. K. Lee, and M. G. Prentiss, “Elastomeric optics,” Chem. Mater. 8(7), 1380–1385 (1996).
    [CrossRef]
  21. C. J. Yu, K. O'Brien, Y. H. Zhang, H. B. Yu, and H. Q. Jiang, “Tunable optical gratings based on buckled nanoscale thin films on transparent elastomeric substrates,” Appl. Phys. Lett. 96(4), 041111 (2010).
    [CrossRef]
  22. N. Bowden, S. Brittain, A. G. Evans, J. W. Hutchinson, and G. M. Whitesides, “Spontaneous formation of ordered structures in thin films of metals supported on an elastomeric polymer,” Nature 393(6681), 146–149 (1998).
    [CrossRef]
  23. N. Bowden, W. T. S. Huck, K. E. Paul, and G. M. Whitesides, “The controlled formation of ordered, sinusoidal structures by plasma oxidation of an elastomeric polymer,” Appl. Phys. Lett. 75(17), 2557–2559 (1999).
    [CrossRef]
  24. J. S. Sharp and R. A. Jones, “Micro-buckling as a route towards surface patterning,” Adv. Mater. 14(11), 799 (2002).
    [CrossRef]
  25. H. Schmid, H. Wolf, R. Allenspach, H. Riel, S. Karg, B. Michel, and E. Delamarche, “Preparation of metallic films on elastomeric stamps and their application for contact processing and contact printing,” Adv. Funct. Mater. 13(2), 145–153 (2003).
    [CrossRef]
  26. A. U. Manual, “Version 6.5, Hibbitt, Karlsson and Sorensen,” Inc., Pawtucket, RI (2004).
  27. R. Li, Y. Li, C. Lü, J. Song, R. Saeidpouraza, B. Fang, Y. Zhong, P. M. Ferreira, J. A. Rogers, and Y. Huang, “Thermo-mechanical modeling of laser-driven non-contact transfer printing: two-dimensional analysis,” Soft Matter 8(27), 7122–7127 (2012).
    [CrossRef]
  28. C. S. Selvanayagam, J. H. Lau, X. Zhang, S. Seah, K. Vaidyanathan, and T. Chai, “Nonlinear thermal stress/strain analyses of copper filled TSV (through silicon via) and their flip-chip microbumps,” IEEE Trans. Adv. Pack. 32(4), 720–728 (2009).
    [CrossRef]
  29. B. H. Jo, L. M. Van Lerberghe, K. M. Motsegood, and D. J. Beebe, “Three-dimensional micro-channel fabrication in polydimethylsiloxane (PDMS) elastomer,” J. Microelectromech. Syst. 9(1), 76–81 (2000).
    [CrossRef]

2012 (1)

R. Li, Y. Li, C. Lü, J. Song, R. Saeidpouraza, B. Fang, Y. Zhong, P. M. Ferreira, J. A. Rogers, and Y. Huang, “Thermo-mechanical modeling of laser-driven non-contact transfer printing: two-dimensional analysis,” Soft Matter 8(27), 7122–7127 (2012).
[CrossRef]

2010 (2)

C. J. Yu, K. O'Brien, Y. H. Zhang, H. B. Yu, and H. Q. Jiang, “Tunable optical gratings based on buckled nanoscale thin films on transparent elastomeric substrates,” Appl. Phys. Lett. 96(4), 041111 (2010).
[CrossRef]

C. Yu and H. Jiang, “Forming wrinkled stiff films on polymeric substrates at room temperature for stretchable interconnects applications,” Thin Solid Films 519(2), 818–822 (2010).
[CrossRef]

2009 (4)

C. Yu, C. Masarapu, J. Rong, B. Wei, and H. Jiang, “Stretchable Supercapacitors Based on Buckled Single-Walled Carbon - Nanotube Macrofilms,” Adv. Mater. 21(47), 4793–4797 (2009).
[CrossRef] [PubMed]

C. Yu, Z. Wang, H. Yu, and H. Jiang, “A stretchable temperature sensor based on elastically buckled thin film devices on elastomeric substrates,” Appl. Phys. Lett. 95(14), 141912 (2009).
[CrossRef]

A. Schweikart and A. Fery, “Controlled wrinkling as a novel method for the fabrication of patterned surfaces,” Mikrochim. Acta 165(3-4), 249–263 (2009).
[CrossRef]

C. S. Selvanayagam, J. H. Lau, X. Zhang, S. Seah, K. Vaidyanathan, and T. Chai, “Nonlinear thermal stress/strain analyses of copper filled TSV (through silicon via) and their flip-chip microbumps,” IEEE Trans. Adv. Pack. 32(4), 720–728 (2009).
[CrossRef]

2007 (4)

H. Jiang, D.-Y. Khang, J. Song, Y. Sun, Y. Huang, and J. A. Rogers, “Finite deformation mechanics in buckled thin films on compliant supports,” Proc. Natl. Acad. Sci. U.S.A. 104(40), 15607–15612 (2007).
[CrossRef] [PubMed]

C. H. Lu, H. Mohwald, and A. Fery, “A lithography-free method for directed colloidal crystal assembly based on wrinkling,” Soft Matter 3(12), 1530–1536 (2007).
[CrossRef]

W. M. Choi, J. Song, D.-Y. Khang, H. Jiang, Y. Y. Huang, and J. A. Rogers, “Biaxially stretchable “wavy” silicon nanomembranes,” Nano Lett. 7(6), 1655–1663 (2007).
[CrossRef] [PubMed]

H. Q. Jiang, Y. G. Sun, J. A. Rogers, and Y. G. Huang, “Mechanics of precisely controlled thin film buckling on elastomeric substrate,” Appl. Phys. Lett. 90(13), 133119 (2007).
[CrossRef]

2006 (2)

D.-Y. Khang, H. Jiang, Y. Huang, and J. A. Rogers, “A stretchable form of single-crystal silicon for high-performance electronics on rubber substrates,” Science 311(5758), 208–212 (2006).
[CrossRef] [PubMed]

S. P. Lacour, S. Wagner, R. J. Narayan, T. Li, and Z. Suo, “Stiff subcircuit islands of diamondlike carbon for stretchable electronics,” J. Appl. Phys. 100(1), 014913 (2006).
[CrossRef]

2005 (3)

P. Uttayarat, G. K. Toworfe, F. Dietrich, P. I. Lelkes, and R. J. Composto, “Topographic guidance of endothelial cells on silicone surfaces with micro- to nanogrooves: Orientation of actin filaments and focal adhesions,” J. Biomed. Mater. Res. A 75A(3), 668–680 (2005).
[CrossRef] [PubMed]

K. Efimenko, M. Rackaitis, E. Manias, A. Vaziri, L. Mahadevan, and J. Genzer, “Nested self-similar wrinkling patterns in skins,” Nat. Mater. 4(4), 293–297 (2005).
[CrossRef] [PubMed]

S. P. Lacour, J. Jones, S. Wagner, T. Li, and Z. Suo, “Stretchable interconnects for elastic electronic surfaces,” Proc. IEEE 93(8), 1459–1467 (2005).
[CrossRef]

2004 (3)

S. P. Lacour, J. Jones, Z. Suo, and S. Wagner, “Design and performance of thin metal film interconnects for skin-like electronic circuits,” IEEE Electron Device Lett. 25(4), 179–181 (2004).
[CrossRef]

S. Wagner, S. P. Lacour, J. Jones, P.-I. Hsu, J. C. Sturm, T. Li, and Z. Suo, “Electronic skin: architecture and components,” Physica E 25(2-3), 326–334 (2004).
[CrossRef]

C. M. Stafford, C. Harrison, K. L. Beers, A. Karim, E. J. Amis, M. R. VanLandingham, H. C. Kim, W. Volksen, R. D. Miller, and E. E. Simonyi, “A buckling-based metrology for measuring the elastic moduli of polymeric thin films,” Nat. Mater. 3(8), 545–550 (2004).
[CrossRef] [PubMed]

2003 (3)

K. M. Choi and J. A. Rogers, “A photocurable poly(dimethylsiloxane) chemistry designed for soft lithographic molding and printing in the nanometer regime,” J. Am. Chem. Soc. 125(14), 4060–4061 (2003).
[CrossRef] [PubMed]

S. P. Lacour, S. Wagner, Z. Huang, and Z. Suo, “Stretchable gold conductors on elastomeric substrates,” Appl. Phys. Lett. 82(15), 2404–2406 (2003).
[CrossRef]

H. Schmid, H. Wolf, R. Allenspach, H. Riel, S. Karg, B. Michel, and E. Delamarche, “Preparation of metallic films on elastomeric stamps and their application for contact processing and contact printing,” Adv. Funct. Mater. 13(2), 145–153 (2003).
[CrossRef]

2002 (2)

J. S. Sharp and R. A. Jones, “Micro-buckling as a route towards surface patterning,” Adv. Mater. 14(11), 799 (2002).
[CrossRef]

X. Y. Jiang, S. Takayama, X. P. Qian, E. Ostuni, H. K. Wu, N. Bowden, P. LeDuc, D. E. Ingber, and G. M. Whitesides, “Controlling mammalian cell spreading and cytoskeletal arrangement with conveniently fabricated continuous wavy features on poly(dimethylsiloxane),” Langmuir 18(8), 3273–3280 (2002).
[CrossRef]

2000 (1)

B. H. Jo, L. M. Van Lerberghe, K. M. Motsegood, and D. J. Beebe, “Three-dimensional micro-channel fabrication in polydimethylsiloxane (PDMS) elastomer,” J. Microelectromech. Syst. 9(1), 76–81 (2000).
[CrossRef]

1999 (1)

N. Bowden, W. T. S. Huck, K. E. Paul, and G. M. Whitesides, “The controlled formation of ordered, sinusoidal structures by plasma oxidation of an elastomeric polymer,” Appl. Phys. Lett. 75(17), 2557–2559 (1999).
[CrossRef]

1998 (1)

N. Bowden, S. Brittain, A. G. Evans, J. W. Hutchinson, and G. M. Whitesides, “Spontaneous formation of ordered structures in thin films of metals supported on an elastomeric polymer,” Nature 393(6681), 146–149 (1998).
[CrossRef]

1996 (1)

J. L. Wilbur, R. J. Jackman, G. M. Whitesides, E. L. Cheung, L. K. Lee, and M. G. Prentiss, “Elastomeric optics,” Chem. Mater. 8(7), 1380–1385 (1996).
[CrossRef]

Allenspach, R.

H. Schmid, H. Wolf, R. Allenspach, H. Riel, S. Karg, B. Michel, and E. Delamarche, “Preparation of metallic films on elastomeric stamps and their application for contact processing and contact printing,” Adv. Funct. Mater. 13(2), 145–153 (2003).
[CrossRef]

Amis, E. J.

C. M. Stafford, C. Harrison, K. L. Beers, A. Karim, E. J. Amis, M. R. VanLandingham, H. C. Kim, W. Volksen, R. D. Miller, and E. E. Simonyi, “A buckling-based metrology for measuring the elastic moduli of polymeric thin films,” Nat. Mater. 3(8), 545–550 (2004).
[CrossRef] [PubMed]

Beebe, D. J.

B. H. Jo, L. M. Van Lerberghe, K. M. Motsegood, and D. J. Beebe, “Three-dimensional micro-channel fabrication in polydimethylsiloxane (PDMS) elastomer,” J. Microelectromech. Syst. 9(1), 76–81 (2000).
[CrossRef]

Beers, K. L.

C. M. Stafford, C. Harrison, K. L. Beers, A. Karim, E. J. Amis, M. R. VanLandingham, H. C. Kim, W. Volksen, R. D. Miller, and E. E. Simonyi, “A buckling-based metrology for measuring the elastic moduli of polymeric thin films,” Nat. Mater. 3(8), 545–550 (2004).
[CrossRef] [PubMed]

Bowden, N.

X. Y. Jiang, S. Takayama, X. P. Qian, E. Ostuni, H. K. Wu, N. Bowden, P. LeDuc, D. E. Ingber, and G. M. Whitesides, “Controlling mammalian cell spreading and cytoskeletal arrangement with conveniently fabricated continuous wavy features on poly(dimethylsiloxane),” Langmuir 18(8), 3273–3280 (2002).
[CrossRef]

N. Bowden, W. T. S. Huck, K. E. Paul, and G. M. Whitesides, “The controlled formation of ordered, sinusoidal structures by plasma oxidation of an elastomeric polymer,” Appl. Phys. Lett. 75(17), 2557–2559 (1999).
[CrossRef]

N. Bowden, S. Brittain, A. G. Evans, J. W. Hutchinson, and G. M. Whitesides, “Spontaneous formation of ordered structures in thin films of metals supported on an elastomeric polymer,” Nature 393(6681), 146–149 (1998).
[CrossRef]

Brittain, S.

N. Bowden, S. Brittain, A. G. Evans, J. W. Hutchinson, and G. M. Whitesides, “Spontaneous formation of ordered structures in thin films of metals supported on an elastomeric polymer,” Nature 393(6681), 146–149 (1998).
[CrossRef]

Chai, T.

C. S. Selvanayagam, J. H. Lau, X. Zhang, S. Seah, K. Vaidyanathan, and T. Chai, “Nonlinear thermal stress/strain analyses of copper filled TSV (through silicon via) and their flip-chip microbumps,” IEEE Trans. Adv. Pack. 32(4), 720–728 (2009).
[CrossRef]

Cheung, E. L.

J. L. Wilbur, R. J. Jackman, G. M. Whitesides, E. L. Cheung, L. K. Lee, and M. G. Prentiss, “Elastomeric optics,” Chem. Mater. 8(7), 1380–1385 (1996).
[CrossRef]

Choi, K. M.

K. M. Choi and J. A. Rogers, “A photocurable poly(dimethylsiloxane) chemistry designed for soft lithographic molding and printing in the nanometer regime,” J. Am. Chem. Soc. 125(14), 4060–4061 (2003).
[CrossRef] [PubMed]

Choi, W. M.

W. M. Choi, J. Song, D.-Y. Khang, H. Jiang, Y. Y. Huang, and J. A. Rogers, “Biaxially stretchable “wavy” silicon nanomembranes,” Nano Lett. 7(6), 1655–1663 (2007).
[CrossRef] [PubMed]

Composto, R. J.

P. Uttayarat, G. K. Toworfe, F. Dietrich, P. I. Lelkes, and R. J. Composto, “Topographic guidance of endothelial cells on silicone surfaces with micro- to nanogrooves: Orientation of actin filaments and focal adhesions,” J. Biomed. Mater. Res. A 75A(3), 668–680 (2005).
[CrossRef] [PubMed]

Delamarche, E.

H. Schmid, H. Wolf, R. Allenspach, H. Riel, S. Karg, B. Michel, and E. Delamarche, “Preparation of metallic films on elastomeric stamps and their application for contact processing and contact printing,” Adv. Funct. Mater. 13(2), 145–153 (2003).
[CrossRef]

Dietrich, F.

P. Uttayarat, G. K. Toworfe, F. Dietrich, P. I. Lelkes, and R. J. Composto, “Topographic guidance of endothelial cells on silicone surfaces with micro- to nanogrooves: Orientation of actin filaments and focal adhesions,” J. Biomed. Mater. Res. A 75A(3), 668–680 (2005).
[CrossRef] [PubMed]

Efimenko, K.

K. Efimenko, M. Rackaitis, E. Manias, A. Vaziri, L. Mahadevan, and J. Genzer, “Nested self-similar wrinkling patterns in skins,” Nat. Mater. 4(4), 293–297 (2005).
[CrossRef] [PubMed]

Evans, A. G.

N. Bowden, S. Brittain, A. G. Evans, J. W. Hutchinson, and G. M. Whitesides, “Spontaneous formation of ordered structures in thin films of metals supported on an elastomeric polymer,” Nature 393(6681), 146–149 (1998).
[CrossRef]

Fang, B.

R. Li, Y. Li, C. Lü, J. Song, R. Saeidpouraza, B. Fang, Y. Zhong, P. M. Ferreira, J. A. Rogers, and Y. Huang, “Thermo-mechanical modeling of laser-driven non-contact transfer printing: two-dimensional analysis,” Soft Matter 8(27), 7122–7127 (2012).
[CrossRef]

Ferreira, P. M.

R. Li, Y. Li, C. Lü, J. Song, R. Saeidpouraza, B. Fang, Y. Zhong, P. M. Ferreira, J. A. Rogers, and Y. Huang, “Thermo-mechanical modeling of laser-driven non-contact transfer printing: two-dimensional analysis,” Soft Matter 8(27), 7122–7127 (2012).
[CrossRef]

Fery, A.

A. Schweikart and A. Fery, “Controlled wrinkling as a novel method for the fabrication of patterned surfaces,” Mikrochim. Acta 165(3-4), 249–263 (2009).
[CrossRef]

C. H. Lu, H. Mohwald, and A. Fery, “A lithography-free method for directed colloidal crystal assembly based on wrinkling,” Soft Matter 3(12), 1530–1536 (2007).
[CrossRef]

Genzer, J.

K. Efimenko, M. Rackaitis, E. Manias, A. Vaziri, L. Mahadevan, and J. Genzer, “Nested self-similar wrinkling patterns in skins,” Nat. Mater. 4(4), 293–297 (2005).
[CrossRef] [PubMed]

Harrison, C.

C. M. Stafford, C. Harrison, K. L. Beers, A. Karim, E. J. Amis, M. R. VanLandingham, H. C. Kim, W. Volksen, R. D. Miller, and E. E. Simonyi, “A buckling-based metrology for measuring the elastic moduli of polymeric thin films,” Nat. Mater. 3(8), 545–550 (2004).
[CrossRef] [PubMed]

Hsu, P.-I.

S. Wagner, S. P. Lacour, J. Jones, P.-I. Hsu, J. C. Sturm, T. Li, and Z. Suo, “Electronic skin: architecture and components,” Physica E 25(2-3), 326–334 (2004).
[CrossRef]

Huang, Y.

R. Li, Y. Li, C. Lü, J. Song, R. Saeidpouraza, B. Fang, Y. Zhong, P. M. Ferreira, J. A. Rogers, and Y. Huang, “Thermo-mechanical modeling of laser-driven non-contact transfer printing: two-dimensional analysis,” Soft Matter 8(27), 7122–7127 (2012).
[CrossRef]

H. Jiang, D.-Y. Khang, J. Song, Y. Sun, Y. Huang, and J. A. Rogers, “Finite deformation mechanics in buckled thin films on compliant supports,” Proc. Natl. Acad. Sci. U.S.A. 104(40), 15607–15612 (2007).
[CrossRef] [PubMed]

D.-Y. Khang, H. Jiang, Y. Huang, and J. A. Rogers, “A stretchable form of single-crystal silicon for high-performance electronics on rubber substrates,” Science 311(5758), 208–212 (2006).
[CrossRef] [PubMed]

Huang, Y. G.

H. Q. Jiang, Y. G. Sun, J. A. Rogers, and Y. G. Huang, “Mechanics of precisely controlled thin film buckling on elastomeric substrate,” Appl. Phys. Lett. 90(13), 133119 (2007).
[CrossRef]

Huang, Y. Y.

W. M. Choi, J. Song, D.-Y. Khang, H. Jiang, Y. Y. Huang, and J. A. Rogers, “Biaxially stretchable “wavy” silicon nanomembranes,” Nano Lett. 7(6), 1655–1663 (2007).
[CrossRef] [PubMed]

Huang, Z.

S. P. Lacour, S. Wagner, Z. Huang, and Z. Suo, “Stretchable gold conductors on elastomeric substrates,” Appl. Phys. Lett. 82(15), 2404–2406 (2003).
[CrossRef]

Huck, W. T. S.

N. Bowden, W. T. S. Huck, K. E. Paul, and G. M. Whitesides, “The controlled formation of ordered, sinusoidal structures by plasma oxidation of an elastomeric polymer,” Appl. Phys. Lett. 75(17), 2557–2559 (1999).
[CrossRef]

Hutchinson, J. W.

N. Bowden, S. Brittain, A. G. Evans, J. W. Hutchinson, and G. M. Whitesides, “Spontaneous formation of ordered structures in thin films of metals supported on an elastomeric polymer,” Nature 393(6681), 146–149 (1998).
[CrossRef]

Ingber, D. E.

X. Y. Jiang, S. Takayama, X. P. Qian, E. Ostuni, H. K. Wu, N. Bowden, P. LeDuc, D. E. Ingber, and G. M. Whitesides, “Controlling mammalian cell spreading and cytoskeletal arrangement with conveniently fabricated continuous wavy features on poly(dimethylsiloxane),” Langmuir 18(8), 3273–3280 (2002).
[CrossRef]

Jackman, R. J.

J. L. Wilbur, R. J. Jackman, G. M. Whitesides, E. L. Cheung, L. K. Lee, and M. G. Prentiss, “Elastomeric optics,” Chem. Mater. 8(7), 1380–1385 (1996).
[CrossRef]

Jiang, H.

C. Yu and H. Jiang, “Forming wrinkled stiff films on polymeric substrates at room temperature for stretchable interconnects applications,” Thin Solid Films 519(2), 818–822 (2010).
[CrossRef]

C. Yu, Z. Wang, H. Yu, and H. Jiang, “A stretchable temperature sensor based on elastically buckled thin film devices on elastomeric substrates,” Appl. Phys. Lett. 95(14), 141912 (2009).
[CrossRef]

C. Yu, C. Masarapu, J. Rong, B. Wei, and H. Jiang, “Stretchable Supercapacitors Based on Buckled Single-Walled Carbon - Nanotube Macrofilms,” Adv. Mater. 21(47), 4793–4797 (2009).
[CrossRef] [PubMed]

H. Jiang, D.-Y. Khang, J. Song, Y. Sun, Y. Huang, and J. A. Rogers, “Finite deformation mechanics in buckled thin films on compliant supports,” Proc. Natl. Acad. Sci. U.S.A. 104(40), 15607–15612 (2007).
[CrossRef] [PubMed]

W. M. Choi, J. Song, D.-Y. Khang, H. Jiang, Y. Y. Huang, and J. A. Rogers, “Biaxially stretchable “wavy” silicon nanomembranes,” Nano Lett. 7(6), 1655–1663 (2007).
[CrossRef] [PubMed]

D.-Y. Khang, H. Jiang, Y. Huang, and J. A. Rogers, “A stretchable form of single-crystal silicon for high-performance electronics on rubber substrates,” Science 311(5758), 208–212 (2006).
[CrossRef] [PubMed]

Jiang, H. Q.

C. J. Yu, K. O'Brien, Y. H. Zhang, H. B. Yu, and H. Q. Jiang, “Tunable optical gratings based on buckled nanoscale thin films on transparent elastomeric substrates,” Appl. Phys. Lett. 96(4), 041111 (2010).
[CrossRef]

H. Q. Jiang, Y. G. Sun, J. A. Rogers, and Y. G. Huang, “Mechanics of precisely controlled thin film buckling on elastomeric substrate,” Appl. Phys. Lett. 90(13), 133119 (2007).
[CrossRef]

Jiang, X. Y.

X. Y. Jiang, S. Takayama, X. P. Qian, E. Ostuni, H. K. Wu, N. Bowden, P. LeDuc, D. E. Ingber, and G. M. Whitesides, “Controlling mammalian cell spreading and cytoskeletal arrangement with conveniently fabricated continuous wavy features on poly(dimethylsiloxane),” Langmuir 18(8), 3273–3280 (2002).
[CrossRef]

Jo, B. H.

B. H. Jo, L. M. Van Lerberghe, K. M. Motsegood, and D. J. Beebe, “Three-dimensional micro-channel fabrication in polydimethylsiloxane (PDMS) elastomer,” J. Microelectromech. Syst. 9(1), 76–81 (2000).
[CrossRef]

Jones, J.

S. P. Lacour, J. Jones, S. Wagner, T. Li, and Z. Suo, “Stretchable interconnects for elastic electronic surfaces,” Proc. IEEE 93(8), 1459–1467 (2005).
[CrossRef]

S. P. Lacour, J. Jones, Z. Suo, and S. Wagner, “Design and performance of thin metal film interconnects for skin-like electronic circuits,” IEEE Electron Device Lett. 25(4), 179–181 (2004).
[CrossRef]

S. Wagner, S. P. Lacour, J. Jones, P.-I. Hsu, J. C. Sturm, T. Li, and Z. Suo, “Electronic skin: architecture and components,” Physica E 25(2-3), 326–334 (2004).
[CrossRef]

Jones, R. A.

J. S. Sharp and R. A. Jones, “Micro-buckling as a route towards surface patterning,” Adv. Mater. 14(11), 799 (2002).
[CrossRef]

Karg, S.

H. Schmid, H. Wolf, R. Allenspach, H. Riel, S. Karg, B. Michel, and E. Delamarche, “Preparation of metallic films on elastomeric stamps and their application for contact processing and contact printing,” Adv. Funct. Mater. 13(2), 145–153 (2003).
[CrossRef]

Karim, A.

C. M. Stafford, C. Harrison, K. L. Beers, A. Karim, E. J. Amis, M. R. VanLandingham, H. C. Kim, W. Volksen, R. D. Miller, and E. E. Simonyi, “A buckling-based metrology for measuring the elastic moduli of polymeric thin films,” Nat. Mater. 3(8), 545–550 (2004).
[CrossRef] [PubMed]

Khang, D.-Y.

H. Jiang, D.-Y. Khang, J. Song, Y. Sun, Y. Huang, and J. A. Rogers, “Finite deformation mechanics in buckled thin films on compliant supports,” Proc. Natl. Acad. Sci. U.S.A. 104(40), 15607–15612 (2007).
[CrossRef] [PubMed]

W. M. Choi, J. Song, D.-Y. Khang, H. Jiang, Y. Y. Huang, and J. A. Rogers, “Biaxially stretchable “wavy” silicon nanomembranes,” Nano Lett. 7(6), 1655–1663 (2007).
[CrossRef] [PubMed]

D.-Y. Khang, H. Jiang, Y. Huang, and J. A. Rogers, “A stretchable form of single-crystal silicon for high-performance electronics on rubber substrates,” Science 311(5758), 208–212 (2006).
[CrossRef] [PubMed]

Kim, H. C.

C. M. Stafford, C. Harrison, K. L. Beers, A. Karim, E. J. Amis, M. R. VanLandingham, H. C. Kim, W. Volksen, R. D. Miller, and E. E. Simonyi, “A buckling-based metrology for measuring the elastic moduli of polymeric thin films,” Nat. Mater. 3(8), 545–550 (2004).
[CrossRef] [PubMed]

Lacour, S. P.

S. P. Lacour, S. Wagner, R. J. Narayan, T. Li, and Z. Suo, “Stiff subcircuit islands of diamondlike carbon for stretchable electronics,” J. Appl. Phys. 100(1), 014913 (2006).
[CrossRef]

S. P. Lacour, J. Jones, S. Wagner, T. Li, and Z. Suo, “Stretchable interconnects for elastic electronic surfaces,” Proc. IEEE 93(8), 1459–1467 (2005).
[CrossRef]

S. P. Lacour, J. Jones, Z. Suo, and S. Wagner, “Design and performance of thin metal film interconnects for skin-like electronic circuits,” IEEE Electron Device Lett. 25(4), 179–181 (2004).
[CrossRef]

S. Wagner, S. P. Lacour, J. Jones, P.-I. Hsu, J. C. Sturm, T. Li, and Z. Suo, “Electronic skin: architecture and components,” Physica E 25(2-3), 326–334 (2004).
[CrossRef]

S. P. Lacour, S. Wagner, Z. Huang, and Z. Suo, “Stretchable gold conductors on elastomeric substrates,” Appl. Phys. Lett. 82(15), 2404–2406 (2003).
[CrossRef]

Lau, J. H.

C. S. Selvanayagam, J. H. Lau, X. Zhang, S. Seah, K. Vaidyanathan, and T. Chai, “Nonlinear thermal stress/strain analyses of copper filled TSV (through silicon via) and their flip-chip microbumps,” IEEE Trans. Adv. Pack. 32(4), 720–728 (2009).
[CrossRef]

LeDuc, P.

X. Y. Jiang, S. Takayama, X. P. Qian, E. Ostuni, H. K. Wu, N. Bowden, P. LeDuc, D. E. Ingber, and G. M. Whitesides, “Controlling mammalian cell spreading and cytoskeletal arrangement with conveniently fabricated continuous wavy features on poly(dimethylsiloxane),” Langmuir 18(8), 3273–3280 (2002).
[CrossRef]

Lee, L. K.

J. L. Wilbur, R. J. Jackman, G. M. Whitesides, E. L. Cheung, L. K. Lee, and M. G. Prentiss, “Elastomeric optics,” Chem. Mater. 8(7), 1380–1385 (1996).
[CrossRef]

Lelkes, P. I.

P. Uttayarat, G. K. Toworfe, F. Dietrich, P. I. Lelkes, and R. J. Composto, “Topographic guidance of endothelial cells on silicone surfaces with micro- to nanogrooves: Orientation of actin filaments and focal adhesions,” J. Biomed. Mater. Res. A 75A(3), 668–680 (2005).
[CrossRef] [PubMed]

Li, R.

R. Li, Y. Li, C. Lü, J. Song, R. Saeidpouraza, B. Fang, Y. Zhong, P. M. Ferreira, J. A. Rogers, and Y. Huang, “Thermo-mechanical modeling of laser-driven non-contact transfer printing: two-dimensional analysis,” Soft Matter 8(27), 7122–7127 (2012).
[CrossRef]

Li, T.

S. P. Lacour, S. Wagner, R. J. Narayan, T. Li, and Z. Suo, “Stiff subcircuit islands of diamondlike carbon for stretchable electronics,” J. Appl. Phys. 100(1), 014913 (2006).
[CrossRef]

S. P. Lacour, J. Jones, S. Wagner, T. Li, and Z. Suo, “Stretchable interconnects for elastic electronic surfaces,” Proc. IEEE 93(8), 1459–1467 (2005).
[CrossRef]

S. Wagner, S. P. Lacour, J. Jones, P.-I. Hsu, J. C. Sturm, T. Li, and Z. Suo, “Electronic skin: architecture and components,” Physica E 25(2-3), 326–334 (2004).
[CrossRef]

Li, Y.

R. Li, Y. Li, C. Lü, J. Song, R. Saeidpouraza, B. Fang, Y. Zhong, P. M. Ferreira, J. A. Rogers, and Y. Huang, “Thermo-mechanical modeling of laser-driven non-contact transfer printing: two-dimensional analysis,” Soft Matter 8(27), 7122–7127 (2012).
[CrossRef]

Lu, C. H.

C. H. Lu, H. Mohwald, and A. Fery, “A lithography-free method for directed colloidal crystal assembly based on wrinkling,” Soft Matter 3(12), 1530–1536 (2007).
[CrossRef]

Lü, C.

R. Li, Y. Li, C. Lü, J. Song, R. Saeidpouraza, B. Fang, Y. Zhong, P. M. Ferreira, J. A. Rogers, and Y. Huang, “Thermo-mechanical modeling of laser-driven non-contact transfer printing: two-dimensional analysis,” Soft Matter 8(27), 7122–7127 (2012).
[CrossRef]

Mahadevan, L.

K. Efimenko, M. Rackaitis, E. Manias, A. Vaziri, L. Mahadevan, and J. Genzer, “Nested self-similar wrinkling patterns in skins,” Nat. Mater. 4(4), 293–297 (2005).
[CrossRef] [PubMed]

Manias, E.

K. Efimenko, M. Rackaitis, E. Manias, A. Vaziri, L. Mahadevan, and J. Genzer, “Nested self-similar wrinkling patterns in skins,” Nat. Mater. 4(4), 293–297 (2005).
[CrossRef] [PubMed]

Masarapu, C.

C. Yu, C. Masarapu, J. Rong, B. Wei, and H. Jiang, “Stretchable Supercapacitors Based on Buckled Single-Walled Carbon - Nanotube Macrofilms,” Adv. Mater. 21(47), 4793–4797 (2009).
[CrossRef] [PubMed]

Michel, B.

H. Schmid, H. Wolf, R. Allenspach, H. Riel, S. Karg, B. Michel, and E. Delamarche, “Preparation of metallic films on elastomeric stamps and their application for contact processing and contact printing,” Adv. Funct. Mater. 13(2), 145–153 (2003).
[CrossRef]

Miller, R. D.

C. M. Stafford, C. Harrison, K. L. Beers, A. Karim, E. J. Amis, M. R. VanLandingham, H. C. Kim, W. Volksen, R. D. Miller, and E. E. Simonyi, “A buckling-based metrology for measuring the elastic moduli of polymeric thin films,” Nat. Mater. 3(8), 545–550 (2004).
[CrossRef] [PubMed]

Mohwald, H.

C. H. Lu, H. Mohwald, and A. Fery, “A lithography-free method for directed colloidal crystal assembly based on wrinkling,” Soft Matter 3(12), 1530–1536 (2007).
[CrossRef]

Motsegood, K. M.

B. H. Jo, L. M. Van Lerberghe, K. M. Motsegood, and D. J. Beebe, “Three-dimensional micro-channel fabrication in polydimethylsiloxane (PDMS) elastomer,” J. Microelectromech. Syst. 9(1), 76–81 (2000).
[CrossRef]

Narayan, R. J.

S. P. Lacour, S. Wagner, R. J. Narayan, T. Li, and Z. Suo, “Stiff subcircuit islands of diamondlike carbon for stretchable electronics,” J. Appl. Phys. 100(1), 014913 (2006).
[CrossRef]

O'Brien, K.

C. J. Yu, K. O'Brien, Y. H. Zhang, H. B. Yu, and H. Q. Jiang, “Tunable optical gratings based on buckled nanoscale thin films on transparent elastomeric substrates,” Appl. Phys. Lett. 96(4), 041111 (2010).
[CrossRef]

Ostuni, E.

X. Y. Jiang, S. Takayama, X. P. Qian, E. Ostuni, H. K. Wu, N. Bowden, P. LeDuc, D. E. Ingber, and G. M. Whitesides, “Controlling mammalian cell spreading and cytoskeletal arrangement with conveniently fabricated continuous wavy features on poly(dimethylsiloxane),” Langmuir 18(8), 3273–3280 (2002).
[CrossRef]

Paul, K. E.

N. Bowden, W. T. S. Huck, K. E. Paul, and G. M. Whitesides, “The controlled formation of ordered, sinusoidal structures by plasma oxidation of an elastomeric polymer,” Appl. Phys. Lett. 75(17), 2557–2559 (1999).
[CrossRef]

Prentiss, M. G.

J. L. Wilbur, R. J. Jackman, G. M. Whitesides, E. L. Cheung, L. K. Lee, and M. G. Prentiss, “Elastomeric optics,” Chem. Mater. 8(7), 1380–1385 (1996).
[CrossRef]

Qian, X. P.

X. Y. Jiang, S. Takayama, X. P. Qian, E. Ostuni, H. K. Wu, N. Bowden, P. LeDuc, D. E. Ingber, and G. M. Whitesides, “Controlling mammalian cell spreading and cytoskeletal arrangement with conveniently fabricated continuous wavy features on poly(dimethylsiloxane),” Langmuir 18(8), 3273–3280 (2002).
[CrossRef]

Rackaitis, M.

K. Efimenko, M. Rackaitis, E. Manias, A. Vaziri, L. Mahadevan, and J. Genzer, “Nested self-similar wrinkling patterns in skins,” Nat. Mater. 4(4), 293–297 (2005).
[CrossRef] [PubMed]

Riel, H.

H. Schmid, H. Wolf, R. Allenspach, H. Riel, S. Karg, B. Michel, and E. Delamarche, “Preparation of metallic films on elastomeric stamps and their application for contact processing and contact printing,” Adv. Funct. Mater. 13(2), 145–153 (2003).
[CrossRef]

Rogers, J. A.

R. Li, Y. Li, C. Lü, J. Song, R. Saeidpouraza, B. Fang, Y. Zhong, P. M. Ferreira, J. A. Rogers, and Y. Huang, “Thermo-mechanical modeling of laser-driven non-contact transfer printing: two-dimensional analysis,” Soft Matter 8(27), 7122–7127 (2012).
[CrossRef]

H. Jiang, D.-Y. Khang, J. Song, Y. Sun, Y. Huang, and J. A. Rogers, “Finite deformation mechanics in buckled thin films on compliant supports,” Proc. Natl. Acad. Sci. U.S.A. 104(40), 15607–15612 (2007).
[CrossRef] [PubMed]

W. M. Choi, J. Song, D.-Y. Khang, H. Jiang, Y. Y. Huang, and J. A. Rogers, “Biaxially stretchable “wavy” silicon nanomembranes,” Nano Lett. 7(6), 1655–1663 (2007).
[CrossRef] [PubMed]

H. Q. Jiang, Y. G. Sun, J. A. Rogers, and Y. G. Huang, “Mechanics of precisely controlled thin film buckling on elastomeric substrate,” Appl. Phys. Lett. 90(13), 133119 (2007).
[CrossRef]

D.-Y. Khang, H. Jiang, Y. Huang, and J. A. Rogers, “A stretchable form of single-crystal silicon for high-performance electronics on rubber substrates,” Science 311(5758), 208–212 (2006).
[CrossRef] [PubMed]

K. M. Choi and J. A. Rogers, “A photocurable poly(dimethylsiloxane) chemistry designed for soft lithographic molding and printing in the nanometer regime,” J. Am. Chem. Soc. 125(14), 4060–4061 (2003).
[CrossRef] [PubMed]

Rong, J.

C. Yu, C. Masarapu, J. Rong, B. Wei, and H. Jiang, “Stretchable Supercapacitors Based on Buckled Single-Walled Carbon - Nanotube Macrofilms,” Adv. Mater. 21(47), 4793–4797 (2009).
[CrossRef] [PubMed]

Saeidpouraza, R.

R. Li, Y. Li, C. Lü, J. Song, R. Saeidpouraza, B. Fang, Y. Zhong, P. M. Ferreira, J. A. Rogers, and Y. Huang, “Thermo-mechanical modeling of laser-driven non-contact transfer printing: two-dimensional analysis,” Soft Matter 8(27), 7122–7127 (2012).
[CrossRef]

Schmid, H.

H. Schmid, H. Wolf, R. Allenspach, H. Riel, S. Karg, B. Michel, and E. Delamarche, “Preparation of metallic films on elastomeric stamps and their application for contact processing and contact printing,” Adv. Funct. Mater. 13(2), 145–153 (2003).
[CrossRef]

Schweikart, A.

A. Schweikart and A. Fery, “Controlled wrinkling as a novel method for the fabrication of patterned surfaces,” Mikrochim. Acta 165(3-4), 249–263 (2009).
[CrossRef]

Seah, S.

C. S. Selvanayagam, J. H. Lau, X. Zhang, S. Seah, K. Vaidyanathan, and T. Chai, “Nonlinear thermal stress/strain analyses of copper filled TSV (through silicon via) and their flip-chip microbumps,” IEEE Trans. Adv. Pack. 32(4), 720–728 (2009).
[CrossRef]

Selvanayagam, C. S.

C. S. Selvanayagam, J. H. Lau, X. Zhang, S. Seah, K. Vaidyanathan, and T. Chai, “Nonlinear thermal stress/strain analyses of copper filled TSV (through silicon via) and their flip-chip microbumps,” IEEE Trans. Adv. Pack. 32(4), 720–728 (2009).
[CrossRef]

Sharp, J. S.

J. S. Sharp and R. A. Jones, “Micro-buckling as a route towards surface patterning,” Adv. Mater. 14(11), 799 (2002).
[CrossRef]

Simonyi, E. E.

C. M. Stafford, C. Harrison, K. L. Beers, A. Karim, E. J. Amis, M. R. VanLandingham, H. C. Kim, W. Volksen, R. D. Miller, and E. E. Simonyi, “A buckling-based metrology for measuring the elastic moduli of polymeric thin films,” Nat. Mater. 3(8), 545–550 (2004).
[CrossRef] [PubMed]

Song, J.

R. Li, Y. Li, C. Lü, J. Song, R. Saeidpouraza, B. Fang, Y. Zhong, P. M. Ferreira, J. A. Rogers, and Y. Huang, “Thermo-mechanical modeling of laser-driven non-contact transfer printing: two-dimensional analysis,” Soft Matter 8(27), 7122–7127 (2012).
[CrossRef]

H. Jiang, D.-Y. Khang, J. Song, Y. Sun, Y. Huang, and J. A. Rogers, “Finite deformation mechanics in buckled thin films on compliant supports,” Proc. Natl. Acad. Sci. U.S.A. 104(40), 15607–15612 (2007).
[CrossRef] [PubMed]

W. M. Choi, J. Song, D.-Y. Khang, H. Jiang, Y. Y. Huang, and J. A. Rogers, “Biaxially stretchable “wavy” silicon nanomembranes,” Nano Lett. 7(6), 1655–1663 (2007).
[CrossRef] [PubMed]

Stafford, C. M.

C. M. Stafford, C. Harrison, K. L. Beers, A. Karim, E. J. Amis, M. R. VanLandingham, H. C. Kim, W. Volksen, R. D. Miller, and E. E. Simonyi, “A buckling-based metrology for measuring the elastic moduli of polymeric thin films,” Nat. Mater. 3(8), 545–550 (2004).
[CrossRef] [PubMed]

Sturm, J. C.

S. Wagner, S. P. Lacour, J. Jones, P.-I. Hsu, J. C. Sturm, T. Li, and Z. Suo, “Electronic skin: architecture and components,” Physica E 25(2-3), 326–334 (2004).
[CrossRef]

Sun, Y.

H. Jiang, D.-Y. Khang, J. Song, Y. Sun, Y. Huang, and J. A. Rogers, “Finite deformation mechanics in buckled thin films on compliant supports,” Proc. Natl. Acad. Sci. U.S.A. 104(40), 15607–15612 (2007).
[CrossRef] [PubMed]

Sun, Y. G.

H. Q. Jiang, Y. G. Sun, J. A. Rogers, and Y. G. Huang, “Mechanics of precisely controlled thin film buckling on elastomeric substrate,” Appl. Phys. Lett. 90(13), 133119 (2007).
[CrossRef]

Suo, Z.

S. P. Lacour, S. Wagner, R. J. Narayan, T. Li, and Z. Suo, “Stiff subcircuit islands of diamondlike carbon for stretchable electronics,” J. Appl. Phys. 100(1), 014913 (2006).
[CrossRef]

S. P. Lacour, J. Jones, S. Wagner, T. Li, and Z. Suo, “Stretchable interconnects for elastic electronic surfaces,” Proc. IEEE 93(8), 1459–1467 (2005).
[CrossRef]

S. P. Lacour, J. Jones, Z. Suo, and S. Wagner, “Design and performance of thin metal film interconnects for skin-like electronic circuits,” IEEE Electron Device Lett. 25(4), 179–181 (2004).
[CrossRef]

S. Wagner, S. P. Lacour, J. Jones, P.-I. Hsu, J. C. Sturm, T. Li, and Z. Suo, “Electronic skin: architecture and components,” Physica E 25(2-3), 326–334 (2004).
[CrossRef]

S. P. Lacour, S. Wagner, Z. Huang, and Z. Suo, “Stretchable gold conductors on elastomeric substrates,” Appl. Phys. Lett. 82(15), 2404–2406 (2003).
[CrossRef]

Takayama, S.

X. Y. Jiang, S. Takayama, X. P. Qian, E. Ostuni, H. K. Wu, N. Bowden, P. LeDuc, D. E. Ingber, and G. M. Whitesides, “Controlling mammalian cell spreading and cytoskeletal arrangement with conveniently fabricated continuous wavy features on poly(dimethylsiloxane),” Langmuir 18(8), 3273–3280 (2002).
[CrossRef]

Toworfe, G. K.

P. Uttayarat, G. K. Toworfe, F. Dietrich, P. I. Lelkes, and R. J. Composto, “Topographic guidance of endothelial cells on silicone surfaces with micro- to nanogrooves: Orientation of actin filaments and focal adhesions,” J. Biomed. Mater. Res. A 75A(3), 668–680 (2005).
[CrossRef] [PubMed]

Uttayarat, P.

P. Uttayarat, G. K. Toworfe, F. Dietrich, P. I. Lelkes, and R. J. Composto, “Topographic guidance of endothelial cells on silicone surfaces with micro- to nanogrooves: Orientation of actin filaments and focal adhesions,” J. Biomed. Mater. Res. A 75A(3), 668–680 (2005).
[CrossRef] [PubMed]

Vaidyanathan, K.

C. S. Selvanayagam, J. H. Lau, X. Zhang, S. Seah, K. Vaidyanathan, and T. Chai, “Nonlinear thermal stress/strain analyses of copper filled TSV (through silicon via) and their flip-chip microbumps,” IEEE Trans. Adv. Pack. 32(4), 720–728 (2009).
[CrossRef]

Van Lerberghe, L. M.

B. H. Jo, L. M. Van Lerberghe, K. M. Motsegood, and D. J. Beebe, “Three-dimensional micro-channel fabrication in polydimethylsiloxane (PDMS) elastomer,” J. Microelectromech. Syst. 9(1), 76–81 (2000).
[CrossRef]

VanLandingham, M. R.

C. M. Stafford, C. Harrison, K. L. Beers, A. Karim, E. J. Amis, M. R. VanLandingham, H. C. Kim, W. Volksen, R. D. Miller, and E. E. Simonyi, “A buckling-based metrology for measuring the elastic moduli of polymeric thin films,” Nat. Mater. 3(8), 545–550 (2004).
[CrossRef] [PubMed]

Vaziri, A.

K. Efimenko, M. Rackaitis, E. Manias, A. Vaziri, L. Mahadevan, and J. Genzer, “Nested self-similar wrinkling patterns in skins,” Nat. Mater. 4(4), 293–297 (2005).
[CrossRef] [PubMed]

Volksen, W.

C. M. Stafford, C. Harrison, K. L. Beers, A. Karim, E. J. Amis, M. R. VanLandingham, H. C. Kim, W. Volksen, R. D. Miller, and E. E. Simonyi, “A buckling-based metrology for measuring the elastic moduli of polymeric thin films,” Nat. Mater. 3(8), 545–550 (2004).
[CrossRef] [PubMed]

Wagner, S.

S. P. Lacour, S. Wagner, R. J. Narayan, T. Li, and Z. Suo, “Stiff subcircuit islands of diamondlike carbon for stretchable electronics,” J. Appl. Phys. 100(1), 014913 (2006).
[CrossRef]

S. P. Lacour, J. Jones, S. Wagner, T. Li, and Z. Suo, “Stretchable interconnects for elastic electronic surfaces,” Proc. IEEE 93(8), 1459–1467 (2005).
[CrossRef]

S. P. Lacour, J. Jones, Z. Suo, and S. Wagner, “Design and performance of thin metal film interconnects for skin-like electronic circuits,” IEEE Electron Device Lett. 25(4), 179–181 (2004).
[CrossRef]

S. Wagner, S. P. Lacour, J. Jones, P.-I. Hsu, J. C. Sturm, T. Li, and Z. Suo, “Electronic skin: architecture and components,” Physica E 25(2-3), 326–334 (2004).
[CrossRef]

S. P. Lacour, S. Wagner, Z. Huang, and Z. Suo, “Stretchable gold conductors on elastomeric substrates,” Appl. Phys. Lett. 82(15), 2404–2406 (2003).
[CrossRef]

Wang, Z.

C. Yu, Z. Wang, H. Yu, and H. Jiang, “A stretchable temperature sensor based on elastically buckled thin film devices on elastomeric substrates,” Appl. Phys. Lett. 95(14), 141912 (2009).
[CrossRef]

Wei, B.

C. Yu, C. Masarapu, J. Rong, B. Wei, and H. Jiang, “Stretchable Supercapacitors Based on Buckled Single-Walled Carbon - Nanotube Macrofilms,” Adv. Mater. 21(47), 4793–4797 (2009).
[CrossRef] [PubMed]

Whitesides, G. M.

X. Y. Jiang, S. Takayama, X. P. Qian, E. Ostuni, H. K. Wu, N. Bowden, P. LeDuc, D. E. Ingber, and G. M. Whitesides, “Controlling mammalian cell spreading and cytoskeletal arrangement with conveniently fabricated continuous wavy features on poly(dimethylsiloxane),” Langmuir 18(8), 3273–3280 (2002).
[CrossRef]

N. Bowden, W. T. S. Huck, K. E. Paul, and G. M. Whitesides, “The controlled formation of ordered, sinusoidal structures by plasma oxidation of an elastomeric polymer,” Appl. Phys. Lett. 75(17), 2557–2559 (1999).
[CrossRef]

N. Bowden, S. Brittain, A. G. Evans, J. W. Hutchinson, and G. M. Whitesides, “Spontaneous formation of ordered structures in thin films of metals supported on an elastomeric polymer,” Nature 393(6681), 146–149 (1998).
[CrossRef]

J. L. Wilbur, R. J. Jackman, G. M. Whitesides, E. L. Cheung, L. K. Lee, and M. G. Prentiss, “Elastomeric optics,” Chem. Mater. 8(7), 1380–1385 (1996).
[CrossRef]

Wilbur, J. L.

J. L. Wilbur, R. J. Jackman, G. M. Whitesides, E. L. Cheung, L. K. Lee, and M. G. Prentiss, “Elastomeric optics,” Chem. Mater. 8(7), 1380–1385 (1996).
[CrossRef]

Wolf, H.

H. Schmid, H. Wolf, R. Allenspach, H. Riel, S. Karg, B. Michel, and E. Delamarche, “Preparation of metallic films on elastomeric stamps and their application for contact processing and contact printing,” Adv. Funct. Mater. 13(2), 145–153 (2003).
[CrossRef]

Wu, H. K.

X. Y. Jiang, S. Takayama, X. P. Qian, E. Ostuni, H. K. Wu, N. Bowden, P. LeDuc, D. E. Ingber, and G. M. Whitesides, “Controlling mammalian cell spreading and cytoskeletal arrangement with conveniently fabricated continuous wavy features on poly(dimethylsiloxane),” Langmuir 18(8), 3273–3280 (2002).
[CrossRef]

Yu, C.

C. Yu and H. Jiang, “Forming wrinkled stiff films on polymeric substrates at room temperature for stretchable interconnects applications,” Thin Solid Films 519(2), 818–822 (2010).
[CrossRef]

C. Yu, C. Masarapu, J. Rong, B. Wei, and H. Jiang, “Stretchable Supercapacitors Based on Buckled Single-Walled Carbon - Nanotube Macrofilms,” Adv. Mater. 21(47), 4793–4797 (2009).
[CrossRef] [PubMed]

C. Yu, Z. Wang, H. Yu, and H. Jiang, “A stretchable temperature sensor based on elastically buckled thin film devices on elastomeric substrates,” Appl. Phys. Lett. 95(14), 141912 (2009).
[CrossRef]

Yu, C. J.

C. J. Yu, K. O'Brien, Y. H. Zhang, H. B. Yu, and H. Q. Jiang, “Tunable optical gratings based on buckled nanoscale thin films on transparent elastomeric substrates,” Appl. Phys. Lett. 96(4), 041111 (2010).
[CrossRef]

Yu, H.

C. Yu, Z. Wang, H. Yu, and H. Jiang, “A stretchable temperature sensor based on elastically buckled thin film devices on elastomeric substrates,” Appl. Phys. Lett. 95(14), 141912 (2009).
[CrossRef]

Yu, H. B.

C. J. Yu, K. O'Brien, Y. H. Zhang, H. B. Yu, and H. Q. Jiang, “Tunable optical gratings based on buckled nanoscale thin films on transparent elastomeric substrates,” Appl. Phys. Lett. 96(4), 041111 (2010).
[CrossRef]

Zhang, X.

C. S. Selvanayagam, J. H. Lau, X. Zhang, S. Seah, K. Vaidyanathan, and T. Chai, “Nonlinear thermal stress/strain analyses of copper filled TSV (through silicon via) and their flip-chip microbumps,” IEEE Trans. Adv. Pack. 32(4), 720–728 (2009).
[CrossRef]

Zhang, Y. H.

C. J. Yu, K. O'Brien, Y. H. Zhang, H. B. Yu, and H. Q. Jiang, “Tunable optical gratings based on buckled nanoscale thin films on transparent elastomeric substrates,” Appl. Phys. Lett. 96(4), 041111 (2010).
[CrossRef]

Zhong, Y.

R. Li, Y. Li, C. Lü, J. Song, R. Saeidpouraza, B. Fang, Y. Zhong, P. M. Ferreira, J. A. Rogers, and Y. Huang, “Thermo-mechanical modeling of laser-driven non-contact transfer printing: two-dimensional analysis,” Soft Matter 8(27), 7122–7127 (2012).
[CrossRef]

Adv. Funct. Mater. (1)

H. Schmid, H. Wolf, R. Allenspach, H. Riel, S. Karg, B. Michel, and E. Delamarche, “Preparation of metallic films on elastomeric stamps and their application for contact processing and contact printing,” Adv. Funct. Mater. 13(2), 145–153 (2003).
[CrossRef]

Adv. Mater. (2)

J. S. Sharp and R. A. Jones, “Micro-buckling as a route towards surface patterning,” Adv. Mater. 14(11), 799 (2002).
[CrossRef]

C. Yu, C. Masarapu, J. Rong, B. Wei, and H. Jiang, “Stretchable Supercapacitors Based on Buckled Single-Walled Carbon - Nanotube Macrofilms,” Adv. Mater. 21(47), 4793–4797 (2009).
[CrossRef] [PubMed]

Appl. Phys. Lett. (5)

C. Yu, Z. Wang, H. Yu, and H. Jiang, “A stretchable temperature sensor based on elastically buckled thin film devices on elastomeric substrates,” Appl. Phys. Lett. 95(14), 141912 (2009).
[CrossRef]

H. Q. Jiang, Y. G. Sun, J. A. Rogers, and Y. G. Huang, “Mechanics of precisely controlled thin film buckling on elastomeric substrate,” Appl. Phys. Lett. 90(13), 133119 (2007).
[CrossRef]

S. P. Lacour, S. Wagner, Z. Huang, and Z. Suo, “Stretchable gold conductors on elastomeric substrates,” Appl. Phys. Lett. 82(15), 2404–2406 (2003).
[CrossRef]

C. J. Yu, K. O'Brien, Y. H. Zhang, H. B. Yu, and H. Q. Jiang, “Tunable optical gratings based on buckled nanoscale thin films on transparent elastomeric substrates,” Appl. Phys. Lett. 96(4), 041111 (2010).
[CrossRef]

N. Bowden, W. T. S. Huck, K. E. Paul, and G. M. Whitesides, “The controlled formation of ordered, sinusoidal structures by plasma oxidation of an elastomeric polymer,” Appl. Phys. Lett. 75(17), 2557–2559 (1999).
[CrossRef]

Chem. Mater. (1)

J. L. Wilbur, R. J. Jackman, G. M. Whitesides, E. L. Cheung, L. K. Lee, and M. G. Prentiss, “Elastomeric optics,” Chem. Mater. 8(7), 1380–1385 (1996).
[CrossRef]

IEEE Electron Device Lett. (1)

S. P. Lacour, J. Jones, Z. Suo, and S. Wagner, “Design and performance of thin metal film interconnects for skin-like electronic circuits,” IEEE Electron Device Lett. 25(4), 179–181 (2004).
[CrossRef]

IEEE Trans. Adv. Pack. (1)

C. S. Selvanayagam, J. H. Lau, X. Zhang, S. Seah, K. Vaidyanathan, and T. Chai, “Nonlinear thermal stress/strain analyses of copper filled TSV (through silicon via) and their flip-chip microbumps,” IEEE Trans. Adv. Pack. 32(4), 720–728 (2009).
[CrossRef]

J. Am. Chem. Soc. (1)

K. M. Choi and J. A. Rogers, “A photocurable poly(dimethylsiloxane) chemistry designed for soft lithographic molding and printing in the nanometer regime,” J. Am. Chem. Soc. 125(14), 4060–4061 (2003).
[CrossRef] [PubMed]

J. Appl. Phys. (1)

S. P. Lacour, S. Wagner, R. J. Narayan, T. Li, and Z. Suo, “Stiff subcircuit islands of diamondlike carbon for stretchable electronics,” J. Appl. Phys. 100(1), 014913 (2006).
[CrossRef]

J. Biomed. Mater. Res. A (1)

P. Uttayarat, G. K. Toworfe, F. Dietrich, P. I. Lelkes, and R. J. Composto, “Topographic guidance of endothelial cells on silicone surfaces with micro- to nanogrooves: Orientation of actin filaments and focal adhesions,” J. Biomed. Mater. Res. A 75A(3), 668–680 (2005).
[CrossRef] [PubMed]

J. Microelectromech. Syst. (1)

B. H. Jo, L. M. Van Lerberghe, K. M. Motsegood, and D. J. Beebe, “Three-dimensional micro-channel fabrication in polydimethylsiloxane (PDMS) elastomer,” J. Microelectromech. Syst. 9(1), 76–81 (2000).
[CrossRef]

Langmuir (1)

X. Y. Jiang, S. Takayama, X. P. Qian, E. Ostuni, H. K. Wu, N. Bowden, P. LeDuc, D. E. Ingber, and G. M. Whitesides, “Controlling mammalian cell spreading and cytoskeletal arrangement with conveniently fabricated continuous wavy features on poly(dimethylsiloxane),” Langmuir 18(8), 3273–3280 (2002).
[CrossRef]

Mikrochim. Acta (1)

A. Schweikart and A. Fery, “Controlled wrinkling as a novel method for the fabrication of patterned surfaces,” Mikrochim. Acta 165(3-4), 249–263 (2009).
[CrossRef]

Nano Lett. (1)

W. M. Choi, J. Song, D.-Y. Khang, H. Jiang, Y. Y. Huang, and J. A. Rogers, “Biaxially stretchable “wavy” silicon nanomembranes,” Nano Lett. 7(6), 1655–1663 (2007).
[CrossRef] [PubMed]

Nat. Mater. (2)

C. M. Stafford, C. Harrison, K. L. Beers, A. Karim, E. J. Amis, M. R. VanLandingham, H. C. Kim, W. Volksen, R. D. Miller, and E. E. Simonyi, “A buckling-based metrology for measuring the elastic moduli of polymeric thin films,” Nat. Mater. 3(8), 545–550 (2004).
[CrossRef] [PubMed]

K. Efimenko, M. Rackaitis, E. Manias, A. Vaziri, L. Mahadevan, and J. Genzer, “Nested self-similar wrinkling patterns in skins,” Nat. Mater. 4(4), 293–297 (2005).
[CrossRef] [PubMed]

Nature (1)

N. Bowden, S. Brittain, A. G. Evans, J. W. Hutchinson, and G. M. Whitesides, “Spontaneous formation of ordered structures in thin films of metals supported on an elastomeric polymer,” Nature 393(6681), 146–149 (1998).
[CrossRef]

Physica E (1)

S. Wagner, S. P. Lacour, J. Jones, P.-I. Hsu, J. C. Sturm, T. Li, and Z. Suo, “Electronic skin: architecture and components,” Physica E 25(2-3), 326–334 (2004).
[CrossRef]

Proc. IEEE (1)

S. P. Lacour, J. Jones, S. Wagner, T. Li, and Z. Suo, “Stretchable interconnects for elastic electronic surfaces,” Proc. IEEE 93(8), 1459–1467 (2005).
[CrossRef]

Proc. Natl. Acad. Sci. U.S.A. (1)

H. Jiang, D.-Y. Khang, J. Song, Y. Sun, Y. Huang, and J. A. Rogers, “Finite deformation mechanics in buckled thin films on compliant supports,” Proc. Natl. Acad. Sci. U.S.A. 104(40), 15607–15612 (2007).
[CrossRef] [PubMed]

Science (1)

D.-Y. Khang, H. Jiang, Y. Huang, and J. A. Rogers, “A stretchable form of single-crystal silicon for high-performance electronics on rubber substrates,” Science 311(5758), 208–212 (2006).
[CrossRef] [PubMed]

Soft Matter (2)

C. H. Lu, H. Mohwald, and A. Fery, “A lithography-free method for directed colloidal crystal assembly based on wrinkling,” Soft Matter 3(12), 1530–1536 (2007).
[CrossRef]

R. Li, Y. Li, C. Lü, J. Song, R. Saeidpouraza, B. Fang, Y. Zhong, P. M. Ferreira, J. A. Rogers, and Y. Huang, “Thermo-mechanical modeling of laser-driven non-contact transfer printing: two-dimensional analysis,” Soft Matter 8(27), 7122–7127 (2012).
[CrossRef]

Thin Solid Films (1)

C. Yu and H. Jiang, “Forming wrinkled stiff films on polymeric substrates at room temperature for stretchable interconnects applications,” Thin Solid Films 519(2), 818–822 (2010).
[CrossRef]

Other (1)

A. U. Manual, “Version 6.5, Hibbitt, Karlsson and Sorensen,” Inc., Pawtucket, RI (2004).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Schematic of the fabrication process for PDMS/Au grating. (b) Optical microscopy image and (c) AFM image of wrinkling profile of PDMS/Au grating surface. (d) SEM image of wrinkles. (e) Wrinkling wavelength (period) distribution at ten different spots over a surface area of 100 × 100 μm2. The wrinkling period remains largely constant over this surface area, in good agreement with the calculated period value by Eq. (1). The error bars are one standard deviation of the data, which is taken as the experimental uncertainty of the measurement.

Fig. 2
Fig. 2

Optical setup for micro-strain measurement.

Fig. 3
Fig. 3

(a) Schematic of PDMS grating attached on silicon substrate. (b) Strain contours in the horizontal direction for different ratios of PDMS lengths (L) and a constant thickness (h = 100 μm).

Fig. 4
Fig. 4

(a) εpdms/εSi and εpdms as a function of L/h. (b) Phase diagram of εpdms/εSi.

Fig. 5
Fig. 5

Diffracted beam intensity simulations based on the multi-slit grating model shown in (a), with grating to screen distance L = 10 cm. Small variations are applied to the grating periodicity to obtain the peak shift, as illustrated in (b) and (c). Spot size is 200 μm (or number of slits N = 240) in (b), and 50 μm (or N = 60) in (c).

Fig. 6
Fig. 6

Measured CTE results for (a) freestanding PDMS, (b) Cu and (c) Si. Insets are the schematics of the setup for thermal micro-strain measurement.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

d= 2π h f ( 1+ ε pre ) [ 1+ 5 32 ε pre ( 1+ ε pre ) ] 1/3 [ E f ( 1 ν s 2 ) 3 E s ( 1 ν f 2 ) ] 1/3 .
Δy= λL d 0 2 ( 1 m 2 λ 2 d 0 2 ) 3/2 Δd= λL d 0 ( 1 m 2 λ 2 d 0 2 ) 3/2 ε=Aε.
U 1 = d u 1 = 0 a A 0 a e iωt e ikxsinθ dx ,
U= A 0 sinα α sinNβ β exp{ i [ a+( N1 ) ]sinθ λ ωt },
I P = U 2 = I 0 ( sinα α ) 2 ( sinNβ β ) 2 .

Metrics