Abstract

We report a strain sensing approach that utilizes wrinkled patterns on poly (dimethylsiloxane) (PDMS) as an optical grating to measure thermally-induced strain of different materials. The mechanism for the strain sensing and the effect of PDMS grating on strain sensing are discussed. By bonding the PDMS grating onto a copper or silicon substrate, the coefficient of thermal expansion (CTE) of the substrates can be deduced by measuring the diffraction angle change due to the change in PDMS grating periodicity when thermal strain is introduced. The measured CTEs agree well with the known reference values.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Efimenko, M. Rackaitis, E. Manias, A. Vaziri, L. Mahadevan, and J. Genzer, “Nested self-similar wrinkling patterns in skins,” Nat. Mater.4(4), 293–297 (2005).
    [CrossRef] [PubMed]
  2. X. Y. Jiang, S. Takayama, X. P. Qian, E. Ostuni, H. K. Wu, N. Bowden, P. LeDuc, D. E. Ingber, and G. M. Whitesides, “Controlling mammalian cell spreading and cytoskeletal arrangement with conveniently fabricated continuous wavy features on poly(dimethylsiloxane),” Langmuir18(8), 3273–3280 (2002).
    [CrossRef]
  3. P. Uttayarat, G. K. Toworfe, F. Dietrich, P. I. Lelkes, and R. J. Composto, “Topographic guidance of endothelial cells on silicone surfaces with micro- to nanogrooves: Orientation of actin filaments and focal adhesions,” J. Biomed. Mater. Res. A75A(3), 668–680 (2005).
    [CrossRef] [PubMed]
  4. C. H. Lu, H. Mohwald, and A. Fery, “A lithography-free method for directed colloidal crystal assembly based on wrinkling,” Soft Matter3(12), 1530–1536 (2007).
    [CrossRef]
  5. A. Schweikart and A. Fery, “Controlled wrinkling as a novel method for the fabrication of patterned surfaces,” Mikrochim. Acta165(3-4), 249–263 (2009).
    [CrossRef]
  6. S. Wagner, S. P. Lacour, J. Jones, P.-I. Hsu, J. C. Sturm, T. Li, and Z. Suo, “Electronic skin: architecture and components,” Physica E25(2-3), 326–334 (2004).
    [CrossRef]
  7. S. P. Lacour, S. Wagner, Z. Huang, and Z. Suo, “Stretchable gold conductors on elastomeric substrates,” Appl. Phys. Lett.82(15), 2404–2406 (2003).
    [CrossRef]
  8. S. P. Lacour, J. Jones, Z. Suo, and S. Wagner, “Design and performance of thin metal film interconnects for skin-like electronic circuits,” IEEE Electron Device Lett.25(4), 179–181 (2004).
    [CrossRef]
  9. S. P. Lacour, J. Jones, S. Wagner, T. Li, and Z. Suo, “Stretchable interconnects for elastic electronic surfaces,” Proc. IEEE93(8), 1459–1467 (2005).
    [CrossRef]
  10. S. P. Lacour, S. Wagner, R. J. Narayan, T. Li, and Z. Suo, “Stiff subcircuit islands of diamondlike carbon for stretchable electronics,” J. Appl. Phys.100(1), 014913 (2006).
    [CrossRef]
  11. C. Yu and H. Jiang, “Forming wrinkled stiff films on polymeric substrates at room temperature for stretchable interconnects applications,” Thin Solid Films519(2), 818–822 (2010).
    [CrossRef]
  12. W. M. Choi, J. Song, D.-Y. Khang, H. Jiang, Y. Y. Huang, and J. A. Rogers, “Biaxially stretchable “wavy” silicon nanomembranes,” Nano Lett.7(6), 1655–1663 (2007).
    [CrossRef] [PubMed]
  13. D.-Y. Khang, H. Jiang, Y. Huang, and J. A. Rogers, “A stretchable form of single-crystal silicon for high-performance electronics on rubber substrates,” Science311(5758), 208–212 (2006).
    [CrossRef] [PubMed]
  14. H. Q. Jiang, Y. G. Sun, J. A. Rogers, and Y. G. Huang, “Mechanics of precisely controlled thin film buckling on elastomeric substrate,” Appl. Phys. Lett.90(13), 133119 (2007).
    [CrossRef]
  15. K. M. Choi and J. A. Rogers, “A photocurable poly(dimethylsiloxane) chemistry designed for soft lithographic molding and printing in the nanometer regime,” J. Am. Chem. Soc.125(14), 4060–4061 (2003).
    [CrossRef] [PubMed]
  16. H. Jiang, D.-Y. Khang, J. Song, Y. Sun, Y. Huang, and J. A. Rogers, “Finite deformation mechanics in buckled thin films on compliant supports,” Proc. Natl. Acad. Sci. U.S.A.104(40), 15607–15612 (2007).
    [CrossRef] [PubMed]
  17. C. Yu, C. Masarapu, J. Rong, B. Wei, and H. Jiang, “Stretchable Supercapacitors Based on Buckled Single-Walled Carbon - Nanotube Macrofilms,” Adv. Mater.21(47), 4793–4797 (2009).
    [CrossRef] [PubMed]
  18. C. Yu, Z. Wang, H. Yu, and H. Jiang, “A stretchable temperature sensor based on elastically buckled thin film devices on elastomeric substrates,” Appl. Phys. Lett.95(14), 141912 (2009).
    [CrossRef]
  19. C. M. Stafford, C. Harrison, K. L. Beers, A. Karim, E. J. Amis, M. R. VanLandingham, H. C. Kim, W. Volksen, R. D. Miller, and E. E. Simonyi, “A buckling-based metrology for measuring the elastic moduli of polymeric thin films,” Nat. Mater.3(8), 545–550 (2004).
    [CrossRef] [PubMed]
  20. J. L. Wilbur, R. J. Jackman, G. M. Whitesides, E. L. Cheung, L. K. Lee, and M. G. Prentiss, “Elastomeric optics,” Chem. Mater.8(7), 1380–1385 (1996).
    [CrossRef]
  21. C. J. Yu, K. O'Brien, Y. H. Zhang, H. B. Yu, and H. Q. Jiang, “Tunable optical gratings based on buckled nanoscale thin films on transparent elastomeric substrates,” Appl. Phys. Lett.96(4), 041111 (2010).
    [CrossRef]
  22. N. Bowden, S. Brittain, A. G. Evans, J. W. Hutchinson, and G. M. Whitesides, “Spontaneous formation of ordered structures in thin films of metals supported on an elastomeric polymer,” Nature393(6681), 146–149 (1998).
    [CrossRef]
  23. N. Bowden, W. T. S. Huck, K. E. Paul, and G. M. Whitesides, “The controlled formation of ordered, sinusoidal structures by plasma oxidation of an elastomeric polymer,” Appl. Phys. Lett.75(17), 2557–2559 (1999).
    [CrossRef]
  24. J. S. Sharp and R. A. Jones, “Micro-buckling as a route towards surface patterning,” Adv. Mater.14(11), 799 (2002).
    [CrossRef]
  25. H. Schmid, H. Wolf, R. Allenspach, H. Riel, S. Karg, B. Michel, and E. Delamarche, “Preparation of metallic films on elastomeric stamps and their application for contact processing and contact printing,” Adv. Funct. Mater.13(2), 145–153 (2003).
    [CrossRef]
  26. A. U. Manual, “Version 6.5, Hibbitt, Karlsson and Sorensen,” Inc., Pawtucket, RI (2004).
  27. R. Li, Y. Li, C. Lü, J. Song, R. Saeidpouraza, B. Fang, Y. Zhong, P. M. Ferreira, J. A. Rogers, and Y. Huang, “Thermo-mechanical modeling of laser-driven non-contact transfer printing: two-dimensional analysis,” Soft Matter8(27), 7122–7127 (2012).
    [CrossRef]
  28. C. S. Selvanayagam, J. H. Lau, X. Zhang, S. Seah, K. Vaidyanathan, and T. Chai, “Nonlinear thermal stress/strain analyses of copper filled TSV (through silicon via) and their flip-chip microbumps,” IEEE Trans. Adv. Pack.32(4), 720–728 (2009).
    [CrossRef]
  29. B. H. Jo, L. M. Van Lerberghe, K. M. Motsegood, and D. J. Beebe, “Three-dimensional micro-channel fabrication in polydimethylsiloxane (PDMS) elastomer,” J. Microelectromech. Syst.9(1), 76–81 (2000).
    [CrossRef]

2012 (1)

R. Li, Y. Li, C. Lü, J. Song, R. Saeidpouraza, B. Fang, Y. Zhong, P. M. Ferreira, J. A. Rogers, and Y. Huang, “Thermo-mechanical modeling of laser-driven non-contact transfer printing: two-dimensional analysis,” Soft Matter8(27), 7122–7127 (2012).
[CrossRef]

2010 (2)

C. J. Yu, K. O'Brien, Y. H. Zhang, H. B. Yu, and H. Q. Jiang, “Tunable optical gratings based on buckled nanoscale thin films on transparent elastomeric substrates,” Appl. Phys. Lett.96(4), 041111 (2010).
[CrossRef]

C. Yu and H. Jiang, “Forming wrinkled stiff films on polymeric substrates at room temperature for stretchable interconnects applications,” Thin Solid Films519(2), 818–822 (2010).
[CrossRef]

2009 (4)

C. Yu, C. Masarapu, J. Rong, B. Wei, and H. Jiang, “Stretchable Supercapacitors Based on Buckled Single-Walled Carbon - Nanotube Macrofilms,” Adv. Mater.21(47), 4793–4797 (2009).
[CrossRef] [PubMed]

C. Yu, Z. Wang, H. Yu, and H. Jiang, “A stretchable temperature sensor based on elastically buckled thin film devices on elastomeric substrates,” Appl. Phys. Lett.95(14), 141912 (2009).
[CrossRef]

A. Schweikart and A. Fery, “Controlled wrinkling as a novel method for the fabrication of patterned surfaces,” Mikrochim. Acta165(3-4), 249–263 (2009).
[CrossRef]

C. S. Selvanayagam, J. H. Lau, X. Zhang, S. Seah, K. Vaidyanathan, and T. Chai, “Nonlinear thermal stress/strain analyses of copper filled TSV (through silicon via) and their flip-chip microbumps,” IEEE Trans. Adv. Pack.32(4), 720–728 (2009).
[CrossRef]

2007 (4)

H. Jiang, D.-Y. Khang, J. Song, Y. Sun, Y. Huang, and J. A. Rogers, “Finite deformation mechanics in buckled thin films on compliant supports,” Proc. Natl. Acad. Sci. U.S.A.104(40), 15607–15612 (2007).
[CrossRef] [PubMed]

C. H. Lu, H. Mohwald, and A. Fery, “A lithography-free method for directed colloidal crystal assembly based on wrinkling,” Soft Matter3(12), 1530–1536 (2007).
[CrossRef]

W. M. Choi, J. Song, D.-Y. Khang, H. Jiang, Y. Y. Huang, and J. A. Rogers, “Biaxially stretchable “wavy” silicon nanomembranes,” Nano Lett.7(6), 1655–1663 (2007).
[CrossRef] [PubMed]

H. Q. Jiang, Y. G. Sun, J. A. Rogers, and Y. G. Huang, “Mechanics of precisely controlled thin film buckling on elastomeric substrate,” Appl. Phys. Lett.90(13), 133119 (2007).
[CrossRef]

2006 (2)

D.-Y. Khang, H. Jiang, Y. Huang, and J. A. Rogers, “A stretchable form of single-crystal silicon for high-performance electronics on rubber substrates,” Science311(5758), 208–212 (2006).
[CrossRef] [PubMed]

S. P. Lacour, S. Wagner, R. J. Narayan, T. Li, and Z. Suo, “Stiff subcircuit islands of diamondlike carbon for stretchable electronics,” J. Appl. Phys.100(1), 014913 (2006).
[CrossRef]

2005 (3)

P. Uttayarat, G. K. Toworfe, F. Dietrich, P. I. Lelkes, and R. J. Composto, “Topographic guidance of endothelial cells on silicone surfaces with micro- to nanogrooves: Orientation of actin filaments and focal adhesions,” J. Biomed. Mater. Res. A75A(3), 668–680 (2005).
[CrossRef] [PubMed]

K. Efimenko, M. Rackaitis, E. Manias, A. Vaziri, L. Mahadevan, and J. Genzer, “Nested self-similar wrinkling patterns in skins,” Nat. Mater.4(4), 293–297 (2005).
[CrossRef] [PubMed]

S. P. Lacour, J. Jones, S. Wagner, T. Li, and Z. Suo, “Stretchable interconnects for elastic electronic surfaces,” Proc. IEEE93(8), 1459–1467 (2005).
[CrossRef]

2004 (3)

S. P. Lacour, J. Jones, Z. Suo, and S. Wagner, “Design and performance of thin metal film interconnects for skin-like electronic circuits,” IEEE Electron Device Lett.25(4), 179–181 (2004).
[CrossRef]

S. Wagner, S. P. Lacour, J. Jones, P.-I. Hsu, J. C. Sturm, T. Li, and Z. Suo, “Electronic skin: architecture and components,” Physica E25(2-3), 326–334 (2004).
[CrossRef]

C. M. Stafford, C. Harrison, K. L. Beers, A. Karim, E. J. Amis, M. R. VanLandingham, H. C. Kim, W. Volksen, R. D. Miller, and E. E. Simonyi, “A buckling-based metrology for measuring the elastic moduli of polymeric thin films,” Nat. Mater.3(8), 545–550 (2004).
[CrossRef] [PubMed]

2003 (3)

K. M. Choi and J. A. Rogers, “A photocurable poly(dimethylsiloxane) chemistry designed for soft lithographic molding and printing in the nanometer regime,” J. Am. Chem. Soc.125(14), 4060–4061 (2003).
[CrossRef] [PubMed]

S. P. Lacour, S. Wagner, Z. Huang, and Z. Suo, “Stretchable gold conductors on elastomeric substrates,” Appl. Phys. Lett.82(15), 2404–2406 (2003).
[CrossRef]

H. Schmid, H. Wolf, R. Allenspach, H. Riel, S. Karg, B. Michel, and E. Delamarche, “Preparation of metallic films on elastomeric stamps and their application for contact processing and contact printing,” Adv. Funct. Mater.13(2), 145–153 (2003).
[CrossRef]

2002 (2)

J. S. Sharp and R. A. Jones, “Micro-buckling as a route towards surface patterning,” Adv. Mater.14(11), 799 (2002).
[CrossRef]

X. Y. Jiang, S. Takayama, X. P. Qian, E. Ostuni, H. K. Wu, N. Bowden, P. LeDuc, D. E. Ingber, and G. M. Whitesides, “Controlling mammalian cell spreading and cytoskeletal arrangement with conveniently fabricated continuous wavy features on poly(dimethylsiloxane),” Langmuir18(8), 3273–3280 (2002).
[CrossRef]

2000 (1)

B. H. Jo, L. M. Van Lerberghe, K. M. Motsegood, and D. J. Beebe, “Three-dimensional micro-channel fabrication in polydimethylsiloxane (PDMS) elastomer,” J. Microelectromech. Syst.9(1), 76–81 (2000).
[CrossRef]

1999 (1)

N. Bowden, W. T. S. Huck, K. E. Paul, and G. M. Whitesides, “The controlled formation of ordered, sinusoidal structures by plasma oxidation of an elastomeric polymer,” Appl. Phys. Lett.75(17), 2557–2559 (1999).
[CrossRef]

1998 (1)

N. Bowden, S. Brittain, A. G. Evans, J. W. Hutchinson, and G. M. Whitesides, “Spontaneous formation of ordered structures in thin films of metals supported on an elastomeric polymer,” Nature393(6681), 146–149 (1998).
[CrossRef]

1996 (1)

J. L. Wilbur, R. J. Jackman, G. M. Whitesides, E. L. Cheung, L. K. Lee, and M. G. Prentiss, “Elastomeric optics,” Chem. Mater.8(7), 1380–1385 (1996).
[CrossRef]

Allenspach, R.

H. Schmid, H. Wolf, R. Allenspach, H. Riel, S. Karg, B. Michel, and E. Delamarche, “Preparation of metallic films on elastomeric stamps and their application for contact processing and contact printing,” Adv. Funct. Mater.13(2), 145–153 (2003).
[CrossRef]

Amis, E. J.

C. M. Stafford, C. Harrison, K. L. Beers, A. Karim, E. J. Amis, M. R. VanLandingham, H. C. Kim, W. Volksen, R. D. Miller, and E. E. Simonyi, “A buckling-based metrology for measuring the elastic moduli of polymeric thin films,” Nat. Mater.3(8), 545–550 (2004).
[CrossRef] [PubMed]

Beebe, D. J.

B. H. Jo, L. M. Van Lerberghe, K. M. Motsegood, and D. J. Beebe, “Three-dimensional micro-channel fabrication in polydimethylsiloxane (PDMS) elastomer,” J. Microelectromech. Syst.9(1), 76–81 (2000).
[CrossRef]

Beers, K. L.

C. M. Stafford, C. Harrison, K. L. Beers, A. Karim, E. J. Amis, M. R. VanLandingham, H. C. Kim, W. Volksen, R. D. Miller, and E. E. Simonyi, “A buckling-based metrology for measuring the elastic moduli of polymeric thin films,” Nat. Mater.3(8), 545–550 (2004).
[CrossRef] [PubMed]

Bowden, N.

X. Y. Jiang, S. Takayama, X. P. Qian, E. Ostuni, H. K. Wu, N. Bowden, P. LeDuc, D. E. Ingber, and G. M. Whitesides, “Controlling mammalian cell spreading and cytoskeletal arrangement with conveniently fabricated continuous wavy features on poly(dimethylsiloxane),” Langmuir18(8), 3273–3280 (2002).
[CrossRef]

N. Bowden, W. T. S. Huck, K. E. Paul, and G. M. Whitesides, “The controlled formation of ordered, sinusoidal structures by plasma oxidation of an elastomeric polymer,” Appl. Phys. Lett.75(17), 2557–2559 (1999).
[CrossRef]

N. Bowden, S. Brittain, A. G. Evans, J. W. Hutchinson, and G. M. Whitesides, “Spontaneous formation of ordered structures in thin films of metals supported on an elastomeric polymer,” Nature393(6681), 146–149 (1998).
[CrossRef]

Brittain, S.

N. Bowden, S. Brittain, A. G. Evans, J. W. Hutchinson, and G. M. Whitesides, “Spontaneous formation of ordered structures in thin films of metals supported on an elastomeric polymer,” Nature393(6681), 146–149 (1998).
[CrossRef]

Chai, T.

C. S. Selvanayagam, J. H. Lau, X. Zhang, S. Seah, K. Vaidyanathan, and T. Chai, “Nonlinear thermal stress/strain analyses of copper filled TSV (through silicon via) and their flip-chip microbumps,” IEEE Trans. Adv. Pack.32(4), 720–728 (2009).
[CrossRef]

Cheung, E. L.

J. L. Wilbur, R. J. Jackman, G. M. Whitesides, E. L. Cheung, L. K. Lee, and M. G. Prentiss, “Elastomeric optics,” Chem. Mater.8(7), 1380–1385 (1996).
[CrossRef]

Choi, K. M.

K. M. Choi and J. A. Rogers, “A photocurable poly(dimethylsiloxane) chemistry designed for soft lithographic molding and printing in the nanometer regime,” J. Am. Chem. Soc.125(14), 4060–4061 (2003).
[CrossRef] [PubMed]

Choi, W. M.

W. M. Choi, J. Song, D.-Y. Khang, H. Jiang, Y. Y. Huang, and J. A. Rogers, “Biaxially stretchable “wavy” silicon nanomembranes,” Nano Lett.7(6), 1655–1663 (2007).
[CrossRef] [PubMed]

Composto, R. J.

P. Uttayarat, G. K. Toworfe, F. Dietrich, P. I. Lelkes, and R. J. Composto, “Topographic guidance of endothelial cells on silicone surfaces with micro- to nanogrooves: Orientation of actin filaments and focal adhesions,” J. Biomed. Mater. Res. A75A(3), 668–680 (2005).
[CrossRef] [PubMed]

Delamarche, E.

H. Schmid, H. Wolf, R. Allenspach, H. Riel, S. Karg, B. Michel, and E. Delamarche, “Preparation of metallic films on elastomeric stamps and their application for contact processing and contact printing,” Adv. Funct. Mater.13(2), 145–153 (2003).
[CrossRef]

Dietrich, F.

P. Uttayarat, G. K. Toworfe, F. Dietrich, P. I. Lelkes, and R. J. Composto, “Topographic guidance of endothelial cells on silicone surfaces with micro- to nanogrooves: Orientation of actin filaments and focal adhesions,” J. Biomed. Mater. Res. A75A(3), 668–680 (2005).
[CrossRef] [PubMed]

Efimenko, K.

K. Efimenko, M. Rackaitis, E. Manias, A. Vaziri, L. Mahadevan, and J. Genzer, “Nested self-similar wrinkling patterns in skins,” Nat. Mater.4(4), 293–297 (2005).
[CrossRef] [PubMed]

Evans, A. G.

N. Bowden, S. Brittain, A. G. Evans, J. W. Hutchinson, and G. M. Whitesides, “Spontaneous formation of ordered structures in thin films of metals supported on an elastomeric polymer,” Nature393(6681), 146–149 (1998).
[CrossRef]

Fang, B.

R. Li, Y. Li, C. Lü, J. Song, R. Saeidpouraza, B. Fang, Y. Zhong, P. M. Ferreira, J. A. Rogers, and Y. Huang, “Thermo-mechanical modeling of laser-driven non-contact transfer printing: two-dimensional analysis,” Soft Matter8(27), 7122–7127 (2012).
[CrossRef]

Ferreira, P. M.

R. Li, Y. Li, C. Lü, J. Song, R. Saeidpouraza, B. Fang, Y. Zhong, P. M. Ferreira, J. A. Rogers, and Y. Huang, “Thermo-mechanical modeling of laser-driven non-contact transfer printing: two-dimensional analysis,” Soft Matter8(27), 7122–7127 (2012).
[CrossRef]

Fery, A.

A. Schweikart and A. Fery, “Controlled wrinkling as a novel method for the fabrication of patterned surfaces,” Mikrochim. Acta165(3-4), 249–263 (2009).
[CrossRef]

C. H. Lu, H. Mohwald, and A. Fery, “A lithography-free method for directed colloidal crystal assembly based on wrinkling,” Soft Matter3(12), 1530–1536 (2007).
[CrossRef]

Genzer, J.

K. Efimenko, M. Rackaitis, E. Manias, A. Vaziri, L. Mahadevan, and J. Genzer, “Nested self-similar wrinkling patterns in skins,” Nat. Mater.4(4), 293–297 (2005).
[CrossRef] [PubMed]

Harrison, C.

C. M. Stafford, C. Harrison, K. L. Beers, A. Karim, E. J. Amis, M. R. VanLandingham, H. C. Kim, W. Volksen, R. D. Miller, and E. E. Simonyi, “A buckling-based metrology for measuring the elastic moduli of polymeric thin films,” Nat. Mater.3(8), 545–550 (2004).
[CrossRef] [PubMed]

Hsu, P.-I.

S. Wagner, S. P. Lacour, J. Jones, P.-I. Hsu, J. C. Sturm, T. Li, and Z. Suo, “Electronic skin: architecture and components,” Physica E25(2-3), 326–334 (2004).
[CrossRef]

Huang, Y.

R. Li, Y. Li, C. Lü, J. Song, R. Saeidpouraza, B. Fang, Y. Zhong, P. M. Ferreira, J. A. Rogers, and Y. Huang, “Thermo-mechanical modeling of laser-driven non-contact transfer printing: two-dimensional analysis,” Soft Matter8(27), 7122–7127 (2012).
[CrossRef]

H. Jiang, D.-Y. Khang, J. Song, Y. Sun, Y. Huang, and J. A. Rogers, “Finite deformation mechanics in buckled thin films on compliant supports,” Proc. Natl. Acad. Sci. U.S.A.104(40), 15607–15612 (2007).
[CrossRef] [PubMed]

D.-Y. Khang, H. Jiang, Y. Huang, and J. A. Rogers, “A stretchable form of single-crystal silicon for high-performance electronics on rubber substrates,” Science311(5758), 208–212 (2006).
[CrossRef] [PubMed]

Huang, Y. G.

H. Q. Jiang, Y. G. Sun, J. A. Rogers, and Y. G. Huang, “Mechanics of precisely controlled thin film buckling on elastomeric substrate,” Appl. Phys. Lett.90(13), 133119 (2007).
[CrossRef]

Huang, Y. Y.

W. M. Choi, J. Song, D.-Y. Khang, H. Jiang, Y. Y. Huang, and J. A. Rogers, “Biaxially stretchable “wavy” silicon nanomembranes,” Nano Lett.7(6), 1655–1663 (2007).
[CrossRef] [PubMed]

Huang, Z.

S. P. Lacour, S. Wagner, Z. Huang, and Z. Suo, “Stretchable gold conductors on elastomeric substrates,” Appl. Phys. Lett.82(15), 2404–2406 (2003).
[CrossRef]

Huck, W. T. S.

N. Bowden, W. T. S. Huck, K. E. Paul, and G. M. Whitesides, “The controlled formation of ordered, sinusoidal structures by plasma oxidation of an elastomeric polymer,” Appl. Phys. Lett.75(17), 2557–2559 (1999).
[CrossRef]

Hutchinson, J. W.

N. Bowden, S. Brittain, A. G. Evans, J. W. Hutchinson, and G. M. Whitesides, “Spontaneous formation of ordered structures in thin films of metals supported on an elastomeric polymer,” Nature393(6681), 146–149 (1998).
[CrossRef]

Ingber, D. E.

X. Y. Jiang, S. Takayama, X. P. Qian, E. Ostuni, H. K. Wu, N. Bowden, P. LeDuc, D. E. Ingber, and G. M. Whitesides, “Controlling mammalian cell spreading and cytoskeletal arrangement with conveniently fabricated continuous wavy features on poly(dimethylsiloxane),” Langmuir18(8), 3273–3280 (2002).
[CrossRef]

Jackman, R. J.

J. L. Wilbur, R. J. Jackman, G. M. Whitesides, E. L. Cheung, L. K. Lee, and M. G. Prentiss, “Elastomeric optics,” Chem. Mater.8(7), 1380–1385 (1996).
[CrossRef]

Jiang, H.

C. Yu and H. Jiang, “Forming wrinkled stiff films on polymeric substrates at room temperature for stretchable interconnects applications,” Thin Solid Films519(2), 818–822 (2010).
[CrossRef]

C. Yu, Z. Wang, H. Yu, and H. Jiang, “A stretchable temperature sensor based on elastically buckled thin film devices on elastomeric substrates,” Appl. Phys. Lett.95(14), 141912 (2009).
[CrossRef]

C. Yu, C. Masarapu, J. Rong, B. Wei, and H. Jiang, “Stretchable Supercapacitors Based on Buckled Single-Walled Carbon - Nanotube Macrofilms,” Adv. Mater.21(47), 4793–4797 (2009).
[CrossRef] [PubMed]

H. Jiang, D.-Y. Khang, J. Song, Y. Sun, Y. Huang, and J. A. Rogers, “Finite deformation mechanics in buckled thin films on compliant supports,” Proc. Natl. Acad. Sci. U.S.A.104(40), 15607–15612 (2007).
[CrossRef] [PubMed]

W. M. Choi, J. Song, D.-Y. Khang, H. Jiang, Y. Y. Huang, and J. A. Rogers, “Biaxially stretchable “wavy” silicon nanomembranes,” Nano Lett.7(6), 1655–1663 (2007).
[CrossRef] [PubMed]

D.-Y. Khang, H. Jiang, Y. Huang, and J. A. Rogers, “A stretchable form of single-crystal silicon for high-performance electronics on rubber substrates,” Science311(5758), 208–212 (2006).
[CrossRef] [PubMed]

Jiang, H. Q.

C. J. Yu, K. O'Brien, Y. H. Zhang, H. B. Yu, and H. Q. Jiang, “Tunable optical gratings based on buckled nanoscale thin films on transparent elastomeric substrates,” Appl. Phys. Lett.96(4), 041111 (2010).
[CrossRef]

H. Q. Jiang, Y. G. Sun, J. A. Rogers, and Y. G. Huang, “Mechanics of precisely controlled thin film buckling on elastomeric substrate,” Appl. Phys. Lett.90(13), 133119 (2007).
[CrossRef]

Jiang, X. Y.

X. Y. Jiang, S. Takayama, X. P. Qian, E. Ostuni, H. K. Wu, N. Bowden, P. LeDuc, D. E. Ingber, and G. M. Whitesides, “Controlling mammalian cell spreading and cytoskeletal arrangement with conveniently fabricated continuous wavy features on poly(dimethylsiloxane),” Langmuir18(8), 3273–3280 (2002).
[CrossRef]

Jo, B. H.

B. H. Jo, L. M. Van Lerberghe, K. M. Motsegood, and D. J. Beebe, “Three-dimensional micro-channel fabrication in polydimethylsiloxane (PDMS) elastomer,” J. Microelectromech. Syst.9(1), 76–81 (2000).
[CrossRef]

Jones, J.

S. P. Lacour, J. Jones, S. Wagner, T. Li, and Z. Suo, “Stretchable interconnects for elastic electronic surfaces,” Proc. IEEE93(8), 1459–1467 (2005).
[CrossRef]

S. P. Lacour, J. Jones, Z. Suo, and S. Wagner, “Design and performance of thin metal film interconnects for skin-like electronic circuits,” IEEE Electron Device Lett.25(4), 179–181 (2004).
[CrossRef]

S. Wagner, S. P. Lacour, J. Jones, P.-I. Hsu, J. C. Sturm, T. Li, and Z. Suo, “Electronic skin: architecture and components,” Physica E25(2-3), 326–334 (2004).
[CrossRef]

Jones, R. A.

J. S. Sharp and R. A. Jones, “Micro-buckling as a route towards surface patterning,” Adv. Mater.14(11), 799 (2002).
[CrossRef]

Karg, S.

H. Schmid, H. Wolf, R. Allenspach, H. Riel, S. Karg, B. Michel, and E. Delamarche, “Preparation of metallic films on elastomeric stamps and their application for contact processing and contact printing,” Adv. Funct. Mater.13(2), 145–153 (2003).
[CrossRef]

Karim, A.

C. M. Stafford, C. Harrison, K. L. Beers, A. Karim, E. J. Amis, M. R. VanLandingham, H. C. Kim, W. Volksen, R. D. Miller, and E. E. Simonyi, “A buckling-based metrology for measuring the elastic moduli of polymeric thin films,” Nat. Mater.3(8), 545–550 (2004).
[CrossRef] [PubMed]

Khang, D.-Y.

H. Jiang, D.-Y. Khang, J. Song, Y. Sun, Y. Huang, and J. A. Rogers, “Finite deformation mechanics in buckled thin films on compliant supports,” Proc. Natl. Acad. Sci. U.S.A.104(40), 15607–15612 (2007).
[CrossRef] [PubMed]

W. M. Choi, J. Song, D.-Y. Khang, H. Jiang, Y. Y. Huang, and J. A. Rogers, “Biaxially stretchable “wavy” silicon nanomembranes,” Nano Lett.7(6), 1655–1663 (2007).
[CrossRef] [PubMed]

D.-Y. Khang, H. Jiang, Y. Huang, and J. A. Rogers, “A stretchable form of single-crystal silicon for high-performance electronics on rubber substrates,” Science311(5758), 208–212 (2006).
[CrossRef] [PubMed]

Kim, H. C.

C. M. Stafford, C. Harrison, K. L. Beers, A. Karim, E. J. Amis, M. R. VanLandingham, H. C. Kim, W. Volksen, R. D. Miller, and E. E. Simonyi, “A buckling-based metrology for measuring the elastic moduli of polymeric thin films,” Nat. Mater.3(8), 545–550 (2004).
[CrossRef] [PubMed]

Lacour, S. P.

S. P. Lacour, S. Wagner, R. J. Narayan, T. Li, and Z. Suo, “Stiff subcircuit islands of diamondlike carbon for stretchable electronics,” J. Appl. Phys.100(1), 014913 (2006).
[CrossRef]

S. P. Lacour, J. Jones, S. Wagner, T. Li, and Z. Suo, “Stretchable interconnects for elastic electronic surfaces,” Proc. IEEE93(8), 1459–1467 (2005).
[CrossRef]

S. P. Lacour, J. Jones, Z. Suo, and S. Wagner, “Design and performance of thin metal film interconnects for skin-like electronic circuits,” IEEE Electron Device Lett.25(4), 179–181 (2004).
[CrossRef]

S. Wagner, S. P. Lacour, J. Jones, P.-I. Hsu, J. C. Sturm, T. Li, and Z. Suo, “Electronic skin: architecture and components,” Physica E25(2-3), 326–334 (2004).
[CrossRef]

S. P. Lacour, S. Wagner, Z. Huang, and Z. Suo, “Stretchable gold conductors on elastomeric substrates,” Appl. Phys. Lett.82(15), 2404–2406 (2003).
[CrossRef]

Lau, J. H.

C. S. Selvanayagam, J. H. Lau, X. Zhang, S. Seah, K. Vaidyanathan, and T. Chai, “Nonlinear thermal stress/strain analyses of copper filled TSV (through silicon via) and their flip-chip microbumps,” IEEE Trans. Adv. Pack.32(4), 720–728 (2009).
[CrossRef]

LeDuc, P.

X. Y. Jiang, S. Takayama, X. P. Qian, E. Ostuni, H. K. Wu, N. Bowden, P. LeDuc, D. E. Ingber, and G. M. Whitesides, “Controlling mammalian cell spreading and cytoskeletal arrangement with conveniently fabricated continuous wavy features on poly(dimethylsiloxane),” Langmuir18(8), 3273–3280 (2002).
[CrossRef]

Lee, L. K.

J. L. Wilbur, R. J. Jackman, G. M. Whitesides, E. L. Cheung, L. K. Lee, and M. G. Prentiss, “Elastomeric optics,” Chem. Mater.8(7), 1380–1385 (1996).
[CrossRef]

Lelkes, P. I.

P. Uttayarat, G. K. Toworfe, F. Dietrich, P. I. Lelkes, and R. J. Composto, “Topographic guidance of endothelial cells on silicone surfaces with micro- to nanogrooves: Orientation of actin filaments and focal adhesions,” J. Biomed. Mater. Res. A75A(3), 668–680 (2005).
[CrossRef] [PubMed]

Li, R.

R. Li, Y. Li, C. Lü, J. Song, R. Saeidpouraza, B. Fang, Y. Zhong, P. M. Ferreira, J. A. Rogers, and Y. Huang, “Thermo-mechanical modeling of laser-driven non-contact transfer printing: two-dimensional analysis,” Soft Matter8(27), 7122–7127 (2012).
[CrossRef]

Li, T.

S. P. Lacour, S. Wagner, R. J. Narayan, T. Li, and Z. Suo, “Stiff subcircuit islands of diamondlike carbon for stretchable electronics,” J. Appl. Phys.100(1), 014913 (2006).
[CrossRef]

S. P. Lacour, J. Jones, S. Wagner, T. Li, and Z. Suo, “Stretchable interconnects for elastic electronic surfaces,” Proc. IEEE93(8), 1459–1467 (2005).
[CrossRef]

S. Wagner, S. P. Lacour, J. Jones, P.-I. Hsu, J. C. Sturm, T. Li, and Z. Suo, “Electronic skin: architecture and components,” Physica E25(2-3), 326–334 (2004).
[CrossRef]

Li, Y.

R. Li, Y. Li, C. Lü, J. Song, R. Saeidpouraza, B. Fang, Y. Zhong, P. M. Ferreira, J. A. Rogers, and Y. Huang, “Thermo-mechanical modeling of laser-driven non-contact transfer printing: two-dimensional analysis,” Soft Matter8(27), 7122–7127 (2012).
[CrossRef]

Lu, C. H.

C. H. Lu, H. Mohwald, and A. Fery, “A lithography-free method for directed colloidal crystal assembly based on wrinkling,” Soft Matter3(12), 1530–1536 (2007).
[CrossRef]

Lü, C.

R. Li, Y. Li, C. Lü, J. Song, R. Saeidpouraza, B. Fang, Y. Zhong, P. M. Ferreira, J. A. Rogers, and Y. Huang, “Thermo-mechanical modeling of laser-driven non-contact transfer printing: two-dimensional analysis,” Soft Matter8(27), 7122–7127 (2012).
[CrossRef]

Mahadevan, L.

K. Efimenko, M. Rackaitis, E. Manias, A. Vaziri, L. Mahadevan, and J. Genzer, “Nested self-similar wrinkling patterns in skins,” Nat. Mater.4(4), 293–297 (2005).
[CrossRef] [PubMed]

Manias, E.

K. Efimenko, M. Rackaitis, E. Manias, A. Vaziri, L. Mahadevan, and J. Genzer, “Nested self-similar wrinkling patterns in skins,” Nat. Mater.4(4), 293–297 (2005).
[CrossRef] [PubMed]

Masarapu, C.

C. Yu, C. Masarapu, J. Rong, B. Wei, and H. Jiang, “Stretchable Supercapacitors Based on Buckled Single-Walled Carbon - Nanotube Macrofilms,” Adv. Mater.21(47), 4793–4797 (2009).
[CrossRef] [PubMed]

Michel, B.

H. Schmid, H. Wolf, R. Allenspach, H. Riel, S. Karg, B. Michel, and E. Delamarche, “Preparation of metallic films on elastomeric stamps and their application for contact processing and contact printing,” Adv. Funct. Mater.13(2), 145–153 (2003).
[CrossRef]

Miller, R. D.

C. M. Stafford, C. Harrison, K. L. Beers, A. Karim, E. J. Amis, M. R. VanLandingham, H. C. Kim, W. Volksen, R. D. Miller, and E. E. Simonyi, “A buckling-based metrology for measuring the elastic moduli of polymeric thin films,” Nat. Mater.3(8), 545–550 (2004).
[CrossRef] [PubMed]

Mohwald, H.

C. H. Lu, H. Mohwald, and A. Fery, “A lithography-free method for directed colloidal crystal assembly based on wrinkling,” Soft Matter3(12), 1530–1536 (2007).
[CrossRef]

Motsegood, K. M.

B. H. Jo, L. M. Van Lerberghe, K. M. Motsegood, and D. J. Beebe, “Three-dimensional micro-channel fabrication in polydimethylsiloxane (PDMS) elastomer,” J. Microelectromech. Syst.9(1), 76–81 (2000).
[CrossRef]

Narayan, R. J.

S. P. Lacour, S. Wagner, R. J. Narayan, T. Li, and Z. Suo, “Stiff subcircuit islands of diamondlike carbon for stretchable electronics,” J. Appl. Phys.100(1), 014913 (2006).
[CrossRef]

O'Brien, K.

C. J. Yu, K. O'Brien, Y. H. Zhang, H. B. Yu, and H. Q. Jiang, “Tunable optical gratings based on buckled nanoscale thin films on transparent elastomeric substrates,” Appl. Phys. Lett.96(4), 041111 (2010).
[CrossRef]

Ostuni, E.

X. Y. Jiang, S. Takayama, X. P. Qian, E. Ostuni, H. K. Wu, N. Bowden, P. LeDuc, D. E. Ingber, and G. M. Whitesides, “Controlling mammalian cell spreading and cytoskeletal arrangement with conveniently fabricated continuous wavy features on poly(dimethylsiloxane),” Langmuir18(8), 3273–3280 (2002).
[CrossRef]

Paul, K. E.

N. Bowden, W. T. S. Huck, K. E. Paul, and G. M. Whitesides, “The controlled formation of ordered, sinusoidal structures by plasma oxidation of an elastomeric polymer,” Appl. Phys. Lett.75(17), 2557–2559 (1999).
[CrossRef]

Prentiss, M. G.

J. L. Wilbur, R. J. Jackman, G. M. Whitesides, E. L. Cheung, L. K. Lee, and M. G. Prentiss, “Elastomeric optics,” Chem. Mater.8(7), 1380–1385 (1996).
[CrossRef]

Qian, X. P.

X. Y. Jiang, S. Takayama, X. P. Qian, E. Ostuni, H. K. Wu, N. Bowden, P. LeDuc, D. E. Ingber, and G. M. Whitesides, “Controlling mammalian cell spreading and cytoskeletal arrangement with conveniently fabricated continuous wavy features on poly(dimethylsiloxane),” Langmuir18(8), 3273–3280 (2002).
[CrossRef]

Rackaitis, M.

K. Efimenko, M. Rackaitis, E. Manias, A. Vaziri, L. Mahadevan, and J. Genzer, “Nested self-similar wrinkling patterns in skins,” Nat. Mater.4(4), 293–297 (2005).
[CrossRef] [PubMed]

Riel, H.

H. Schmid, H. Wolf, R. Allenspach, H. Riel, S. Karg, B. Michel, and E. Delamarche, “Preparation of metallic films on elastomeric stamps and their application for contact processing and contact printing,” Adv. Funct. Mater.13(2), 145–153 (2003).
[CrossRef]

Rogers, J. A.

R. Li, Y. Li, C. Lü, J. Song, R. Saeidpouraza, B. Fang, Y. Zhong, P. M. Ferreira, J. A. Rogers, and Y. Huang, “Thermo-mechanical modeling of laser-driven non-contact transfer printing: two-dimensional analysis,” Soft Matter8(27), 7122–7127 (2012).
[CrossRef]

H. Jiang, D.-Y. Khang, J. Song, Y. Sun, Y. Huang, and J. A. Rogers, “Finite deformation mechanics in buckled thin films on compliant supports,” Proc. Natl. Acad. Sci. U.S.A.104(40), 15607–15612 (2007).
[CrossRef] [PubMed]

W. M. Choi, J. Song, D.-Y. Khang, H. Jiang, Y. Y. Huang, and J. A. Rogers, “Biaxially stretchable “wavy” silicon nanomembranes,” Nano Lett.7(6), 1655–1663 (2007).
[CrossRef] [PubMed]

H. Q. Jiang, Y. G. Sun, J. A. Rogers, and Y. G. Huang, “Mechanics of precisely controlled thin film buckling on elastomeric substrate,” Appl. Phys. Lett.90(13), 133119 (2007).
[CrossRef]

D.-Y. Khang, H. Jiang, Y. Huang, and J. A. Rogers, “A stretchable form of single-crystal silicon for high-performance electronics on rubber substrates,” Science311(5758), 208–212 (2006).
[CrossRef] [PubMed]

K. M. Choi and J. A. Rogers, “A photocurable poly(dimethylsiloxane) chemistry designed for soft lithographic molding and printing in the nanometer regime,” J. Am. Chem. Soc.125(14), 4060–4061 (2003).
[CrossRef] [PubMed]

Rong, J.

C. Yu, C. Masarapu, J. Rong, B. Wei, and H. Jiang, “Stretchable Supercapacitors Based on Buckled Single-Walled Carbon - Nanotube Macrofilms,” Adv. Mater.21(47), 4793–4797 (2009).
[CrossRef] [PubMed]

Saeidpouraza, R.

R. Li, Y. Li, C. Lü, J. Song, R. Saeidpouraza, B. Fang, Y. Zhong, P. M. Ferreira, J. A. Rogers, and Y. Huang, “Thermo-mechanical modeling of laser-driven non-contact transfer printing: two-dimensional analysis,” Soft Matter8(27), 7122–7127 (2012).
[CrossRef]

Schmid, H.

H. Schmid, H. Wolf, R. Allenspach, H. Riel, S. Karg, B. Michel, and E. Delamarche, “Preparation of metallic films on elastomeric stamps and their application for contact processing and contact printing,” Adv. Funct. Mater.13(2), 145–153 (2003).
[CrossRef]

Schweikart, A.

A. Schweikart and A. Fery, “Controlled wrinkling as a novel method for the fabrication of patterned surfaces,” Mikrochim. Acta165(3-4), 249–263 (2009).
[CrossRef]

Seah, S.

C. S. Selvanayagam, J. H. Lau, X. Zhang, S. Seah, K. Vaidyanathan, and T. Chai, “Nonlinear thermal stress/strain analyses of copper filled TSV (through silicon via) and their flip-chip microbumps,” IEEE Trans. Adv. Pack.32(4), 720–728 (2009).
[CrossRef]

Selvanayagam, C. S.

C. S. Selvanayagam, J. H. Lau, X. Zhang, S. Seah, K. Vaidyanathan, and T. Chai, “Nonlinear thermal stress/strain analyses of copper filled TSV (through silicon via) and their flip-chip microbumps,” IEEE Trans. Adv. Pack.32(4), 720–728 (2009).
[CrossRef]

Sharp, J. S.

J. S. Sharp and R. A. Jones, “Micro-buckling as a route towards surface patterning,” Adv. Mater.14(11), 799 (2002).
[CrossRef]

Simonyi, E. E.

C. M. Stafford, C. Harrison, K. L. Beers, A. Karim, E. J. Amis, M. R. VanLandingham, H. C. Kim, W. Volksen, R. D. Miller, and E. E. Simonyi, “A buckling-based metrology for measuring the elastic moduli of polymeric thin films,” Nat. Mater.3(8), 545–550 (2004).
[CrossRef] [PubMed]

Song, J.

R. Li, Y. Li, C. Lü, J. Song, R. Saeidpouraza, B. Fang, Y. Zhong, P. M. Ferreira, J. A. Rogers, and Y. Huang, “Thermo-mechanical modeling of laser-driven non-contact transfer printing: two-dimensional analysis,” Soft Matter8(27), 7122–7127 (2012).
[CrossRef]

H. Jiang, D.-Y. Khang, J. Song, Y. Sun, Y. Huang, and J. A. Rogers, “Finite deformation mechanics in buckled thin films on compliant supports,” Proc. Natl. Acad. Sci. U.S.A.104(40), 15607–15612 (2007).
[CrossRef] [PubMed]

W. M. Choi, J. Song, D.-Y. Khang, H. Jiang, Y. Y. Huang, and J. A. Rogers, “Biaxially stretchable “wavy” silicon nanomembranes,” Nano Lett.7(6), 1655–1663 (2007).
[CrossRef] [PubMed]

Stafford, C. M.

C. M. Stafford, C. Harrison, K. L. Beers, A. Karim, E. J. Amis, M. R. VanLandingham, H. C. Kim, W. Volksen, R. D. Miller, and E. E. Simonyi, “A buckling-based metrology for measuring the elastic moduli of polymeric thin films,” Nat. Mater.3(8), 545–550 (2004).
[CrossRef] [PubMed]

Sturm, J. C.

S. Wagner, S. P. Lacour, J. Jones, P.-I. Hsu, J. C. Sturm, T. Li, and Z. Suo, “Electronic skin: architecture and components,” Physica E25(2-3), 326–334 (2004).
[CrossRef]

Sun, Y.

H. Jiang, D.-Y. Khang, J. Song, Y. Sun, Y. Huang, and J. A. Rogers, “Finite deformation mechanics in buckled thin films on compliant supports,” Proc. Natl. Acad. Sci. U.S.A.104(40), 15607–15612 (2007).
[CrossRef] [PubMed]

Sun, Y. G.

H. Q. Jiang, Y. G. Sun, J. A. Rogers, and Y. G. Huang, “Mechanics of precisely controlled thin film buckling on elastomeric substrate,” Appl. Phys. Lett.90(13), 133119 (2007).
[CrossRef]

Suo, Z.

S. P. Lacour, S. Wagner, R. J. Narayan, T. Li, and Z. Suo, “Stiff subcircuit islands of diamondlike carbon for stretchable electronics,” J. Appl. Phys.100(1), 014913 (2006).
[CrossRef]

S. P. Lacour, J. Jones, S. Wagner, T. Li, and Z. Suo, “Stretchable interconnects for elastic electronic surfaces,” Proc. IEEE93(8), 1459–1467 (2005).
[CrossRef]

S. P. Lacour, J. Jones, Z. Suo, and S. Wagner, “Design and performance of thin metal film interconnects for skin-like electronic circuits,” IEEE Electron Device Lett.25(4), 179–181 (2004).
[CrossRef]

S. Wagner, S. P. Lacour, J. Jones, P.-I. Hsu, J. C. Sturm, T. Li, and Z. Suo, “Electronic skin: architecture and components,” Physica E25(2-3), 326–334 (2004).
[CrossRef]

S. P. Lacour, S. Wagner, Z. Huang, and Z. Suo, “Stretchable gold conductors on elastomeric substrates,” Appl. Phys. Lett.82(15), 2404–2406 (2003).
[CrossRef]

Takayama, S.

X. Y. Jiang, S. Takayama, X. P. Qian, E. Ostuni, H. K. Wu, N. Bowden, P. LeDuc, D. E. Ingber, and G. M. Whitesides, “Controlling mammalian cell spreading and cytoskeletal arrangement with conveniently fabricated continuous wavy features on poly(dimethylsiloxane),” Langmuir18(8), 3273–3280 (2002).
[CrossRef]

Toworfe, G. K.

P. Uttayarat, G. K. Toworfe, F. Dietrich, P. I. Lelkes, and R. J. Composto, “Topographic guidance of endothelial cells on silicone surfaces with micro- to nanogrooves: Orientation of actin filaments and focal adhesions,” J. Biomed. Mater. Res. A75A(3), 668–680 (2005).
[CrossRef] [PubMed]

Uttayarat, P.

P. Uttayarat, G. K. Toworfe, F. Dietrich, P. I. Lelkes, and R. J. Composto, “Topographic guidance of endothelial cells on silicone surfaces with micro- to nanogrooves: Orientation of actin filaments and focal adhesions,” J. Biomed. Mater. Res. A75A(3), 668–680 (2005).
[CrossRef] [PubMed]

Vaidyanathan, K.

C. S. Selvanayagam, J. H. Lau, X. Zhang, S. Seah, K. Vaidyanathan, and T. Chai, “Nonlinear thermal stress/strain analyses of copper filled TSV (through silicon via) and their flip-chip microbumps,” IEEE Trans. Adv. Pack.32(4), 720–728 (2009).
[CrossRef]

Van Lerberghe, L. M.

B. H. Jo, L. M. Van Lerberghe, K. M. Motsegood, and D. J. Beebe, “Three-dimensional micro-channel fabrication in polydimethylsiloxane (PDMS) elastomer,” J. Microelectromech. Syst.9(1), 76–81 (2000).
[CrossRef]

VanLandingham, M. R.

C. M. Stafford, C. Harrison, K. L. Beers, A. Karim, E. J. Amis, M. R. VanLandingham, H. C. Kim, W. Volksen, R. D. Miller, and E. E. Simonyi, “A buckling-based metrology for measuring the elastic moduli of polymeric thin films,” Nat. Mater.3(8), 545–550 (2004).
[CrossRef] [PubMed]

Vaziri, A.

K. Efimenko, M. Rackaitis, E. Manias, A. Vaziri, L. Mahadevan, and J. Genzer, “Nested self-similar wrinkling patterns in skins,” Nat. Mater.4(4), 293–297 (2005).
[CrossRef] [PubMed]

Volksen, W.

C. M. Stafford, C. Harrison, K. L. Beers, A. Karim, E. J. Amis, M. R. VanLandingham, H. C. Kim, W. Volksen, R. D. Miller, and E. E. Simonyi, “A buckling-based metrology for measuring the elastic moduli of polymeric thin films,” Nat. Mater.3(8), 545–550 (2004).
[CrossRef] [PubMed]

Wagner, S.

S. P. Lacour, S. Wagner, R. J. Narayan, T. Li, and Z. Suo, “Stiff subcircuit islands of diamondlike carbon for stretchable electronics,” J. Appl. Phys.100(1), 014913 (2006).
[CrossRef]

S. P. Lacour, J. Jones, S. Wagner, T. Li, and Z. Suo, “Stretchable interconnects for elastic electronic surfaces,” Proc. IEEE93(8), 1459–1467 (2005).
[CrossRef]

S. P. Lacour, J. Jones, Z. Suo, and S. Wagner, “Design and performance of thin metal film interconnects for skin-like electronic circuits,” IEEE Electron Device Lett.25(4), 179–181 (2004).
[CrossRef]

S. Wagner, S. P. Lacour, J. Jones, P.-I. Hsu, J. C. Sturm, T. Li, and Z. Suo, “Electronic skin: architecture and components,” Physica E25(2-3), 326–334 (2004).
[CrossRef]

S. P. Lacour, S. Wagner, Z. Huang, and Z. Suo, “Stretchable gold conductors on elastomeric substrates,” Appl. Phys. Lett.82(15), 2404–2406 (2003).
[CrossRef]

Wang, Z.

C. Yu, Z. Wang, H. Yu, and H. Jiang, “A stretchable temperature sensor based on elastically buckled thin film devices on elastomeric substrates,” Appl. Phys. Lett.95(14), 141912 (2009).
[CrossRef]

Wei, B.

C. Yu, C. Masarapu, J. Rong, B. Wei, and H. Jiang, “Stretchable Supercapacitors Based on Buckled Single-Walled Carbon - Nanotube Macrofilms,” Adv. Mater.21(47), 4793–4797 (2009).
[CrossRef] [PubMed]

Whitesides, G. M.

X. Y. Jiang, S. Takayama, X. P. Qian, E. Ostuni, H. K. Wu, N. Bowden, P. LeDuc, D. E. Ingber, and G. M. Whitesides, “Controlling mammalian cell spreading and cytoskeletal arrangement with conveniently fabricated continuous wavy features on poly(dimethylsiloxane),” Langmuir18(8), 3273–3280 (2002).
[CrossRef]

N. Bowden, W. T. S. Huck, K. E. Paul, and G. M. Whitesides, “The controlled formation of ordered, sinusoidal structures by plasma oxidation of an elastomeric polymer,” Appl. Phys. Lett.75(17), 2557–2559 (1999).
[CrossRef]

N. Bowden, S. Brittain, A. G. Evans, J. W. Hutchinson, and G. M. Whitesides, “Spontaneous formation of ordered structures in thin films of metals supported on an elastomeric polymer,” Nature393(6681), 146–149 (1998).
[CrossRef]

J. L. Wilbur, R. J. Jackman, G. M. Whitesides, E. L. Cheung, L. K. Lee, and M. G. Prentiss, “Elastomeric optics,” Chem. Mater.8(7), 1380–1385 (1996).
[CrossRef]

Wilbur, J. L.

J. L. Wilbur, R. J. Jackman, G. M. Whitesides, E. L. Cheung, L. K. Lee, and M. G. Prentiss, “Elastomeric optics,” Chem. Mater.8(7), 1380–1385 (1996).
[CrossRef]

Wolf, H.

H. Schmid, H. Wolf, R. Allenspach, H. Riel, S. Karg, B. Michel, and E. Delamarche, “Preparation of metallic films on elastomeric stamps and their application for contact processing and contact printing,” Adv. Funct. Mater.13(2), 145–153 (2003).
[CrossRef]

Wu, H. K.

X. Y. Jiang, S. Takayama, X. P. Qian, E. Ostuni, H. K. Wu, N. Bowden, P. LeDuc, D. E. Ingber, and G. M. Whitesides, “Controlling mammalian cell spreading and cytoskeletal arrangement with conveniently fabricated continuous wavy features on poly(dimethylsiloxane),” Langmuir18(8), 3273–3280 (2002).
[CrossRef]

Yu, C.

C. Yu and H. Jiang, “Forming wrinkled stiff films on polymeric substrates at room temperature for stretchable interconnects applications,” Thin Solid Films519(2), 818–822 (2010).
[CrossRef]

C. Yu, C. Masarapu, J. Rong, B. Wei, and H. Jiang, “Stretchable Supercapacitors Based on Buckled Single-Walled Carbon - Nanotube Macrofilms,” Adv. Mater.21(47), 4793–4797 (2009).
[CrossRef] [PubMed]

C. Yu, Z. Wang, H. Yu, and H. Jiang, “A stretchable temperature sensor based on elastically buckled thin film devices on elastomeric substrates,” Appl. Phys. Lett.95(14), 141912 (2009).
[CrossRef]

Yu, C. J.

C. J. Yu, K. O'Brien, Y. H. Zhang, H. B. Yu, and H. Q. Jiang, “Tunable optical gratings based on buckled nanoscale thin films on transparent elastomeric substrates,” Appl. Phys. Lett.96(4), 041111 (2010).
[CrossRef]

Yu, H.

C. Yu, Z. Wang, H. Yu, and H. Jiang, “A stretchable temperature sensor based on elastically buckled thin film devices on elastomeric substrates,” Appl. Phys. Lett.95(14), 141912 (2009).
[CrossRef]

Yu, H. B.

C. J. Yu, K. O'Brien, Y. H. Zhang, H. B. Yu, and H. Q. Jiang, “Tunable optical gratings based on buckled nanoscale thin films on transparent elastomeric substrates,” Appl. Phys. Lett.96(4), 041111 (2010).
[CrossRef]

Zhang, X.

C. S. Selvanayagam, J. H. Lau, X. Zhang, S. Seah, K. Vaidyanathan, and T. Chai, “Nonlinear thermal stress/strain analyses of copper filled TSV (through silicon via) and their flip-chip microbumps,” IEEE Trans. Adv. Pack.32(4), 720–728 (2009).
[CrossRef]

Zhang, Y. H.

C. J. Yu, K. O'Brien, Y. H. Zhang, H. B. Yu, and H. Q. Jiang, “Tunable optical gratings based on buckled nanoscale thin films on transparent elastomeric substrates,” Appl. Phys. Lett.96(4), 041111 (2010).
[CrossRef]

Zhong, Y.

R. Li, Y. Li, C. Lü, J. Song, R. Saeidpouraza, B. Fang, Y. Zhong, P. M. Ferreira, J. A. Rogers, and Y. Huang, “Thermo-mechanical modeling of laser-driven non-contact transfer printing: two-dimensional analysis,” Soft Matter8(27), 7122–7127 (2012).
[CrossRef]

Adv. Funct. Mater. (1)

H. Schmid, H. Wolf, R. Allenspach, H. Riel, S. Karg, B. Michel, and E. Delamarche, “Preparation of metallic films on elastomeric stamps and their application for contact processing and contact printing,” Adv. Funct. Mater.13(2), 145–153 (2003).
[CrossRef]

Adv. Mater. (2)

J. S. Sharp and R. A. Jones, “Micro-buckling as a route towards surface patterning,” Adv. Mater.14(11), 799 (2002).
[CrossRef]

C. Yu, C. Masarapu, J. Rong, B. Wei, and H. Jiang, “Stretchable Supercapacitors Based on Buckled Single-Walled Carbon - Nanotube Macrofilms,” Adv. Mater.21(47), 4793–4797 (2009).
[CrossRef] [PubMed]

Appl. Phys. Lett. (5)

C. Yu, Z. Wang, H. Yu, and H. Jiang, “A stretchable temperature sensor based on elastically buckled thin film devices on elastomeric substrates,” Appl. Phys. Lett.95(14), 141912 (2009).
[CrossRef]

H. Q. Jiang, Y. G. Sun, J. A. Rogers, and Y. G. Huang, “Mechanics of precisely controlled thin film buckling on elastomeric substrate,” Appl. Phys. Lett.90(13), 133119 (2007).
[CrossRef]

S. P. Lacour, S. Wagner, Z. Huang, and Z. Suo, “Stretchable gold conductors on elastomeric substrates,” Appl. Phys. Lett.82(15), 2404–2406 (2003).
[CrossRef]

C. J. Yu, K. O'Brien, Y. H. Zhang, H. B. Yu, and H. Q. Jiang, “Tunable optical gratings based on buckled nanoscale thin films on transparent elastomeric substrates,” Appl. Phys. Lett.96(4), 041111 (2010).
[CrossRef]

N. Bowden, W. T. S. Huck, K. E. Paul, and G. M. Whitesides, “The controlled formation of ordered, sinusoidal structures by plasma oxidation of an elastomeric polymer,” Appl. Phys. Lett.75(17), 2557–2559 (1999).
[CrossRef]

Chem. Mater. (1)

J. L. Wilbur, R. J. Jackman, G. M. Whitesides, E. L. Cheung, L. K. Lee, and M. G. Prentiss, “Elastomeric optics,” Chem. Mater.8(7), 1380–1385 (1996).
[CrossRef]

IEEE Electron Device Lett. (1)

S. P. Lacour, J. Jones, Z. Suo, and S. Wagner, “Design and performance of thin metal film interconnects for skin-like electronic circuits,” IEEE Electron Device Lett.25(4), 179–181 (2004).
[CrossRef]

IEEE Trans. Adv. Pack. (1)

C. S. Selvanayagam, J. H. Lau, X. Zhang, S. Seah, K. Vaidyanathan, and T. Chai, “Nonlinear thermal stress/strain analyses of copper filled TSV (through silicon via) and their flip-chip microbumps,” IEEE Trans. Adv. Pack.32(4), 720–728 (2009).
[CrossRef]

J. Am. Chem. Soc. (1)

K. M. Choi and J. A. Rogers, “A photocurable poly(dimethylsiloxane) chemistry designed for soft lithographic molding and printing in the nanometer regime,” J. Am. Chem. Soc.125(14), 4060–4061 (2003).
[CrossRef] [PubMed]

J. Appl. Phys. (1)

S. P. Lacour, S. Wagner, R. J. Narayan, T. Li, and Z. Suo, “Stiff subcircuit islands of diamondlike carbon for stretchable electronics,” J. Appl. Phys.100(1), 014913 (2006).
[CrossRef]

J. Biomed. Mater. Res. A (1)

P. Uttayarat, G. K. Toworfe, F. Dietrich, P. I. Lelkes, and R. J. Composto, “Topographic guidance of endothelial cells on silicone surfaces with micro- to nanogrooves: Orientation of actin filaments and focal adhesions,” J. Biomed. Mater. Res. A75A(3), 668–680 (2005).
[CrossRef] [PubMed]

J. Microelectromech. Syst. (1)

B. H. Jo, L. M. Van Lerberghe, K. M. Motsegood, and D. J. Beebe, “Three-dimensional micro-channel fabrication in polydimethylsiloxane (PDMS) elastomer,” J. Microelectromech. Syst.9(1), 76–81 (2000).
[CrossRef]

Langmuir (1)

X. Y. Jiang, S. Takayama, X. P. Qian, E. Ostuni, H. K. Wu, N. Bowden, P. LeDuc, D. E. Ingber, and G. M. Whitesides, “Controlling mammalian cell spreading and cytoskeletal arrangement with conveniently fabricated continuous wavy features on poly(dimethylsiloxane),” Langmuir18(8), 3273–3280 (2002).
[CrossRef]

Mikrochim. Acta (1)

A. Schweikart and A. Fery, “Controlled wrinkling as a novel method for the fabrication of patterned surfaces,” Mikrochim. Acta165(3-4), 249–263 (2009).
[CrossRef]

Nano Lett. (1)

W. M. Choi, J. Song, D.-Y. Khang, H. Jiang, Y. Y. Huang, and J. A. Rogers, “Biaxially stretchable “wavy” silicon nanomembranes,” Nano Lett.7(6), 1655–1663 (2007).
[CrossRef] [PubMed]

Nat. Mater. (2)

C. M. Stafford, C. Harrison, K. L. Beers, A. Karim, E. J. Amis, M. R. VanLandingham, H. C. Kim, W. Volksen, R. D. Miller, and E. E. Simonyi, “A buckling-based metrology for measuring the elastic moduli of polymeric thin films,” Nat. Mater.3(8), 545–550 (2004).
[CrossRef] [PubMed]

K. Efimenko, M. Rackaitis, E. Manias, A. Vaziri, L. Mahadevan, and J. Genzer, “Nested self-similar wrinkling patterns in skins,” Nat. Mater.4(4), 293–297 (2005).
[CrossRef] [PubMed]

Nature (1)

N. Bowden, S. Brittain, A. G. Evans, J. W. Hutchinson, and G. M. Whitesides, “Spontaneous formation of ordered structures in thin films of metals supported on an elastomeric polymer,” Nature393(6681), 146–149 (1998).
[CrossRef]

Physica E (1)

S. Wagner, S. P. Lacour, J. Jones, P.-I. Hsu, J. C. Sturm, T. Li, and Z. Suo, “Electronic skin: architecture and components,” Physica E25(2-3), 326–334 (2004).
[CrossRef]

Proc. IEEE (1)

S. P. Lacour, J. Jones, S. Wagner, T. Li, and Z. Suo, “Stretchable interconnects for elastic electronic surfaces,” Proc. IEEE93(8), 1459–1467 (2005).
[CrossRef]

Proc. Natl. Acad. Sci. U.S.A. (1)

H. Jiang, D.-Y. Khang, J. Song, Y. Sun, Y. Huang, and J. A. Rogers, “Finite deformation mechanics in buckled thin films on compliant supports,” Proc. Natl. Acad. Sci. U.S.A.104(40), 15607–15612 (2007).
[CrossRef] [PubMed]

Science (1)

D.-Y. Khang, H. Jiang, Y. Huang, and J. A. Rogers, “A stretchable form of single-crystal silicon for high-performance electronics on rubber substrates,” Science311(5758), 208–212 (2006).
[CrossRef] [PubMed]

Soft Matter (2)

C. H. Lu, H. Mohwald, and A. Fery, “A lithography-free method for directed colloidal crystal assembly based on wrinkling,” Soft Matter3(12), 1530–1536 (2007).
[CrossRef]

R. Li, Y. Li, C. Lü, J. Song, R. Saeidpouraza, B. Fang, Y. Zhong, P. M. Ferreira, J. A. Rogers, and Y. Huang, “Thermo-mechanical modeling of laser-driven non-contact transfer printing: two-dimensional analysis,” Soft Matter8(27), 7122–7127 (2012).
[CrossRef]

Thin Solid Films (1)

C. Yu and H. Jiang, “Forming wrinkled stiff films on polymeric substrates at room temperature for stretchable interconnects applications,” Thin Solid Films519(2), 818–822 (2010).
[CrossRef]

Other (1)

A. U. Manual, “Version 6.5, Hibbitt, Karlsson and Sorensen,” Inc., Pawtucket, RI (2004).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Schematic of the fabrication process for PDMS/Au grating. (b) Optical microscopy image and (c) AFM image of wrinkling profile of PDMS/Au grating surface. (d) SEM image of wrinkles. (e) Wrinkling wavelength (period) distribution at ten different spots over a surface area of 100 × 100 μm2. The wrinkling period remains largely constant over this surface area, in good agreement with the calculated period value by Eq. (1). The error bars are one standard deviation of the data, which is taken as the experimental uncertainty of the measurement.

Fig. 2
Fig. 2

Optical setup for micro-strain measurement.

Fig. 3
Fig. 3

(a) Schematic of PDMS grating attached on silicon substrate. (b) Strain contours in the horizontal direction for different ratios of PDMS lengths (L) and a constant thickness (h = 100 μm).

Fig. 4
Fig. 4

(a) εpdms/εSi and εpdms as a function of L/h. (b) Phase diagram of εpdms/εSi.

Fig. 5
Fig. 5

Diffracted beam intensity simulations based on the multi-slit grating model shown in (a), with grating to screen distance L = 10 cm. Small variations are applied to the grating periodicity to obtain the peak shift, as illustrated in (b) and (c). Spot size is 200 μm (or number of slits N = 240) in (b), and 50 μm (or N = 60) in (c).

Fig. 6
Fig. 6

Measured CTE results for (a) freestanding PDMS, (b) Cu and (c) Si. Insets are the schematics of the setup for thermal micro-strain measurement.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

d= 2π h f ( 1+ ε pre ) [ 1+ 5 32 ε pre ( 1+ ε pre ) ] 1/3 [ E f ( 1 ν s 2 ) 3 E s ( 1 ν f 2 ) ] 1/3 .
Δy= λL d 0 2 ( 1 m 2 λ 2 d 0 2 ) 3/2 Δd= λL d 0 ( 1 m 2 λ 2 d 0 2 ) 3/2 ε=Aε.
U 1 = d u 1 = 0 a A 0 a e iωt e ikxsinθ dx ,
U= A 0 sinα α sinNβ β exp{ i [ a+( N1 ) ]sinθ λ ωt },
I P = U 2 = I 0 ( sinα α ) 2 ( sinNβ β ) 2 .

Metrics