Abstract

An infrared Lyot filter was fabricated by integrating a polarization beam splitter and two retarders into a single device. A liquid crystal layer was constructed between two silicon pentaprisms that were designed suitably so that light was incident on this layer at 28°. At this angle, the liquid crystal transmitted p-polarized light (Brewster’s angle) and reflected s-polarized light (total internal reflection). The p- or s-polarized light was directed to another liquid crystal layer (retarder) between the prism and a mirror, which induced a wavelength-dependent retardation in the reflection process. Consequently, the light that returned to the beam splitter was transmitted or reflected depending on wavelength.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. I. C. Khoo, Liquid Crystals, 2nd ed. (Wiley, New York, 2007).
  2. A. F. Fray, C. Hilsum, and D. Jones, “Some properties of liquid crystals as infrared modulators,” Infrared Phys.18(1), 35–41 (1978).
    [CrossRef]
  3. J. G. Pasco and W. Elser, “Liquid crystal infrared modulation,” Opt. Eng.20, 970–975 (1981).
  4. R. C. Sharp, D. P. Resler, D. S. Hobbs, and T. A. Dorschner, “Electrically tunable liquid-crystal wave plate in the infrared,” Opt. Lett.15(1), 87–89 (1990).
    [CrossRef] [PubMed]
  5. M. Saito and T. Yasuda, “An infrared polarization switch consisting of silicon and liquid crystal,” J. Opt.12(1), 015504 (2010).
    [CrossRef]
  6. S.-T. Wu, “Birefringence dispersion of liquid crystals,” Phys. Rev.33(2), 1270–1274 (1986).
    [CrossRef]
  7. D. B. Chenault, R. A. Chipman, K. M. Johnson, and D. Doroski, “Infrared linear diattenuation and birefringence spectra of ferroelectric liquid crystals,” Opt. Lett.17(6), 447–449 (1992).
    [CrossRef] [PubMed]
  8. M. Saito and T. Yasuda, “Complex refractive-index spectrum of liquid crystal in the infrared,” Appl. Opt.42(13), 2366–2371 (2003).
    [CrossRef] [PubMed]
  9. M. Saito, R. Takeda, K. Yoshimura, R. Okamoto, and I. Yamada, “Self-controlled signal branch by the use of a nonlinear liquid crystal cell,” Appl. Phys. Lett.91(14), 141110 (2007).
    [CrossRef]
  10. J. Moore, N. Collings, W. A. Crossland, A. B. Davey, M. Evans, A. M. Jeziorska, M. Komarčević, R. J. Parker, T. D. Wilkinson, and H. Xu, “The silicon backplane design for an LCOS polarization-insensitive phase hologram SLM,” IEEE Photon. Technol. Lett.20(1), 60–62 (2008).
    [CrossRef]
  11. W. A. Crossland, I. G. Manolis, M. M. Redmond, K. L. Tan, T. D. Wilkinson, M. J. Holmes, T. R. Parker, H. H. Chu, J. Croucher, V. A. Handerek, S. T. Warr, B. Robertson, I. G. Bonas, R. Franklin, C. Stace, H. J. White, R. A. Woolley, and G. Henshall, “Holographic optical switching: the “ROSES” demonstrator,” J. Lightwave Technol.18(12), 1845–1854 (2000).
    [CrossRef]
  12. A. Georgiou, J. Beeckman, and K. Neyts, “Multicasting optical interconnects using liquid crystal over silicon devices,” J. Opt. Soc. Am. A28(3), 363–372 (2011).
    [CrossRef] [PubMed]
  13. M. Saito, K. Yoshimura, and K. Kanatani, “Silicon-based liquid-crystal cell for self-branching of optical packets,” Opt. Lett.36(2), 208–210 (2011).
    [CrossRef] [PubMed]
  14. L. R. McAdams, R. N. McRuer, and J. W. Goodman, “Liquid crystal optical routing switch,” Appl. Opt.29(9), 1304–1307 (1990).
    [CrossRef] [PubMed]
  15. R. E. Wagner and J. Cheng, “Electrically controlled optical switch for multimode fiber applications,” Appl. Opt.19(17), 2921–2925 (1980).
    [CrossRef] [PubMed]
  16. E. G. Hanson, “Polarization-independent liquid-crystal optical attenuator for fiber-optics applications,” Appl. Opt.21(7), 1342–1344 (1982).
    [CrossRef] [PubMed]
  17. J. R. Andrews, “Low voltage wavelength tuning of an external cavity diode laser using a nematic liquid crystal-containing birefringent filter,” IEEE Photon. Technol. Lett.2(5), 334–336 (1990).
    [CrossRef]
  18. G. D. Sharp, D. Doroski, and K. M. Johnson, “Rapidly switchable optical filter for color generation,” Opt. Lett.16(11), 875–877 (1991).
    [CrossRef] [PubMed]
  19. J. Pfeifle, L. Alloatti, W. Freude, J. Leuthold, and C. Koos, “Silicon-organic hybrid phase shifter based on a slot waveguide with a liquid-crystal cladding,” Opt. Express20(14), 15359–15376 (2012).
    [CrossRef] [PubMed]
  20. J. S. Patel and S.-D. Lee, “Electrically tunable and polarization insensitive Fabry-Perot étalon with a liquid-crystal film,” Appl. Phys. Lett.58(22), 2491–2493 (1991).
    [CrossRef]
  21. N. A. Clark and S. T. Lagerwall, “Submicrosecond bistable electro-optic switching in liquid crystals,” Appl. Phys. Lett.36(11), 899–901 (1980).
    [CrossRef]
  22. B. Lyot, “Le filtre monochromatique polarisant et ses applications en physique solaire,” Ann. Astrophys. (Paris)7, 31–79 (1939).
  23. J. W. Evans, “The birefringent filter; a correction,” J. Opt. Soc. Am.39(5), 412 (1949).
    [PubMed]
  24. J. W. Evans, “Solc birefringent filter,” J. Opt. Soc. Am.48(3), 142–145 (1958).
    [CrossRef]
  25. R. Chang, “Application of polarimetry and interferometry to liquid crystal-film research,” Mater. Res. Bull.7(4), 267–278 (1972).
    [CrossRef]
  26. Y.-H. Lin, H. Ren, Y.-H. Wu, Y. Zhao, J. Fang, Z. Ge, and S.-T. Wu, “Polarization-independent liquid crystal phase modulator using a thin polymer-separated double-layered structure,” Opt. Express13(22), 8746–8752 (2005).
    [CrossRef] [PubMed]
  27. J. S. Patel and M. W. Maeda, “Tunable polarization diversity liquid-crystal wavelength filter,” IEEE Photon. Technol. Lett.3, 73–740 (1991).

2012 (1)

2011 (2)

2010 (1)

M. Saito and T. Yasuda, “An infrared polarization switch consisting of silicon and liquid crystal,” J. Opt.12(1), 015504 (2010).
[CrossRef]

2008 (1)

J. Moore, N. Collings, W. A. Crossland, A. B. Davey, M. Evans, A. M. Jeziorska, M. Komarčević, R. J. Parker, T. D. Wilkinson, and H. Xu, “The silicon backplane design for an LCOS polarization-insensitive phase hologram SLM,” IEEE Photon. Technol. Lett.20(1), 60–62 (2008).
[CrossRef]

2007 (1)

M. Saito, R. Takeda, K. Yoshimura, R. Okamoto, and I. Yamada, “Self-controlled signal branch by the use of a nonlinear liquid crystal cell,” Appl. Phys. Lett.91(14), 141110 (2007).
[CrossRef]

2005 (1)

2003 (1)

2000 (1)

1992 (1)

1991 (3)

J. S. Patel and M. W. Maeda, “Tunable polarization diversity liquid-crystal wavelength filter,” IEEE Photon. Technol. Lett.3, 73–740 (1991).

J. S. Patel and S.-D. Lee, “Electrically tunable and polarization insensitive Fabry-Perot étalon with a liquid-crystal film,” Appl. Phys. Lett.58(22), 2491–2493 (1991).
[CrossRef]

G. D. Sharp, D. Doroski, and K. M. Johnson, “Rapidly switchable optical filter for color generation,” Opt. Lett.16(11), 875–877 (1991).
[CrossRef] [PubMed]

1990 (3)

1986 (1)

S.-T. Wu, “Birefringence dispersion of liquid crystals,” Phys. Rev.33(2), 1270–1274 (1986).
[CrossRef]

1982 (1)

1981 (1)

J. G. Pasco and W. Elser, “Liquid crystal infrared modulation,” Opt. Eng.20, 970–975 (1981).

1980 (2)

R. E. Wagner and J. Cheng, “Electrically controlled optical switch for multimode fiber applications,” Appl. Opt.19(17), 2921–2925 (1980).
[CrossRef] [PubMed]

N. A. Clark and S. T. Lagerwall, “Submicrosecond bistable electro-optic switching in liquid crystals,” Appl. Phys. Lett.36(11), 899–901 (1980).
[CrossRef]

1978 (1)

A. F. Fray, C. Hilsum, and D. Jones, “Some properties of liquid crystals as infrared modulators,” Infrared Phys.18(1), 35–41 (1978).
[CrossRef]

1972 (1)

R. Chang, “Application of polarimetry and interferometry to liquid crystal-film research,” Mater. Res. Bull.7(4), 267–278 (1972).
[CrossRef]

1958 (1)

1949 (1)

1939 (1)

B. Lyot, “Le filtre monochromatique polarisant et ses applications en physique solaire,” Ann. Astrophys. (Paris)7, 31–79 (1939).

Alloatti, L.

Andrews, J. R.

J. R. Andrews, “Low voltage wavelength tuning of an external cavity diode laser using a nematic liquid crystal-containing birefringent filter,” IEEE Photon. Technol. Lett.2(5), 334–336 (1990).
[CrossRef]

Beeckman, J.

Bonas, I. G.

Chang, R.

R. Chang, “Application of polarimetry and interferometry to liquid crystal-film research,” Mater. Res. Bull.7(4), 267–278 (1972).
[CrossRef]

Chenault, D. B.

Cheng, J.

Chipman, R. A.

Chu, H. H.

Clark, N. A.

N. A. Clark and S. T. Lagerwall, “Submicrosecond bistable electro-optic switching in liquid crystals,” Appl. Phys. Lett.36(11), 899–901 (1980).
[CrossRef]

Collings, N.

J. Moore, N. Collings, W. A. Crossland, A. B. Davey, M. Evans, A. M. Jeziorska, M. Komarčević, R. J. Parker, T. D. Wilkinson, and H. Xu, “The silicon backplane design for an LCOS polarization-insensitive phase hologram SLM,” IEEE Photon. Technol. Lett.20(1), 60–62 (2008).
[CrossRef]

Crossland, W. A.

J. Moore, N. Collings, W. A. Crossland, A. B. Davey, M. Evans, A. M. Jeziorska, M. Komarčević, R. J. Parker, T. D. Wilkinson, and H. Xu, “The silicon backplane design for an LCOS polarization-insensitive phase hologram SLM,” IEEE Photon. Technol. Lett.20(1), 60–62 (2008).
[CrossRef]

W. A. Crossland, I. G. Manolis, M. M. Redmond, K. L. Tan, T. D. Wilkinson, M. J. Holmes, T. R. Parker, H. H. Chu, J. Croucher, V. A. Handerek, S. T. Warr, B. Robertson, I. G. Bonas, R. Franklin, C. Stace, H. J. White, R. A. Woolley, and G. Henshall, “Holographic optical switching: the “ROSES” demonstrator,” J. Lightwave Technol.18(12), 1845–1854 (2000).
[CrossRef]

Croucher, J.

Davey, A. B.

J. Moore, N. Collings, W. A. Crossland, A. B. Davey, M. Evans, A. M. Jeziorska, M. Komarčević, R. J. Parker, T. D. Wilkinson, and H. Xu, “The silicon backplane design for an LCOS polarization-insensitive phase hologram SLM,” IEEE Photon. Technol. Lett.20(1), 60–62 (2008).
[CrossRef]

Doroski, D.

Dorschner, T. A.

Elser, W.

J. G. Pasco and W. Elser, “Liquid crystal infrared modulation,” Opt. Eng.20, 970–975 (1981).

Evans, J. W.

Evans, M.

J. Moore, N. Collings, W. A. Crossland, A. B. Davey, M. Evans, A. M. Jeziorska, M. Komarčević, R. J. Parker, T. D. Wilkinson, and H. Xu, “The silicon backplane design for an LCOS polarization-insensitive phase hologram SLM,” IEEE Photon. Technol. Lett.20(1), 60–62 (2008).
[CrossRef]

Fang, J.

Franklin, R.

Fray, A. F.

A. F. Fray, C. Hilsum, and D. Jones, “Some properties of liquid crystals as infrared modulators,” Infrared Phys.18(1), 35–41 (1978).
[CrossRef]

Freude, W.

Ge, Z.

Georgiou, A.

Goodman, J. W.

Handerek, V. A.

Hanson, E. G.

Henshall, G.

Hilsum, C.

A. F. Fray, C. Hilsum, and D. Jones, “Some properties of liquid crystals as infrared modulators,” Infrared Phys.18(1), 35–41 (1978).
[CrossRef]

Hobbs, D. S.

Holmes, M. J.

Jeziorska, A. M.

J. Moore, N. Collings, W. A. Crossland, A. B. Davey, M. Evans, A. M. Jeziorska, M. Komarčević, R. J. Parker, T. D. Wilkinson, and H. Xu, “The silicon backplane design for an LCOS polarization-insensitive phase hologram SLM,” IEEE Photon. Technol. Lett.20(1), 60–62 (2008).
[CrossRef]

Johnson, K. M.

Jones, D.

A. F. Fray, C. Hilsum, and D. Jones, “Some properties of liquid crystals as infrared modulators,” Infrared Phys.18(1), 35–41 (1978).
[CrossRef]

Kanatani, K.

Komarcevic, M.

J. Moore, N. Collings, W. A. Crossland, A. B. Davey, M. Evans, A. M. Jeziorska, M. Komarčević, R. J. Parker, T. D. Wilkinson, and H. Xu, “The silicon backplane design for an LCOS polarization-insensitive phase hologram SLM,” IEEE Photon. Technol. Lett.20(1), 60–62 (2008).
[CrossRef]

Koos, C.

Lagerwall, S. T.

N. A. Clark and S. T. Lagerwall, “Submicrosecond bistable electro-optic switching in liquid crystals,” Appl. Phys. Lett.36(11), 899–901 (1980).
[CrossRef]

Lee, S.-D.

J. S. Patel and S.-D. Lee, “Electrically tunable and polarization insensitive Fabry-Perot étalon with a liquid-crystal film,” Appl. Phys. Lett.58(22), 2491–2493 (1991).
[CrossRef]

Leuthold, J.

Lin, Y.-H.

Lyot, B.

B. Lyot, “Le filtre monochromatique polarisant et ses applications en physique solaire,” Ann. Astrophys. (Paris)7, 31–79 (1939).

Maeda, M. W.

J. S. Patel and M. W. Maeda, “Tunable polarization diversity liquid-crystal wavelength filter,” IEEE Photon. Technol. Lett.3, 73–740 (1991).

Manolis, I. G.

McAdams, L. R.

McRuer, R. N.

Moore, J.

J. Moore, N. Collings, W. A. Crossland, A. B. Davey, M. Evans, A. M. Jeziorska, M. Komarčević, R. J. Parker, T. D. Wilkinson, and H. Xu, “The silicon backplane design for an LCOS polarization-insensitive phase hologram SLM,” IEEE Photon. Technol. Lett.20(1), 60–62 (2008).
[CrossRef]

Neyts, K.

Okamoto, R.

M. Saito, R. Takeda, K. Yoshimura, R. Okamoto, and I. Yamada, “Self-controlled signal branch by the use of a nonlinear liquid crystal cell,” Appl. Phys. Lett.91(14), 141110 (2007).
[CrossRef]

Parker, R. J.

J. Moore, N. Collings, W. A. Crossland, A. B. Davey, M. Evans, A. M. Jeziorska, M. Komarčević, R. J. Parker, T. D. Wilkinson, and H. Xu, “The silicon backplane design for an LCOS polarization-insensitive phase hologram SLM,” IEEE Photon. Technol. Lett.20(1), 60–62 (2008).
[CrossRef]

Parker, T. R.

Pasco, J. G.

J. G. Pasco and W. Elser, “Liquid crystal infrared modulation,” Opt. Eng.20, 970–975 (1981).

Patel, J. S.

J. S. Patel and S.-D. Lee, “Electrically tunable and polarization insensitive Fabry-Perot étalon with a liquid-crystal film,” Appl. Phys. Lett.58(22), 2491–2493 (1991).
[CrossRef]

J. S. Patel and M. W. Maeda, “Tunable polarization diversity liquid-crystal wavelength filter,” IEEE Photon. Technol. Lett.3, 73–740 (1991).

Pfeifle, J.

Redmond, M. M.

Ren, H.

Resler, D. P.

Robertson, B.

Saito, M.

M. Saito, K. Yoshimura, and K. Kanatani, “Silicon-based liquid-crystal cell for self-branching of optical packets,” Opt. Lett.36(2), 208–210 (2011).
[CrossRef] [PubMed]

M. Saito and T. Yasuda, “An infrared polarization switch consisting of silicon and liquid crystal,” J. Opt.12(1), 015504 (2010).
[CrossRef]

M. Saito, R. Takeda, K. Yoshimura, R. Okamoto, and I. Yamada, “Self-controlled signal branch by the use of a nonlinear liquid crystal cell,” Appl. Phys. Lett.91(14), 141110 (2007).
[CrossRef]

M. Saito and T. Yasuda, “Complex refractive-index spectrum of liquid crystal in the infrared,” Appl. Opt.42(13), 2366–2371 (2003).
[CrossRef] [PubMed]

Sharp, G. D.

Sharp, R. C.

Stace, C.

Takeda, R.

M. Saito, R. Takeda, K. Yoshimura, R. Okamoto, and I. Yamada, “Self-controlled signal branch by the use of a nonlinear liquid crystal cell,” Appl. Phys. Lett.91(14), 141110 (2007).
[CrossRef]

Tan, K. L.

Wagner, R. E.

Warr, S. T.

White, H. J.

Wilkinson, T. D.

J. Moore, N. Collings, W. A. Crossland, A. B. Davey, M. Evans, A. M. Jeziorska, M. Komarčević, R. J. Parker, T. D. Wilkinson, and H. Xu, “The silicon backplane design for an LCOS polarization-insensitive phase hologram SLM,” IEEE Photon. Technol. Lett.20(1), 60–62 (2008).
[CrossRef]

W. A. Crossland, I. G. Manolis, M. M. Redmond, K. L. Tan, T. D. Wilkinson, M. J. Holmes, T. R. Parker, H. H. Chu, J. Croucher, V. A. Handerek, S. T. Warr, B. Robertson, I. G. Bonas, R. Franklin, C. Stace, H. J. White, R. A. Woolley, and G. Henshall, “Holographic optical switching: the “ROSES” demonstrator,” J. Lightwave Technol.18(12), 1845–1854 (2000).
[CrossRef]

Woolley, R. A.

Wu, S.-T.

Wu, Y.-H.

Xu, H.

J. Moore, N. Collings, W. A. Crossland, A. B. Davey, M. Evans, A. M. Jeziorska, M. Komarčević, R. J. Parker, T. D. Wilkinson, and H. Xu, “The silicon backplane design for an LCOS polarization-insensitive phase hologram SLM,” IEEE Photon. Technol. Lett.20(1), 60–62 (2008).
[CrossRef]

Yamada, I.

M. Saito, R. Takeda, K. Yoshimura, R. Okamoto, and I. Yamada, “Self-controlled signal branch by the use of a nonlinear liquid crystal cell,” Appl. Phys. Lett.91(14), 141110 (2007).
[CrossRef]

Yasuda, T.

M. Saito and T. Yasuda, “An infrared polarization switch consisting of silicon and liquid crystal,” J. Opt.12(1), 015504 (2010).
[CrossRef]

M. Saito and T. Yasuda, “Complex refractive-index spectrum of liquid crystal in the infrared,” Appl. Opt.42(13), 2366–2371 (2003).
[CrossRef] [PubMed]

Yoshimura, K.

M. Saito, K. Yoshimura, and K. Kanatani, “Silicon-based liquid-crystal cell for self-branching of optical packets,” Opt. Lett.36(2), 208–210 (2011).
[CrossRef] [PubMed]

M. Saito, R. Takeda, K. Yoshimura, R. Okamoto, and I. Yamada, “Self-controlled signal branch by the use of a nonlinear liquid crystal cell,” Appl. Phys. Lett.91(14), 141110 (2007).
[CrossRef]

Zhao, Y.

Ann. Astrophys. (Paris) (1)

B. Lyot, “Le filtre monochromatique polarisant et ses applications en physique solaire,” Ann. Astrophys. (Paris)7, 31–79 (1939).

Appl. Opt. (4)

Appl. Phys. Lett. (3)

J. S. Patel and S.-D. Lee, “Electrically tunable and polarization insensitive Fabry-Perot étalon with a liquid-crystal film,” Appl. Phys. Lett.58(22), 2491–2493 (1991).
[CrossRef]

N. A. Clark and S. T. Lagerwall, “Submicrosecond bistable electro-optic switching in liquid crystals,” Appl. Phys. Lett.36(11), 899–901 (1980).
[CrossRef]

M. Saito, R. Takeda, K. Yoshimura, R. Okamoto, and I. Yamada, “Self-controlled signal branch by the use of a nonlinear liquid crystal cell,” Appl. Phys. Lett.91(14), 141110 (2007).
[CrossRef]

IEEE Photon. Technol. Lett. (3)

J. Moore, N. Collings, W. A. Crossland, A. B. Davey, M. Evans, A. M. Jeziorska, M. Komarčević, R. J. Parker, T. D. Wilkinson, and H. Xu, “The silicon backplane design for an LCOS polarization-insensitive phase hologram SLM,” IEEE Photon. Technol. Lett.20(1), 60–62 (2008).
[CrossRef]

J. R. Andrews, “Low voltage wavelength tuning of an external cavity diode laser using a nematic liquid crystal-containing birefringent filter,” IEEE Photon. Technol. Lett.2(5), 334–336 (1990).
[CrossRef]

J. S. Patel and M. W. Maeda, “Tunable polarization diversity liquid-crystal wavelength filter,” IEEE Photon. Technol. Lett.3, 73–740 (1991).

Infrared Phys. (1)

A. F. Fray, C. Hilsum, and D. Jones, “Some properties of liquid crystals as infrared modulators,” Infrared Phys.18(1), 35–41 (1978).
[CrossRef]

J. Lightwave Technol. (1)

J. Opt. (1)

M. Saito and T. Yasuda, “An infrared polarization switch consisting of silicon and liquid crystal,” J. Opt.12(1), 015504 (2010).
[CrossRef]

J. Opt. Soc. Am. (2)

J. Opt. Soc. Am. A (1)

Mater. Res. Bull. (1)

R. Chang, “Application of polarimetry and interferometry to liquid crystal-film research,” Mater. Res. Bull.7(4), 267–278 (1972).
[CrossRef]

Opt. Eng. (1)

J. G. Pasco and W. Elser, “Liquid crystal infrared modulation,” Opt. Eng.20, 970–975 (1981).

Opt. Express (2)

Opt. Lett. (4)

Phys. Rev. (1)

S.-T. Wu, “Birefringence dispersion of liquid crystals,” Phys. Rev.33(2), 1270–1274 (1986).
[CrossRef]

Other (1)

I. C. Khoo, Liquid Crystals, 2nd ed. (Wiley, New York, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

(a) Device structure (top view) and the operation principle. (b) Reflection and transmission at the boundary of the Si prism and the LC layer (the polarization layer). LC molecules are oriented perpendicular to the Si surface. (c) Side view of the retardation layer (retarder 2). LC molecules are oriented in the plane parallel to the Si surface being directed in the 45° direction with reference to the polarization direction of the incident light. Polarization directions are designated as p or s with reference to the polarization layer in (b).

Fig. 2
Fig. 2

Refractive index of the LC for p or s polarization (theoretical calculation). The horizontal axis shows the incident angle θ at the boundary of the Si prism and the LC layer [Fig. 1(b)]. (b) Angular dependence of the theoretical reflectance (optical power reflectance) at the boundary. The refractive index shown in (a) was used for calculation.

Fig. 3
Fig. 3

Transmission spectra of the s-polarized light. An electric voltage was applied to the LC layer on (a) the left side (the retarder 1 in Fig. 1) or (b) the right side (the retarder 2). Each spectrum is shown in the 0–50% range. The arrows in (a) show the peak shift corresponding to a retardation of π, 3π, 5π, 7π, or 9π (from right to left).

Fig. 4
Fig. 4

Transmittance change by voltage application to the LC layer. The voltage was applied to either the retarder 1 (the black line) or the retarder 2 (the gray line). These data were taken at each wavelength from the transmission spectra that were exemplified in Fig. 3.

Fig. 5
Fig. 5

Transmission spectra of the p-polarized light. An electric voltage was applied to the LC layer on (a) the left side (the retarder 1) or (b) the right side (the retarder 2). Each spectrum is shown in the 0–50% range. The arrows in (b) show the peak shift corresponding to a retardation of π, 3π, or 5π (from right to left).

Fig. 6
Fig. 6

(a) Voltage dependence of the phase changes in the two retardation layers. The phase change was evaluated from the voltage dependence of the transmittance at 2 μm wavelength (Fig. 4). (b) Correspondence of the voltages V1 and V2 that induce the same amount of phase change to the retarders 1 and 2.

Fig. 7
Fig. 7

An integrated device with a single retardation layer.

Fig. 8
Fig. 8

(a) Transmission spectra for random polarization. The numerals in the figure denote the electric voltages V1 that were applied to the retarder 1. The voltage V2 that was applied to the retarder 2 was adjusted according to Eq. (4). Each spectrum is shown in the 0–50% range. (b) A conventional Lyot filter consisting of discrete optical elements and (c) the current integrated device. (d), (e) Transmission spectra of the two Lyot filters. An electric voltage was applied to the LC layer so that a transmission peak appeared at (d) 2.5 or (e) 5 μm wavelength. Transmittance was evaluated as the power ratio of the input and output light.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

n L = n o 1+( 1/ n o 2 1/ n e 2 ) n S 2 sin 2 θ ,
Δφ= 4πΔnd / λ ,
sinα= n S sin(αθ).
V 2 =0.86 V 1 +0.09.

Metrics