Abstract

We demonstrate a compact, robust, and highly efficient source of polarization-entangled photons, based on linear bi-directional down-conversion in a novel ‘folded sandwich’ configuration. Bi-directionally pumping a single periodically poled KTiOPO4 (ppKTP) crystal with a 405-nm laser diode, we generate entangled photon pairs at the non-degenerate wavelengths 784 nm (signal) and 839 nm (idler), and achieve an unprecedented detection rate of 11.8 kcps for 10.4 μW of pump power (1.1 million pairs / mW), in a 2.9-nm bandwidth, while maintaining a very high two-photon entanglement quality, with a Bell-state fidelity of 99.3 ± 0.3%.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Tittel and G. Weihs, “Photonic entanglement for fundamental tests and quantum communication,” Quantum Inf. and Comp.1, 3–56 (2001).
  2. J. L. O’Brien, A. Furusawa, and J. Vucovic, “Photonic quantum technologies,” Nat. Photonics3, 687–695 (2009).
    [CrossRef]
  3. P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett.75, 4337–4341 (1995).
    [CrossRef] [PubMed]
  4. P. G. Kwiat, E. Waks, A. G. White, I. Appelbaum, and P. H. Eberhard, “Ultrabright source of polarization-entangled photons,” Phys. Rev. A60, R773–R776 (1999).
    [CrossRef]
  5. Y.-H. Kim, M. V. Chekhova, S. P. Kulik, M. H. Rubin, and Y. Shih, “Interferometric bell-state preparation using femtosecond-pulse-pumped spontaneous parametric down-conversion,” Phys. Rev. A63, 062301 (2001).
    [CrossRef]
  6. M. Barbieri, F. De Martini, G. Di Nepi, P. Mataloni, G. M. D’Ariano, and C. Macchiavello, “Detection of entanglement with polarized photons: Experimental realization of an entanglement witness,” Phys. Rev. Lett.91, 227901 (2003).
    [CrossRef] [PubMed]
  7. C. E. Kuklewicz, M. Fiorentino, G. Messin, F. N. C. Wong, and J. H. Shapiro, “High-flux source of polarization-entangled photons from a periodically poled ktiopo4 parametric down-converter,” Phys. Rev. A69, 013807 (2004).
    [CrossRef]
  8. M. Fiorentino, G. Messin, C. E. Kuklewicz, F. N. C. Wong, and J. H. Shapiro, “Generation of ultrabright tunable polarization entanglement without spatial, spectral, or temporal constraints,” Phys. Rev. A69, 041801 (2004).
    [CrossRef]
  9. B.-S. Shi and A. Tomita, “Generation of a pulsed polarization entangled photon pair using a sagnac interferometer,” Phys. Rev. A69, 013803 (2004).
    [CrossRef]
  10. T. Kim, M. Fiorentino, and F. N. C. Wong, “Phase-stable source of polarization-entangled photons using a polarization sagnac interferometer,” Phys. Rev. A73, 012316 (2006).
    [CrossRef]
  11. P. Trojek and H. Weinfurter, “Collinear source of polarization-entangled photon pairs at nondegenerate wavelengths,” Appl. Phys. Lett.92, 211103 (2008).
    [CrossRef]
  12. S. Tanzilli, A. Martin, F. Kaiser, M. De Micheli, O. Alibart, and D. Ostrowsky, “On the genesis and evolution of integrated quantum optics,” Laser Photon. Rev.6, 115–143 (2012).
    [CrossRef]
  13. M. Fiorentino and R. G. Beausoleil, “Compact sources of polarization-entangled photons,” Opt. Express16, 20149–20156 (2008).
    [CrossRef] [PubMed]
  14. A. Predojević, S. Grabher, and G. Weihs, “Pulsed sagnac source of polarization entangled photon pairs,” Opt. Express20, 25022–25029 (2012).
    [CrossRef]
  15. R. Rangarajan, M. Goggin, and P. Kwiat, “Optimizing type-i polarization-entangled photons,” Opt. Express17, 18920–18933 (2009).
    [CrossRef]
  16. A. Fedrizzi, T. Herbst, A. Poppe, T. Jennewein, and A. Zeilinger, “A wavelength-tunable fiber-coupled source of narrowband entangled photons,” Opt. Express15, 15377–15386 (2007).
    [CrossRef] [PubMed]
  17. P. Trojek, “Efficient generation of photonic entanglement and multiparty quantum communication,” Ph.D. thesis, LMU-Munich (2007).
  18. J. Altepeter, E. Jeffrey, and P. Kwiat, “Phase-compensated ultra-bright source of entangled photons,” Opt. Express13, 8951–8959 (2005).
    [CrossRef] [PubMed]
  19. F. Steinlechner, P. Trojek, M. Jofre, H. Weier, D. Perez, T. Jennewein, R. Ursin, J. Rarity, M. W. Mitchell, J. P. Torres, H. Weinfurter, and V. Pruneri, “A high-brightness source of polarization-entangled photons optimized for applications in free space,” Opt. Express20, 9640–9649 (2012).
    [CrossRef] [PubMed]
  20. J. F. Hodelin, G. Khoury, and D. Bouwmeester, “Optimal generation of pulsed entangled photon pairs,” Phys. Rev. A74, 013802 (2006).
    [CrossRef]
  21. B.-S. Shi and A. Tomita, “Preparation of a pulsed polarization entangled photon pair via interference,” Optics Communications235, 247–252 (2004).
    [CrossRef]
  22. Y. Nambu, K. Usami, Y. Tsuda, K. Matsumoto, and K. Nakamura, “Generation of polarization-entangled photon pairs in a cascade of two type-i crystals pumped by femtosecond pulses,” Phys. Rev. A66, 033816 (2002).
    [CrossRef]
  23. D. E. Zelmon, J. J. Lee, K. M. Currin, J. M. Northridge, and D. Perlov, “Revisiting the optical properties of nd doped yttrium orthovanadate,” Appl. Opt.49, 644–647 (2010).
    [CrossRef] [PubMed]
  24. W. Wiechmann, S. Kubota, T. Fukui, and H. Masuda, “Refractive-index temperature derivatives of potassium titanyl phosphate,” Opt. Lett.18, 1208–1210 (1993).
    [CrossRef] [PubMed]
  25. S. Emanueli and A. Arie, “Temperature-dependent dispersion equations for ktiopo4 and ktioaso4,” Appl. Opt.42, 6661–6665 (2003).
    [CrossRef] [PubMed]
  26. D. Ljunggren and M. Tengner, “Optimal focusing for maximal collection of entangled narrow-band photon pairs into single-mode fibers,” Phys. Rev. A72, 062301 (2005).
    [CrossRef]
  27. R. S. Bennink, “Optimal collinear gaussian beams for spontaneous parametric down-conversion,” Phys. Rev. A81, 053805 (2010).
    [CrossRef]
  28. S. Palacios, R. de J. León-Montiel, M. Hendrych, A. Valencia, and J. P. Torres, “Flux enhancement of photons entangled in orbital angular momentum,” Opt. Express19, 14108–14120 (2011).
    [CrossRef] [PubMed]
  29. O. Gühne and G. Toth, “Entanglement detection,” Phys. Rep.474, 1–75 (2009).
    [CrossRef]
  30. T. Jennewein, “T. toolbox for quantum photonics in matlab. http://info.iqc.ca/qpl/ (accessed june 1, 2010).”.
  31. A. Gallivanoni, I. Rech, D. Resnati, M. Ghioni, and S. Cova, “Monolithic active quenching and picosecond timing circuit suitable for large-area single-photon avalanche diodes,” Opt. Express14, 5021–5030 (2006).
    [CrossRef] [PubMed]
  32. H. Takesue and K. Shimizu, “Effects of multiple pairs on visibility measurements of entangled photons generated by spontaneous parametric processes,” Opt. Commun.283, 276–287 (2010).
    [CrossRef]
  33. T. Jennewein, M. Barbieri, and A. G. White, “Single-photon device requirements for operating linear optics quantum computing outside the post-selection basis,” J. Mod. Opt.58, 276–287 (2011).
    [CrossRef]
  34. S. Ramelow, A. Mech, M. Giustina, S. Gröblacher, W. Wieczorek, J. Beyer, A. Lita, B. Calkins, T. Gerrits, S. W. Nam, A. Zeilinger, and R. Ursin, “Highly efficient heralding of entangled single photons,” Opt. Express21, 6707–6717 (2013).
    [CrossRef] [PubMed]

2013 (1)

2012 (3)

2011 (2)

T. Jennewein, M. Barbieri, and A. G. White, “Single-photon device requirements for operating linear optics quantum computing outside the post-selection basis,” J. Mod. Opt.58, 276–287 (2011).
[CrossRef]

S. Palacios, R. de J. León-Montiel, M. Hendrych, A. Valencia, and J. P. Torres, “Flux enhancement of photons entangled in orbital angular momentum,” Opt. Express19, 14108–14120 (2011).
[CrossRef] [PubMed]

2010 (3)

R. S. Bennink, “Optimal collinear gaussian beams for spontaneous parametric down-conversion,” Phys. Rev. A81, 053805 (2010).
[CrossRef]

H. Takesue and K. Shimizu, “Effects of multiple pairs on visibility measurements of entangled photons generated by spontaneous parametric processes,” Opt. Commun.283, 276–287 (2010).
[CrossRef]

D. E. Zelmon, J. J. Lee, K. M. Currin, J. M. Northridge, and D. Perlov, “Revisiting the optical properties of nd doped yttrium orthovanadate,” Appl. Opt.49, 644–647 (2010).
[CrossRef] [PubMed]

2009 (3)

O. Gühne and G. Toth, “Entanglement detection,” Phys. Rep.474, 1–75 (2009).
[CrossRef]

R. Rangarajan, M. Goggin, and P. Kwiat, “Optimizing type-i polarization-entangled photons,” Opt. Express17, 18920–18933 (2009).
[CrossRef]

J. L. O’Brien, A. Furusawa, and J. Vucovic, “Photonic quantum technologies,” Nat. Photonics3, 687–695 (2009).
[CrossRef]

2008 (2)

M. Fiorentino and R. G. Beausoleil, “Compact sources of polarization-entangled photons,” Opt. Express16, 20149–20156 (2008).
[CrossRef] [PubMed]

P. Trojek and H. Weinfurter, “Collinear source of polarization-entangled photon pairs at nondegenerate wavelengths,” Appl. Phys. Lett.92, 211103 (2008).
[CrossRef]

2007 (1)

2006 (3)

T. Kim, M. Fiorentino, and F. N. C. Wong, “Phase-stable source of polarization-entangled photons using a polarization sagnac interferometer,” Phys. Rev. A73, 012316 (2006).
[CrossRef]

A. Gallivanoni, I. Rech, D. Resnati, M. Ghioni, and S. Cova, “Monolithic active quenching and picosecond timing circuit suitable for large-area single-photon avalanche diodes,” Opt. Express14, 5021–5030 (2006).
[CrossRef] [PubMed]

J. F. Hodelin, G. Khoury, and D. Bouwmeester, “Optimal generation of pulsed entangled photon pairs,” Phys. Rev. A74, 013802 (2006).
[CrossRef]

2005 (2)

D. Ljunggren and M. Tengner, “Optimal focusing for maximal collection of entangled narrow-band photon pairs into single-mode fibers,” Phys. Rev. A72, 062301 (2005).
[CrossRef]

J. Altepeter, E. Jeffrey, and P. Kwiat, “Phase-compensated ultra-bright source of entangled photons,” Opt. Express13, 8951–8959 (2005).
[CrossRef] [PubMed]

2004 (4)

C. E. Kuklewicz, M. Fiorentino, G. Messin, F. N. C. Wong, and J. H. Shapiro, “High-flux source of polarization-entangled photons from a periodically poled ktiopo4 parametric down-converter,” Phys. Rev. A69, 013807 (2004).
[CrossRef]

M. Fiorentino, G. Messin, C. E. Kuklewicz, F. N. C. Wong, and J. H. Shapiro, “Generation of ultrabright tunable polarization entanglement without spatial, spectral, or temporal constraints,” Phys. Rev. A69, 041801 (2004).
[CrossRef]

B.-S. Shi and A. Tomita, “Generation of a pulsed polarization entangled photon pair using a sagnac interferometer,” Phys. Rev. A69, 013803 (2004).
[CrossRef]

B.-S. Shi and A. Tomita, “Preparation of a pulsed polarization entangled photon pair via interference,” Optics Communications235, 247–252 (2004).
[CrossRef]

2003 (2)

S. Emanueli and A. Arie, “Temperature-dependent dispersion equations for ktiopo4 and ktioaso4,” Appl. Opt.42, 6661–6665 (2003).
[CrossRef] [PubMed]

M. Barbieri, F. De Martini, G. Di Nepi, P. Mataloni, G. M. D’Ariano, and C. Macchiavello, “Detection of entanglement with polarized photons: Experimental realization of an entanglement witness,” Phys. Rev. Lett.91, 227901 (2003).
[CrossRef] [PubMed]

2002 (1)

Y. Nambu, K. Usami, Y. Tsuda, K. Matsumoto, and K. Nakamura, “Generation of polarization-entangled photon pairs in a cascade of two type-i crystals pumped by femtosecond pulses,” Phys. Rev. A66, 033816 (2002).
[CrossRef]

2001 (2)

Y.-H. Kim, M. V. Chekhova, S. P. Kulik, M. H. Rubin, and Y. Shih, “Interferometric bell-state preparation using femtosecond-pulse-pumped spontaneous parametric down-conversion,” Phys. Rev. A63, 062301 (2001).
[CrossRef]

W. Tittel and G. Weihs, “Photonic entanglement for fundamental tests and quantum communication,” Quantum Inf. and Comp.1, 3–56 (2001).

1999 (1)

P. G. Kwiat, E. Waks, A. G. White, I. Appelbaum, and P. H. Eberhard, “Ultrabright source of polarization-entangled photons,” Phys. Rev. A60, R773–R776 (1999).
[CrossRef]

1995 (1)

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett.75, 4337–4341 (1995).
[CrossRef] [PubMed]

1993 (1)

Alibart, O.

S. Tanzilli, A. Martin, F. Kaiser, M. De Micheli, O. Alibart, and D. Ostrowsky, “On the genesis and evolution of integrated quantum optics,” Laser Photon. Rev.6, 115–143 (2012).
[CrossRef]

Altepeter, J.

Appelbaum, I.

P. G. Kwiat, E. Waks, A. G. White, I. Appelbaum, and P. H. Eberhard, “Ultrabright source of polarization-entangled photons,” Phys. Rev. A60, R773–R776 (1999).
[CrossRef]

Arie, A.

Barbieri, M.

T. Jennewein, M. Barbieri, and A. G. White, “Single-photon device requirements for operating linear optics quantum computing outside the post-selection basis,” J. Mod. Opt.58, 276–287 (2011).
[CrossRef]

M. Barbieri, F. De Martini, G. Di Nepi, P. Mataloni, G. M. D’Ariano, and C. Macchiavello, “Detection of entanglement with polarized photons: Experimental realization of an entanglement witness,” Phys. Rev. Lett.91, 227901 (2003).
[CrossRef] [PubMed]

Beausoleil, R. G.

Bennink, R. S.

R. S. Bennink, “Optimal collinear gaussian beams for spontaneous parametric down-conversion,” Phys. Rev. A81, 053805 (2010).
[CrossRef]

Beyer, J.

Bouwmeester, D.

J. F. Hodelin, G. Khoury, and D. Bouwmeester, “Optimal generation of pulsed entangled photon pairs,” Phys. Rev. A74, 013802 (2006).
[CrossRef]

Calkins, B.

Chekhova, M. V.

Y.-H. Kim, M. V. Chekhova, S. P. Kulik, M. H. Rubin, and Y. Shih, “Interferometric bell-state preparation using femtosecond-pulse-pumped spontaneous parametric down-conversion,” Phys. Rev. A63, 062301 (2001).
[CrossRef]

Cova, S.

Currin, K. M.

D’Ariano, G. M.

M. Barbieri, F. De Martini, G. Di Nepi, P. Mataloni, G. M. D’Ariano, and C. Macchiavello, “Detection of entanglement with polarized photons: Experimental realization of an entanglement witness,” Phys. Rev. Lett.91, 227901 (2003).
[CrossRef] [PubMed]

De Martini, F.

M. Barbieri, F. De Martini, G. Di Nepi, P. Mataloni, G. M. D’Ariano, and C. Macchiavello, “Detection of entanglement with polarized photons: Experimental realization of an entanglement witness,” Phys. Rev. Lett.91, 227901 (2003).
[CrossRef] [PubMed]

De Micheli, M.

S. Tanzilli, A. Martin, F. Kaiser, M. De Micheli, O. Alibart, and D. Ostrowsky, “On the genesis and evolution of integrated quantum optics,” Laser Photon. Rev.6, 115–143 (2012).
[CrossRef]

Di Nepi, G.

M. Barbieri, F. De Martini, G. Di Nepi, P. Mataloni, G. M. D’Ariano, and C. Macchiavello, “Detection of entanglement with polarized photons: Experimental realization of an entanglement witness,” Phys. Rev. Lett.91, 227901 (2003).
[CrossRef] [PubMed]

Eberhard, P. H.

P. G. Kwiat, E. Waks, A. G. White, I. Appelbaum, and P. H. Eberhard, “Ultrabright source of polarization-entangled photons,” Phys. Rev. A60, R773–R776 (1999).
[CrossRef]

Emanueli, S.

Fedrizzi, A.

Fiorentino, M.

M. Fiorentino and R. G. Beausoleil, “Compact sources of polarization-entangled photons,” Opt. Express16, 20149–20156 (2008).
[CrossRef] [PubMed]

T. Kim, M. Fiorentino, and F. N. C. Wong, “Phase-stable source of polarization-entangled photons using a polarization sagnac interferometer,” Phys. Rev. A73, 012316 (2006).
[CrossRef]

C. E. Kuklewicz, M. Fiorentino, G. Messin, F. N. C. Wong, and J. H. Shapiro, “High-flux source of polarization-entangled photons from a periodically poled ktiopo4 parametric down-converter,” Phys. Rev. A69, 013807 (2004).
[CrossRef]

M. Fiorentino, G. Messin, C. E. Kuklewicz, F. N. C. Wong, and J. H. Shapiro, “Generation of ultrabright tunable polarization entanglement without spatial, spectral, or temporal constraints,” Phys. Rev. A69, 041801 (2004).
[CrossRef]

Fukui, T.

Furusawa, A.

J. L. O’Brien, A. Furusawa, and J. Vucovic, “Photonic quantum technologies,” Nat. Photonics3, 687–695 (2009).
[CrossRef]

Gallivanoni, A.

Gerrits, T.

Ghioni, M.

Giustina, M.

Goggin, M.

Grabher, S.

Gröblacher, S.

Gühne, O.

O. Gühne and G. Toth, “Entanglement detection,” Phys. Rep.474, 1–75 (2009).
[CrossRef]

Hendrych, M.

Herbst, T.

Hodelin, J. F.

J. F. Hodelin, G. Khoury, and D. Bouwmeester, “Optimal generation of pulsed entangled photon pairs,” Phys. Rev. A74, 013802 (2006).
[CrossRef]

Jeffrey, E.

Jennewein, T.

Jofre, M.

Kaiser, F.

S. Tanzilli, A. Martin, F. Kaiser, M. De Micheli, O. Alibart, and D. Ostrowsky, “On the genesis and evolution of integrated quantum optics,” Laser Photon. Rev.6, 115–143 (2012).
[CrossRef]

Khoury, G.

J. F. Hodelin, G. Khoury, and D. Bouwmeester, “Optimal generation of pulsed entangled photon pairs,” Phys. Rev. A74, 013802 (2006).
[CrossRef]

Kim, T.

T. Kim, M. Fiorentino, and F. N. C. Wong, “Phase-stable source of polarization-entangled photons using a polarization sagnac interferometer,” Phys. Rev. A73, 012316 (2006).
[CrossRef]

Kim, Y.-H.

Y.-H. Kim, M. V. Chekhova, S. P. Kulik, M. H. Rubin, and Y. Shih, “Interferometric bell-state preparation using femtosecond-pulse-pumped spontaneous parametric down-conversion,” Phys. Rev. A63, 062301 (2001).
[CrossRef]

Kubota, S.

Kuklewicz, C. E.

M. Fiorentino, G. Messin, C. E. Kuklewicz, F. N. C. Wong, and J. H. Shapiro, “Generation of ultrabright tunable polarization entanglement without spatial, spectral, or temporal constraints,” Phys. Rev. A69, 041801 (2004).
[CrossRef]

C. E. Kuklewicz, M. Fiorentino, G. Messin, F. N. C. Wong, and J. H. Shapiro, “High-flux source of polarization-entangled photons from a periodically poled ktiopo4 parametric down-converter,” Phys. Rev. A69, 013807 (2004).
[CrossRef]

Kulik, S. P.

Y.-H. Kim, M. V. Chekhova, S. P. Kulik, M. H. Rubin, and Y. Shih, “Interferometric bell-state preparation using femtosecond-pulse-pumped spontaneous parametric down-conversion,” Phys. Rev. A63, 062301 (2001).
[CrossRef]

Kwiat, P.

Kwiat, P. G.

P. G. Kwiat, E. Waks, A. G. White, I. Appelbaum, and P. H. Eberhard, “Ultrabright source of polarization-entangled photons,” Phys. Rev. A60, R773–R776 (1999).
[CrossRef]

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett.75, 4337–4341 (1995).
[CrossRef] [PubMed]

Lee, J. J.

León-Montiel, R. de J.

Lita, A.

Ljunggren, D.

D. Ljunggren and M. Tengner, “Optimal focusing for maximal collection of entangled narrow-band photon pairs into single-mode fibers,” Phys. Rev. A72, 062301 (2005).
[CrossRef]

Macchiavello, C.

M. Barbieri, F. De Martini, G. Di Nepi, P. Mataloni, G. M. D’Ariano, and C. Macchiavello, “Detection of entanglement with polarized photons: Experimental realization of an entanglement witness,” Phys. Rev. Lett.91, 227901 (2003).
[CrossRef] [PubMed]

Martin, A.

S. Tanzilli, A. Martin, F. Kaiser, M. De Micheli, O. Alibart, and D. Ostrowsky, “On the genesis and evolution of integrated quantum optics,” Laser Photon. Rev.6, 115–143 (2012).
[CrossRef]

Masuda, H.

Mataloni, P.

M. Barbieri, F. De Martini, G. Di Nepi, P. Mataloni, G. M. D’Ariano, and C. Macchiavello, “Detection of entanglement with polarized photons: Experimental realization of an entanglement witness,” Phys. Rev. Lett.91, 227901 (2003).
[CrossRef] [PubMed]

Matsumoto, K.

Y. Nambu, K. Usami, Y. Tsuda, K. Matsumoto, and K. Nakamura, “Generation of polarization-entangled photon pairs in a cascade of two type-i crystals pumped by femtosecond pulses,” Phys. Rev. A66, 033816 (2002).
[CrossRef]

Mattle, K.

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett.75, 4337–4341 (1995).
[CrossRef] [PubMed]

Mech, A.

Messin, G.

C. E. Kuklewicz, M. Fiorentino, G. Messin, F. N. C. Wong, and J. H. Shapiro, “High-flux source of polarization-entangled photons from a periodically poled ktiopo4 parametric down-converter,” Phys. Rev. A69, 013807 (2004).
[CrossRef]

M. Fiorentino, G. Messin, C. E. Kuklewicz, F. N. C. Wong, and J. H. Shapiro, “Generation of ultrabright tunable polarization entanglement without spatial, spectral, or temporal constraints,” Phys. Rev. A69, 041801 (2004).
[CrossRef]

Mitchell, M. W.

Nakamura, K.

Y. Nambu, K. Usami, Y. Tsuda, K. Matsumoto, and K. Nakamura, “Generation of polarization-entangled photon pairs in a cascade of two type-i crystals pumped by femtosecond pulses,” Phys. Rev. A66, 033816 (2002).
[CrossRef]

Nam, S. W.

Nambu, Y.

Y. Nambu, K. Usami, Y. Tsuda, K. Matsumoto, and K. Nakamura, “Generation of polarization-entangled photon pairs in a cascade of two type-i crystals pumped by femtosecond pulses,” Phys. Rev. A66, 033816 (2002).
[CrossRef]

Northridge, J. M.

O’Brien, J. L.

J. L. O’Brien, A. Furusawa, and J. Vucovic, “Photonic quantum technologies,” Nat. Photonics3, 687–695 (2009).
[CrossRef]

Ostrowsky, D.

S. Tanzilli, A. Martin, F. Kaiser, M. De Micheli, O. Alibart, and D. Ostrowsky, “On the genesis and evolution of integrated quantum optics,” Laser Photon. Rev.6, 115–143 (2012).
[CrossRef]

Palacios, S.

Perez, D.

Perlov, D.

Poppe, A.

Predojevic, A.

Pruneri, V.

Ramelow, S.

Rangarajan, R.

Rarity, J.

Rech, I.

Resnati, D.

Rubin, M. H.

Y.-H. Kim, M. V. Chekhova, S. P. Kulik, M. H. Rubin, and Y. Shih, “Interferometric bell-state preparation using femtosecond-pulse-pumped spontaneous parametric down-conversion,” Phys. Rev. A63, 062301 (2001).
[CrossRef]

Sergienko, A. V.

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett.75, 4337–4341 (1995).
[CrossRef] [PubMed]

Shapiro, J. H.

C. E. Kuklewicz, M. Fiorentino, G. Messin, F. N. C. Wong, and J. H. Shapiro, “High-flux source of polarization-entangled photons from a periodically poled ktiopo4 parametric down-converter,” Phys. Rev. A69, 013807 (2004).
[CrossRef]

M. Fiorentino, G. Messin, C. E. Kuklewicz, F. N. C. Wong, and J. H. Shapiro, “Generation of ultrabright tunable polarization entanglement without spatial, spectral, or temporal constraints,” Phys. Rev. A69, 041801 (2004).
[CrossRef]

Shi, B.-S.

B.-S. Shi and A. Tomita, “Generation of a pulsed polarization entangled photon pair using a sagnac interferometer,” Phys. Rev. A69, 013803 (2004).
[CrossRef]

B.-S. Shi and A. Tomita, “Preparation of a pulsed polarization entangled photon pair via interference,” Optics Communications235, 247–252 (2004).
[CrossRef]

Shih, Y.

Y.-H. Kim, M. V. Chekhova, S. P. Kulik, M. H. Rubin, and Y. Shih, “Interferometric bell-state preparation using femtosecond-pulse-pumped spontaneous parametric down-conversion,” Phys. Rev. A63, 062301 (2001).
[CrossRef]

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett.75, 4337–4341 (1995).
[CrossRef] [PubMed]

Shimizu, K.

H. Takesue and K. Shimizu, “Effects of multiple pairs on visibility measurements of entangled photons generated by spontaneous parametric processes,” Opt. Commun.283, 276–287 (2010).
[CrossRef]

Steinlechner, F.

Takesue, H.

H. Takesue and K. Shimizu, “Effects of multiple pairs on visibility measurements of entangled photons generated by spontaneous parametric processes,” Opt. Commun.283, 276–287 (2010).
[CrossRef]

Tanzilli, S.

S. Tanzilli, A. Martin, F. Kaiser, M. De Micheli, O. Alibart, and D. Ostrowsky, “On the genesis and evolution of integrated quantum optics,” Laser Photon. Rev.6, 115–143 (2012).
[CrossRef]

Tengner, M.

D. Ljunggren and M. Tengner, “Optimal focusing for maximal collection of entangled narrow-band photon pairs into single-mode fibers,” Phys. Rev. A72, 062301 (2005).
[CrossRef]

Tittel, W.

W. Tittel and G. Weihs, “Photonic entanglement for fundamental tests and quantum communication,” Quantum Inf. and Comp.1, 3–56 (2001).

Tomita, A.

B.-S. Shi and A. Tomita, “Generation of a pulsed polarization entangled photon pair using a sagnac interferometer,” Phys. Rev. A69, 013803 (2004).
[CrossRef]

B.-S. Shi and A. Tomita, “Preparation of a pulsed polarization entangled photon pair via interference,” Optics Communications235, 247–252 (2004).
[CrossRef]

Torres, J. P.

Toth, G.

O. Gühne and G. Toth, “Entanglement detection,” Phys. Rep.474, 1–75 (2009).
[CrossRef]

Trojek, P.

F. Steinlechner, P. Trojek, M. Jofre, H. Weier, D. Perez, T. Jennewein, R. Ursin, J. Rarity, M. W. Mitchell, J. P. Torres, H. Weinfurter, and V. Pruneri, “A high-brightness source of polarization-entangled photons optimized for applications in free space,” Opt. Express20, 9640–9649 (2012).
[CrossRef] [PubMed]

P. Trojek and H. Weinfurter, “Collinear source of polarization-entangled photon pairs at nondegenerate wavelengths,” Appl. Phys. Lett.92, 211103 (2008).
[CrossRef]

P. Trojek, “Efficient generation of photonic entanglement and multiparty quantum communication,” Ph.D. thesis, LMU-Munich (2007).

Tsuda, Y.

Y. Nambu, K. Usami, Y. Tsuda, K. Matsumoto, and K. Nakamura, “Generation of polarization-entangled photon pairs in a cascade of two type-i crystals pumped by femtosecond pulses,” Phys. Rev. A66, 033816 (2002).
[CrossRef]

Ursin, R.

Usami, K.

Y. Nambu, K. Usami, Y. Tsuda, K. Matsumoto, and K. Nakamura, “Generation of polarization-entangled photon pairs in a cascade of two type-i crystals pumped by femtosecond pulses,” Phys. Rev. A66, 033816 (2002).
[CrossRef]

Valencia, A.

Vucovic, J.

J. L. O’Brien, A. Furusawa, and J. Vucovic, “Photonic quantum technologies,” Nat. Photonics3, 687–695 (2009).
[CrossRef]

Waks, E.

P. G. Kwiat, E. Waks, A. G. White, I. Appelbaum, and P. H. Eberhard, “Ultrabright source of polarization-entangled photons,” Phys. Rev. A60, R773–R776 (1999).
[CrossRef]

Weier, H.

Weihs, G.

A. Predojević, S. Grabher, and G. Weihs, “Pulsed sagnac source of polarization entangled photon pairs,” Opt. Express20, 25022–25029 (2012).
[CrossRef]

W. Tittel and G. Weihs, “Photonic entanglement for fundamental tests and quantum communication,” Quantum Inf. and Comp.1, 3–56 (2001).

Weinfurter, H.

F. Steinlechner, P. Trojek, M. Jofre, H. Weier, D. Perez, T. Jennewein, R. Ursin, J. Rarity, M. W. Mitchell, J. P. Torres, H. Weinfurter, and V. Pruneri, “A high-brightness source of polarization-entangled photons optimized for applications in free space,” Opt. Express20, 9640–9649 (2012).
[CrossRef] [PubMed]

P. Trojek and H. Weinfurter, “Collinear source of polarization-entangled photon pairs at nondegenerate wavelengths,” Appl. Phys. Lett.92, 211103 (2008).
[CrossRef]

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett.75, 4337–4341 (1995).
[CrossRef] [PubMed]

White, A. G.

T. Jennewein, M. Barbieri, and A. G. White, “Single-photon device requirements for operating linear optics quantum computing outside the post-selection basis,” J. Mod. Opt.58, 276–287 (2011).
[CrossRef]

P. G. Kwiat, E. Waks, A. G. White, I. Appelbaum, and P. H. Eberhard, “Ultrabright source of polarization-entangled photons,” Phys. Rev. A60, R773–R776 (1999).
[CrossRef]

Wiechmann, W.

Wieczorek, W.

Wong, F. N. C.

T. Kim, M. Fiorentino, and F. N. C. Wong, “Phase-stable source of polarization-entangled photons using a polarization sagnac interferometer,” Phys. Rev. A73, 012316 (2006).
[CrossRef]

C. E. Kuklewicz, M. Fiorentino, G. Messin, F. N. C. Wong, and J. H. Shapiro, “High-flux source of polarization-entangled photons from a periodically poled ktiopo4 parametric down-converter,” Phys. Rev. A69, 013807 (2004).
[CrossRef]

M. Fiorentino, G. Messin, C. E. Kuklewicz, F. N. C. Wong, and J. H. Shapiro, “Generation of ultrabright tunable polarization entanglement without spatial, spectral, or temporal constraints,” Phys. Rev. A69, 041801 (2004).
[CrossRef]

Zeilinger, A.

Zelmon, D. E.

Appl. Opt. (2)

Appl. Phys. Lett. (1)

P. Trojek and H. Weinfurter, “Collinear source of polarization-entangled photon pairs at nondegenerate wavelengths,” Appl. Phys. Lett.92, 211103 (2008).
[CrossRef]

J. Mod. Opt. (1)

T. Jennewein, M. Barbieri, and A. G. White, “Single-photon device requirements for operating linear optics quantum computing outside the post-selection basis,” J. Mod. Opt.58, 276–287 (2011).
[CrossRef]

Laser Photon. Rev. (1)

S. Tanzilli, A. Martin, F. Kaiser, M. De Micheli, O. Alibart, and D. Ostrowsky, “On the genesis and evolution of integrated quantum optics,” Laser Photon. Rev.6, 115–143 (2012).
[CrossRef]

Nat. Photonics (1)

J. L. O’Brien, A. Furusawa, and J. Vucovic, “Photonic quantum technologies,” Nat. Photonics3, 687–695 (2009).
[CrossRef]

Opt. Commun. (1)

H. Takesue and K. Shimizu, “Effects of multiple pairs on visibility measurements of entangled photons generated by spontaneous parametric processes,” Opt. Commun.283, 276–287 (2010).
[CrossRef]

Opt. Express (9)

S. Ramelow, A. Mech, M. Giustina, S. Gröblacher, W. Wieczorek, J. Beyer, A. Lita, B. Calkins, T. Gerrits, S. W. Nam, A. Zeilinger, and R. Ursin, “Highly efficient heralding of entangled single photons,” Opt. Express21, 6707–6717 (2013).
[CrossRef] [PubMed]

S. Palacios, R. de J. León-Montiel, M. Hendrych, A. Valencia, and J. P. Torres, “Flux enhancement of photons entangled in orbital angular momentum,” Opt. Express19, 14108–14120 (2011).
[CrossRef] [PubMed]

A. Gallivanoni, I. Rech, D. Resnati, M. Ghioni, and S. Cova, “Monolithic active quenching and picosecond timing circuit suitable for large-area single-photon avalanche diodes,” Opt. Express14, 5021–5030 (2006).
[CrossRef] [PubMed]

M. Fiorentino and R. G. Beausoleil, “Compact sources of polarization-entangled photons,” Opt. Express16, 20149–20156 (2008).
[CrossRef] [PubMed]

A. Predojević, S. Grabher, and G. Weihs, “Pulsed sagnac source of polarization entangled photon pairs,” Opt. Express20, 25022–25029 (2012).
[CrossRef]

R. Rangarajan, M. Goggin, and P. Kwiat, “Optimizing type-i polarization-entangled photons,” Opt. Express17, 18920–18933 (2009).
[CrossRef]

A. Fedrizzi, T. Herbst, A. Poppe, T. Jennewein, and A. Zeilinger, “A wavelength-tunable fiber-coupled source of narrowband entangled photons,” Opt. Express15, 15377–15386 (2007).
[CrossRef] [PubMed]

J. Altepeter, E. Jeffrey, and P. Kwiat, “Phase-compensated ultra-bright source of entangled photons,” Opt. Express13, 8951–8959 (2005).
[CrossRef] [PubMed]

F. Steinlechner, P. Trojek, M. Jofre, H. Weier, D. Perez, T. Jennewein, R. Ursin, J. Rarity, M. W. Mitchell, J. P. Torres, H. Weinfurter, and V. Pruneri, “A high-brightness source of polarization-entangled photons optimized for applications in free space,” Opt. Express20, 9640–9649 (2012).
[CrossRef] [PubMed]

Opt. Lett. (1)

Optics Communications (1)

B.-S. Shi and A. Tomita, “Preparation of a pulsed polarization entangled photon pair via interference,” Optics Communications235, 247–252 (2004).
[CrossRef]

Phys. Rep. (1)

O. Gühne and G. Toth, “Entanglement detection,” Phys. Rep.474, 1–75 (2009).
[CrossRef]

Phys. Rev. A (10)

D. Ljunggren and M. Tengner, “Optimal focusing for maximal collection of entangled narrow-band photon pairs into single-mode fibers,” Phys. Rev. A72, 062301 (2005).
[CrossRef]

R. S. Bennink, “Optimal collinear gaussian beams for spontaneous parametric down-conversion,” Phys. Rev. A81, 053805 (2010).
[CrossRef]

Y. Nambu, K. Usami, Y. Tsuda, K. Matsumoto, and K. Nakamura, “Generation of polarization-entangled photon pairs in a cascade of two type-i crystals pumped by femtosecond pulses,” Phys. Rev. A66, 033816 (2002).
[CrossRef]

J. F. Hodelin, G. Khoury, and D. Bouwmeester, “Optimal generation of pulsed entangled photon pairs,” Phys. Rev. A74, 013802 (2006).
[CrossRef]

P. G. Kwiat, E. Waks, A. G. White, I. Appelbaum, and P. H. Eberhard, “Ultrabright source of polarization-entangled photons,” Phys. Rev. A60, R773–R776 (1999).
[CrossRef]

Y.-H. Kim, M. V. Chekhova, S. P. Kulik, M. H. Rubin, and Y. Shih, “Interferometric bell-state preparation using femtosecond-pulse-pumped spontaneous parametric down-conversion,” Phys. Rev. A63, 062301 (2001).
[CrossRef]

C. E. Kuklewicz, M. Fiorentino, G. Messin, F. N. C. Wong, and J. H. Shapiro, “High-flux source of polarization-entangled photons from a periodically poled ktiopo4 parametric down-converter,” Phys. Rev. A69, 013807 (2004).
[CrossRef]

M. Fiorentino, G. Messin, C. E. Kuklewicz, F. N. C. Wong, and J. H. Shapiro, “Generation of ultrabright tunable polarization entanglement without spatial, spectral, or temporal constraints,” Phys. Rev. A69, 041801 (2004).
[CrossRef]

B.-S. Shi and A. Tomita, “Generation of a pulsed polarization entangled photon pair using a sagnac interferometer,” Phys. Rev. A69, 013803 (2004).
[CrossRef]

T. Kim, M. Fiorentino, and F. N. C. Wong, “Phase-stable source of polarization-entangled photons using a polarization sagnac interferometer,” Phys. Rev. A73, 012316 (2006).
[CrossRef]

Phys. Rev. Lett. (2)

M. Barbieri, F. De Martini, G. Di Nepi, P. Mataloni, G. M. D’Ariano, and C. Macchiavello, “Detection of entanglement with polarized photons: Experimental realization of an entanglement witness,” Phys. Rev. Lett.91, 227901 (2003).
[CrossRef] [PubMed]

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett.75, 4337–4341 (1995).
[CrossRef] [PubMed]

Quantum Inf. and Comp. (1)

W. Tittel and G. Weihs, “Photonic entanglement for fundamental tests and quantum communication,” Quantum Inf. and Comp.1, 3–56 (2001).

Other (2)

T. Jennewein, “T. toolbox for quantum photonics in matlab. http://info.iqc.ca/qpl/ (accessed june 1, 2010).”.

P. Trojek, “Efficient generation of photonic entanglement and multiparty quantum communication,” Ph.D. thesis, LMU-Munich (2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

The principle of operation can be understood as a ‘sandwich’ configuration, in which - instead of using a second orthogonally oriented crystal - the SPDC from a single nonlinear crystal (NLC) is transformed to the orthogonal polarization (i.e. ‘folded sandwich’).

Fig. 2
Fig. 2

(Left:) Strong wavelength-dependent phase variations (constant offset subtracted) between down-converted photons generated in the first- and second pass through the nonlinear crystal, due to chromatic dispersion in ppKTP and the wave plate. (Right:) Flattened phase variations over a broad spectral range after compensation with YVO4 crystal. Note the difference in scale between both figures.

Fig. 3
Fig. 3

Experimental realization of the ‘folded sandwich’ source of polarization-entangled photons. For details refer to main text.

Fig. 4
Fig. 4

(Left:) Coincidence counts per second, as a function of polarizer orientation θA in the signal arm, for θB=0° (blue), 90° (yellow), 45° (red), and −45° (green). Square: experimental data, line: best fit. (Right:) Coincidence counts under angle-setting θA=45°, θB = −45°, as the relative phase ϕ is modified by temperature-tuning YVO4 compensation crystal.

Fig. 5
Fig. 5

Total rate of coincidences and raw state-fidelity, as a function of pump power. All experimental data (squares) was acquired with polarizers in place (T ∼0.9). The two-fold-rate was obtained by summing the coincidence-detections Cij over all polarizer positions in the H/V basis (∑ij=H/VCij). The simulations were conducted for a coincidence window of 3.2ns (solid lines), as used in the experimental setup, as well as 500ps (dashed lines).

Fig. 6
Fig. 6

(left:) Bell-state fidelity over time, under laboratory conditions. (right:) Bell-state fidelity as the cavity length is increased, via displacement of mirror M.

Tables (1)

Tables Icon

Table 1 State-of-the-art sources of polarization-entangled photons, based on bulk SPDC in the near infrared region. The key performance characteristics are the detected pair-rate per mW of incident pump power (B), the full width at half maximum bandwidth (FWHM) of the generated photons (Δλ), the resulting spectral brightness (Bλ =B(λ)) in pairs per mW per nm, and the Bell-state fidelity (F) achieved in the respective set-up. Ref. [14, 15] correspond to pulsed sources. For a comprehensive comparison of sources until 2007, see Refs. [16, 17]. To our knowledge, the highest total (un-normalized) pair-rate of 1.1 Mcps (F∼0.97), was observed in [18] for a pump power of 280 mW.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

| Ψ ( ϕ ) = 1 2 ( | V λ s V λ i + e i ϕ ( λ s λ i ) | H λ s H λ i )
ϕ ( λ s , λ i ) = ϕ p V + ϕ s H + ϕ i H ( ϕ s V + ϕ i V ) = ϕ p V + 2 π L ( n y ( λ i ) λ i + n y ( λ s ) λ s ) + 2 ϕ q w p ( λ s , λ i ) .
ϕ C ( λ s , λ i ) = 2 π × L Y V O [ n ( o ) ( λ s ) λ s + n ( o ) ( λ i ) λ i ( n ( e ) ( λ s ) λ s + n ( e ) ( λ i ) λ i ) ]

Metrics