Abstract

We present a general discussion about the fundamental physical principles involved in a novel class of optical superlenses that permit to realize in the far-field direct non-scanning images with subwavelength resolution. Described superlenses are based in the illumination of the object under observation with surface waves excited by fluorescence, the enhanced transmission of fluorescence via coupling with surface waves, and the occurrence of far-field coherence-related fluorescence diffraction phenomena. A Fourier optics description of the image formation based on illumination with surface waves is presented, and several recent experimental realizations of this technique are discussed. Our theoretical approach explains why images with subwavelength resolution can be formed directly in the microscope camera, without involving scanning or numerical post-processing. While resolution of the order of λ/7 has been demonstrated using the described approach, we anticipate that deeper optical subwavelength resolution should be expected.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Durant, Z. Liu, J. M. Steele, and X. Zhang, “Theory of the transmission properties of an optical far-field superlens for imaging beyond the diffraction limit,” J. Opt. Soc. Am. B23(11), 2383–2392 (2006).
    [CrossRef]
  2. E. Hetcht, Optics, 3rd edition (Addison Wesley, 1998).
  3. M. Born and E. Wolf, Priciples of Optics, 5th edition (Pergamon Press, 1975).
  4. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett.85(18), 3966–3969 (2000).
    [CrossRef] [PubMed]
  5. D. O. S. Melville, R. J. Blaikie, and C. R. Wolf, “Submicron imaging with a planar silver lens,” Appl. Phys. Lett.84(22), 4403–4405 (2004).
    [CrossRef]
  6. W. Srituravanich, N. Fang, C. Sun, Q. Luo, and X. Zhang, “Plasmonic Nanolithography,” Nano Lett.4(6), 1085–1088 (2004).
    [CrossRef]
  7. O. E. Gawhary, N. J. Schilder, A. C. Assafrao, S. F. Pereira, and H. P. Urbach, “Restoration of s-polarized evanescen waves and subwavelength imaging by a single dielectric slab,” New J. Phys.14(5), 053025 (2012).
    [CrossRef]
  8. Y. Zhang, C. Arnold, P. Offermans, and J. Rivas, “Surface wave sensors based on nanometric layers of strongly absorbing materials,” Opt. Express20(9), 9431–9441 (2012).
    [CrossRef] [PubMed]
  9. Z. Liu, S. Durant, H. Lee, Y. Pikus, N. Fang, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical superlens,” Nano Lett.7(2), 403–408 (2007).
    [CrossRef] [PubMed]
  10. Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science315(5819), 1686 (2007).
    [CrossRef] [PubMed]
  11. X. Zhang and Z. Liu, “Superlenses to overcome the diffraction limit,” Nat. Mater.7(6), 435–441 (2008).
    [CrossRef] [PubMed]
  12. R. Rodriguez, C. J. Regan, A. Ruiz-Columbié, W. Agutu, A. A. Bernussi, and L. Grave de Peralta, “Study of plasmonic crystals using Fourier-plane images obtained with plasmon tomography far-field superlenses,” J. Appl. Phys.110(8), 083109 (2011).
    [CrossRef]
  13. C. J. Regan, R. Rodriguez, S. C. Gourshetty, L. Grave de Peralta, and A. A. Bernussi, “Imaging nanoscale features with plasmon-coupled leakage radiation far-field superlenses,” Opt. Express20(19), 20827–20834 (2012).
    [CrossRef] [PubMed]
  14. N. Garcia and M. Nieto-Vesperinas, “Left-handed materials do not make a perfect lens,” Phys. Rev. Lett.88(20), 207403 (2002).
    [CrossRef] [PubMed]
  15. C. J. Regan, D. Dominguez, A. A. Bernussi, and L. Grave de Peralta, “Far-field optical superlens without metal,” J. Appl. Phys. ((to be published).
  16. M. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1988).
  17. G. Christou and C. Mias, “Critique of optical negative refraction superlensing,” Plasmonics6(2), 307–309 (2011).
    [CrossRef]
  18. S. P. Frisbie, C. Chesnutt, M. E. Holtz, A. Krishnan, L. de Peralta, and A. A. Bernussi, “Image formation in wide-field microscopes based on leakage of surface plasmon-coupled fluorescence,” IEEE Photon. J.1(2), 153–162 (2009).
    [CrossRef]
  19. L. Grave de Peralta, C. J. Regan, and A. A. Bernussi, “SPP tomography: a simple wide-field nanoscope,” Scanningn/a (2012), doi:.
    [CrossRef] [PubMed]
  20. I. Gryczinski, J. Malicka, K. Nowaczyk, Z. Gryczynski, and J. Lacowicz, “Effects of sample thickness on the optical properties of surface plasmon-coupled emission,” J. Phys. Chem. B108(32), 12073–12083 (2004).
    [CrossRef]
  21. I. Gryczynski, J. Malicka, Z. Gryczynski, and J. R. Lakowicz, “Surface plasmon-coupled emission with gold films,” J. Phys. Chem. B108(33), 12568–12574 (2004).
    [CrossRef] [PubMed]
  22. F. Goos and H. Hänchen, “Ein neuer und fundamentaler versuch zur totalreflexion,” Ann. Phys.6(7-8), 333–346 (1947).
    [CrossRef]
  23. S. A. Taya, E. J. El-Farram, and T. M. El-Agez, “Goos-Hänchen shift as a probe in evanescent slab waveguides sensors,” Int. J. Electron. Commun.66(3), 204–210 (2012).
    [CrossRef]
  24. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1968).
  25. A. Drezet, A. Hohenau, D. Koller, A. Stepanov, H. Ditlbacher, B. Steinberger, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Leakage radiation microscopy of surface plasmon polaritons,” Mater. Sci. Eng. B149(3), 220–229 (2008).
    [CrossRef]
  26. L. Grave de Peralta, R. Lopez-Boada, A. Ruiz-Columbie, S. Park, and A. A. Bernussi, “Some consequences of experiments with a plasmonic quantum eraser for plasmon tomography,” J. Appl. Phys.109(2), 023101 (2011).
    [CrossRef]
  27. A. Houk, R. Lopez-Boada, A. Ruiz-Columbie, S. Park, A. A. Bernussi, and L. Grave de Peralta, “Erratum: some consequences of experiments with a plasmonic quantum eraser for plasmon tomography,” J. Appl. Phys.109(11), 119901 (2011).
    [CrossRef]
  28. J. J. Burke, G. I. Stegeman, and T. Tamir, “Surface-polariton-like waves guided by thin, lossy metal films,” Phys. Rev. B Condens. Matter33(8), 5186–5201 (1986).
    [CrossRef] [PubMed]
  29. Z. Liu, N. Fang, T. Yen, and X. Zhang, “Rapid growth of evanescent wave by silver superlens,” Appl. Phys. Lett.83(25), 5184–5186 (2003).
    [CrossRef]
  30. F. L. Pedrotti, L. S. Pedrotti, and L. M. Pedrotti, Introduction to Optics, 3rd Edition (Person Prentice Hall, 2007).
  31. B. Schumacher, Quantum mechanics: the Physics of the Microscopic World (The Teaching Company, 2009).
  32. E. J. Galvez, C. H. Holbrow, M. J. Pysher, J. W. Martin, N. Courtemanche, L. Heilig, and J. Spencer, “Interference with correlated photons: five quantum mechanics experiments for undergraduates,” Am. J. Phys.73(2), 127–140 (2005).
    [CrossRef]
  33. L. Grave de Peralta, “Phenomenological quantum description of the ultra fast response of arrayed waveguide gratings,” J. Appl. Phys.108(10), 103110 (2010).
    [CrossRef]
  34. Y. Chen, D. Zhang, L. Han, G. Rui, X. Wang, P. Wang, and H. Ming, “Surface-plasmon-coupled emission microscopy with a polarization converter,” Opt. Lett.38(5), 736–738 (2013).
    [CrossRef] [PubMed]
  35. W. T. Tang, E. Chung, Y. H. Kim, P. T. C. So, and C. J. Sheppard, “Surface-plasmon-coupled emission microscopy with a spiral phase plate,” Opt. Lett.35(4), 517–519 (2010).
    [CrossRef] [PubMed]
  36. C. J. Regan, O. Thiabgoh, L. Grave de Peralta, and A. A. Bernussi, “Probing photonic Bloch wavefunctions with plasmon-coupled leakage radiation,” Opt. Express20(8), 8658–8666 (2012).
    [CrossRef] [PubMed]
  37. C. J. Regan, L. Grave de Peralta, and A. A. Bernussi, “Equifrequency curve dispersion in dielectric-loaded plasmonic crystals,” J. Appl. Phys.111(7), 073105 (2012).
    [CrossRef]
  38. C. J. Regan, A. Krishnan, R. Lopez-Boada, L. Grave de Peralta, and A. A. Bernussi, “Direct observation of photonic Fermi surfaces by plasmon tomography,” Appl. Phys. Lett.98(15), 151113 (2011).
    [CrossRef]
  39. J. D. Joannopoulus, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light (Princeton University, 2008).

2013 (1)

2012 (6)

C. J. Regan, L. Grave de Peralta, and A. A. Bernussi, “Equifrequency curve dispersion in dielectric-loaded plasmonic crystals,” J. Appl. Phys.111(7), 073105 (2012).
[CrossRef]

C. J. Regan, O. Thiabgoh, L. Grave de Peralta, and A. A. Bernussi, “Probing photonic Bloch wavefunctions with plasmon-coupled leakage radiation,” Opt. Express20(8), 8658–8666 (2012).
[CrossRef] [PubMed]

Y. Zhang, C. Arnold, P. Offermans, and J. Rivas, “Surface wave sensors based on nanometric layers of strongly absorbing materials,” Opt. Express20(9), 9431–9441 (2012).
[CrossRef] [PubMed]

C. J. Regan, R. Rodriguez, S. C. Gourshetty, L. Grave de Peralta, and A. A. Bernussi, “Imaging nanoscale features with plasmon-coupled leakage radiation far-field superlenses,” Opt. Express20(19), 20827–20834 (2012).
[CrossRef] [PubMed]

O. E. Gawhary, N. J. Schilder, A. C. Assafrao, S. F. Pereira, and H. P. Urbach, “Restoration of s-polarized evanescen waves and subwavelength imaging by a single dielectric slab,” New J. Phys.14(5), 053025 (2012).
[CrossRef]

S. A. Taya, E. J. El-Farram, and T. M. El-Agez, “Goos-Hänchen shift as a probe in evanescent slab waveguides sensors,” Int. J. Electron. Commun.66(3), 204–210 (2012).
[CrossRef]

2011 (5)

L. Grave de Peralta, R. Lopez-Boada, A. Ruiz-Columbie, S. Park, and A. A. Bernussi, “Some consequences of experiments with a plasmonic quantum eraser for plasmon tomography,” J. Appl. Phys.109(2), 023101 (2011).
[CrossRef]

A. Houk, R. Lopez-Boada, A. Ruiz-Columbie, S. Park, A. A. Bernussi, and L. Grave de Peralta, “Erratum: some consequences of experiments with a plasmonic quantum eraser for plasmon tomography,” J. Appl. Phys.109(11), 119901 (2011).
[CrossRef]

G. Christou and C. Mias, “Critique of optical negative refraction superlensing,” Plasmonics6(2), 307–309 (2011).
[CrossRef]

R. Rodriguez, C. J. Regan, A. Ruiz-Columbié, W. Agutu, A. A. Bernussi, and L. Grave de Peralta, “Study of plasmonic crystals using Fourier-plane images obtained with plasmon tomography far-field superlenses,” J. Appl. Phys.110(8), 083109 (2011).
[CrossRef]

C. J. Regan, A. Krishnan, R. Lopez-Boada, L. Grave de Peralta, and A. A. Bernussi, “Direct observation of photonic Fermi surfaces by plasmon tomography,” Appl. Phys. Lett.98(15), 151113 (2011).
[CrossRef]

2010 (2)

L. Grave de Peralta, “Phenomenological quantum description of the ultra fast response of arrayed waveguide gratings,” J. Appl. Phys.108(10), 103110 (2010).
[CrossRef]

W. T. Tang, E. Chung, Y. H. Kim, P. T. C. So, and C. J. Sheppard, “Surface-plasmon-coupled emission microscopy with a spiral phase plate,” Opt. Lett.35(4), 517–519 (2010).
[CrossRef] [PubMed]

2009 (1)

S. P. Frisbie, C. Chesnutt, M. E. Holtz, A. Krishnan, L. de Peralta, and A. A. Bernussi, “Image formation in wide-field microscopes based on leakage of surface plasmon-coupled fluorescence,” IEEE Photon. J.1(2), 153–162 (2009).
[CrossRef]

2008 (2)

A. Drezet, A. Hohenau, D. Koller, A. Stepanov, H. Ditlbacher, B. Steinberger, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Leakage radiation microscopy of surface plasmon polaritons,” Mater. Sci. Eng. B149(3), 220–229 (2008).
[CrossRef]

X. Zhang and Z. Liu, “Superlenses to overcome the diffraction limit,” Nat. Mater.7(6), 435–441 (2008).
[CrossRef] [PubMed]

2007 (2)

Z. Liu, S. Durant, H. Lee, Y. Pikus, N. Fang, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical superlens,” Nano Lett.7(2), 403–408 (2007).
[CrossRef] [PubMed]

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science315(5819), 1686 (2007).
[CrossRef] [PubMed]

2006 (1)

2005 (1)

E. J. Galvez, C. H. Holbrow, M. J. Pysher, J. W. Martin, N. Courtemanche, L. Heilig, and J. Spencer, “Interference with correlated photons: five quantum mechanics experiments for undergraduates,” Am. J. Phys.73(2), 127–140 (2005).
[CrossRef]

2004 (4)

D. O. S. Melville, R. J. Blaikie, and C. R. Wolf, “Submicron imaging with a planar silver lens,” Appl. Phys. Lett.84(22), 4403–4405 (2004).
[CrossRef]

W. Srituravanich, N. Fang, C. Sun, Q. Luo, and X. Zhang, “Plasmonic Nanolithography,” Nano Lett.4(6), 1085–1088 (2004).
[CrossRef]

I. Gryczinski, J. Malicka, K. Nowaczyk, Z. Gryczynski, and J. Lacowicz, “Effects of sample thickness on the optical properties of surface plasmon-coupled emission,” J. Phys. Chem. B108(32), 12073–12083 (2004).
[CrossRef]

I. Gryczynski, J. Malicka, Z. Gryczynski, and J. R. Lakowicz, “Surface plasmon-coupled emission with gold films,” J. Phys. Chem. B108(33), 12568–12574 (2004).
[CrossRef] [PubMed]

2003 (1)

Z. Liu, N. Fang, T. Yen, and X. Zhang, “Rapid growth of evanescent wave by silver superlens,” Appl. Phys. Lett.83(25), 5184–5186 (2003).
[CrossRef]

2002 (1)

N. Garcia and M. Nieto-Vesperinas, “Left-handed materials do not make a perfect lens,” Phys. Rev. Lett.88(20), 207403 (2002).
[CrossRef] [PubMed]

2000 (1)

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett.85(18), 3966–3969 (2000).
[CrossRef] [PubMed]

1986 (1)

J. J. Burke, G. I. Stegeman, and T. Tamir, “Surface-polariton-like waves guided by thin, lossy metal films,” Phys. Rev. B Condens. Matter33(8), 5186–5201 (1986).
[CrossRef] [PubMed]

1947 (1)

F. Goos and H. Hänchen, “Ein neuer und fundamentaler versuch zur totalreflexion,” Ann. Phys.6(7-8), 333–346 (1947).
[CrossRef]

Agutu, W.

R. Rodriguez, C. J. Regan, A. Ruiz-Columbié, W. Agutu, A. A. Bernussi, and L. Grave de Peralta, “Study of plasmonic crystals using Fourier-plane images obtained with plasmon tomography far-field superlenses,” J. Appl. Phys.110(8), 083109 (2011).
[CrossRef]

Arnold, C.

Assafrao, A. C.

O. E. Gawhary, N. J. Schilder, A. C. Assafrao, S. F. Pereira, and H. P. Urbach, “Restoration of s-polarized evanescen waves and subwavelength imaging by a single dielectric slab,” New J. Phys.14(5), 053025 (2012).
[CrossRef]

Aussenegg, F. R.

A. Drezet, A. Hohenau, D. Koller, A. Stepanov, H. Ditlbacher, B. Steinberger, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Leakage radiation microscopy of surface plasmon polaritons,” Mater. Sci. Eng. B149(3), 220–229 (2008).
[CrossRef]

Bernussi, A. A.

L. Grave de Peralta, C. J. Regan, and A. A. Bernussi, “SPP tomography: a simple wide-field nanoscope,” Scanningn/a (2012), doi:.
[CrossRef] [PubMed]

C. J. Regan, O. Thiabgoh, L. Grave de Peralta, and A. A. Bernussi, “Probing photonic Bloch wavefunctions with plasmon-coupled leakage radiation,” Opt. Express20(8), 8658–8666 (2012).
[CrossRef] [PubMed]

C. J. Regan, L. Grave de Peralta, and A. A. Bernussi, “Equifrequency curve dispersion in dielectric-loaded plasmonic crystals,” J. Appl. Phys.111(7), 073105 (2012).
[CrossRef]

C. J. Regan, R. Rodriguez, S. C. Gourshetty, L. Grave de Peralta, and A. A. Bernussi, “Imaging nanoscale features with plasmon-coupled leakage radiation far-field superlenses,” Opt. Express20(19), 20827–20834 (2012).
[CrossRef] [PubMed]

C. J. Regan, A. Krishnan, R. Lopez-Boada, L. Grave de Peralta, and A. A. Bernussi, “Direct observation of photonic Fermi surfaces by plasmon tomography,” Appl. Phys. Lett.98(15), 151113 (2011).
[CrossRef]

L. Grave de Peralta, R. Lopez-Boada, A. Ruiz-Columbie, S. Park, and A. A. Bernussi, “Some consequences of experiments with a plasmonic quantum eraser for plasmon tomography,” J. Appl. Phys.109(2), 023101 (2011).
[CrossRef]

A. Houk, R. Lopez-Boada, A. Ruiz-Columbie, S. Park, A. A. Bernussi, and L. Grave de Peralta, “Erratum: some consequences of experiments with a plasmonic quantum eraser for plasmon tomography,” J. Appl. Phys.109(11), 119901 (2011).
[CrossRef]

R. Rodriguez, C. J. Regan, A. Ruiz-Columbié, W. Agutu, A. A. Bernussi, and L. Grave de Peralta, “Study of plasmonic crystals using Fourier-plane images obtained with plasmon tomography far-field superlenses,” J. Appl. Phys.110(8), 083109 (2011).
[CrossRef]

S. P. Frisbie, C. Chesnutt, M. E. Holtz, A. Krishnan, L. de Peralta, and A. A. Bernussi, “Image formation in wide-field microscopes based on leakage of surface plasmon-coupled fluorescence,” IEEE Photon. J.1(2), 153–162 (2009).
[CrossRef]

C. J. Regan, D. Dominguez, A. A. Bernussi, and L. Grave de Peralta, “Far-field optical superlens without metal,” J. Appl. Phys. ((to be published).

Blaikie, R. J.

D. O. S. Melville, R. J. Blaikie, and C. R. Wolf, “Submicron imaging with a planar silver lens,” Appl. Phys. Lett.84(22), 4403–4405 (2004).
[CrossRef]

Burke, J. J.

J. J. Burke, G. I. Stegeman, and T. Tamir, “Surface-polariton-like waves guided by thin, lossy metal films,” Phys. Rev. B Condens. Matter33(8), 5186–5201 (1986).
[CrossRef] [PubMed]

Chen, Y.

Chesnutt, C.

S. P. Frisbie, C. Chesnutt, M. E. Holtz, A. Krishnan, L. de Peralta, and A. A. Bernussi, “Image formation in wide-field microscopes based on leakage of surface plasmon-coupled fluorescence,” IEEE Photon. J.1(2), 153–162 (2009).
[CrossRef]

Christou, G.

G. Christou and C. Mias, “Critique of optical negative refraction superlensing,” Plasmonics6(2), 307–309 (2011).
[CrossRef]

Chung, E.

Courtemanche, N.

E. J. Galvez, C. H. Holbrow, M. J. Pysher, J. W. Martin, N. Courtemanche, L. Heilig, and J. Spencer, “Interference with correlated photons: five quantum mechanics experiments for undergraduates,” Am. J. Phys.73(2), 127–140 (2005).
[CrossRef]

de Peralta, L.

S. P. Frisbie, C. Chesnutt, M. E. Holtz, A. Krishnan, L. de Peralta, and A. A. Bernussi, “Image formation in wide-field microscopes based on leakage of surface plasmon-coupled fluorescence,” IEEE Photon. J.1(2), 153–162 (2009).
[CrossRef]

Ditlbacher, H.

A. Drezet, A. Hohenau, D. Koller, A. Stepanov, H. Ditlbacher, B. Steinberger, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Leakage radiation microscopy of surface plasmon polaritons,” Mater. Sci. Eng. B149(3), 220–229 (2008).
[CrossRef]

Dominguez, D.

C. J. Regan, D. Dominguez, A. A. Bernussi, and L. Grave de Peralta, “Far-field optical superlens without metal,” J. Appl. Phys. ((to be published).

Drezet, A.

A. Drezet, A. Hohenau, D. Koller, A. Stepanov, H. Ditlbacher, B. Steinberger, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Leakage radiation microscopy of surface plasmon polaritons,” Mater. Sci. Eng. B149(3), 220–229 (2008).
[CrossRef]

Durant, S.

El-Agez, T. M.

S. A. Taya, E. J. El-Farram, and T. M. El-Agez, “Goos-Hänchen shift as a probe in evanescent slab waveguides sensors,” Int. J. Electron. Commun.66(3), 204–210 (2012).
[CrossRef]

El-Farram, E. J.

S. A. Taya, E. J. El-Farram, and T. M. El-Agez, “Goos-Hänchen shift as a probe in evanescent slab waveguides sensors,” Int. J. Electron. Commun.66(3), 204–210 (2012).
[CrossRef]

Fang, N.

Z. Liu, S. Durant, H. Lee, Y. Pikus, N. Fang, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical superlens,” Nano Lett.7(2), 403–408 (2007).
[CrossRef] [PubMed]

W. Srituravanich, N. Fang, C. Sun, Q. Luo, and X. Zhang, “Plasmonic Nanolithography,” Nano Lett.4(6), 1085–1088 (2004).
[CrossRef]

Z. Liu, N. Fang, T. Yen, and X. Zhang, “Rapid growth of evanescent wave by silver superlens,” Appl. Phys. Lett.83(25), 5184–5186 (2003).
[CrossRef]

Frisbie, S. P.

S. P. Frisbie, C. Chesnutt, M. E. Holtz, A. Krishnan, L. de Peralta, and A. A. Bernussi, “Image formation in wide-field microscopes based on leakage of surface plasmon-coupled fluorescence,” IEEE Photon. J.1(2), 153–162 (2009).
[CrossRef]

Galvez, E. J.

E. J. Galvez, C. H. Holbrow, M. J. Pysher, J. W. Martin, N. Courtemanche, L. Heilig, and J. Spencer, “Interference with correlated photons: five quantum mechanics experiments for undergraduates,” Am. J. Phys.73(2), 127–140 (2005).
[CrossRef]

Garcia, N.

N. Garcia and M. Nieto-Vesperinas, “Left-handed materials do not make a perfect lens,” Phys. Rev. Lett.88(20), 207403 (2002).
[CrossRef] [PubMed]

Gawhary, O. E.

O. E. Gawhary, N. J. Schilder, A. C. Assafrao, S. F. Pereira, and H. P. Urbach, “Restoration of s-polarized evanescen waves and subwavelength imaging by a single dielectric slab,” New J. Phys.14(5), 053025 (2012).
[CrossRef]

Goos, F.

F. Goos and H. Hänchen, “Ein neuer und fundamentaler versuch zur totalreflexion,” Ann. Phys.6(7-8), 333–346 (1947).
[CrossRef]

Gourshetty, S. C.

Grave de Peralta, L.

L. Grave de Peralta, C. J. Regan, and A. A. Bernussi, “SPP tomography: a simple wide-field nanoscope,” Scanningn/a (2012), doi:.
[CrossRef] [PubMed]

C. J. Regan, O. Thiabgoh, L. Grave de Peralta, and A. A. Bernussi, “Probing photonic Bloch wavefunctions with plasmon-coupled leakage radiation,” Opt. Express20(8), 8658–8666 (2012).
[CrossRef] [PubMed]

C. J. Regan, L. Grave de Peralta, and A. A. Bernussi, “Equifrequency curve dispersion in dielectric-loaded plasmonic crystals,” J. Appl. Phys.111(7), 073105 (2012).
[CrossRef]

C. J. Regan, R. Rodriguez, S. C. Gourshetty, L. Grave de Peralta, and A. A. Bernussi, “Imaging nanoscale features with plasmon-coupled leakage radiation far-field superlenses,” Opt. Express20(19), 20827–20834 (2012).
[CrossRef] [PubMed]

C. J. Regan, A. Krishnan, R. Lopez-Boada, L. Grave de Peralta, and A. A. Bernussi, “Direct observation of photonic Fermi surfaces by plasmon tomography,” Appl. Phys. Lett.98(15), 151113 (2011).
[CrossRef]

L. Grave de Peralta, R. Lopez-Boada, A. Ruiz-Columbie, S. Park, and A. A. Bernussi, “Some consequences of experiments with a plasmonic quantum eraser for plasmon tomography,” J. Appl. Phys.109(2), 023101 (2011).
[CrossRef]

R. Rodriguez, C. J. Regan, A. Ruiz-Columbié, W. Agutu, A. A. Bernussi, and L. Grave de Peralta, “Study of plasmonic crystals using Fourier-plane images obtained with plasmon tomography far-field superlenses,” J. Appl. Phys.110(8), 083109 (2011).
[CrossRef]

A. Houk, R. Lopez-Boada, A. Ruiz-Columbie, S. Park, A. A. Bernussi, and L. Grave de Peralta, “Erratum: some consequences of experiments with a plasmonic quantum eraser for plasmon tomography,” J. Appl. Phys.109(11), 119901 (2011).
[CrossRef]

L. Grave de Peralta, “Phenomenological quantum description of the ultra fast response of arrayed waveguide gratings,” J. Appl. Phys.108(10), 103110 (2010).
[CrossRef]

C. J. Regan, D. Dominguez, A. A. Bernussi, and L. Grave de Peralta, “Far-field optical superlens without metal,” J. Appl. Phys. ((to be published).

Gryczinski, I.

I. Gryczinski, J. Malicka, K. Nowaczyk, Z. Gryczynski, and J. Lacowicz, “Effects of sample thickness on the optical properties of surface plasmon-coupled emission,” J. Phys. Chem. B108(32), 12073–12083 (2004).
[CrossRef]

Gryczynski, I.

I. Gryczynski, J. Malicka, Z. Gryczynski, and J. R. Lakowicz, “Surface plasmon-coupled emission with gold films,” J. Phys. Chem. B108(33), 12568–12574 (2004).
[CrossRef] [PubMed]

Gryczynski, Z.

I. Gryczynski, J. Malicka, Z. Gryczynski, and J. R. Lakowicz, “Surface plasmon-coupled emission with gold films,” J. Phys. Chem. B108(33), 12568–12574 (2004).
[CrossRef] [PubMed]

I. Gryczinski, J. Malicka, K. Nowaczyk, Z. Gryczynski, and J. Lacowicz, “Effects of sample thickness on the optical properties of surface plasmon-coupled emission,” J. Phys. Chem. B108(32), 12073–12083 (2004).
[CrossRef]

Han, L.

Hänchen, H.

F. Goos and H. Hänchen, “Ein neuer und fundamentaler versuch zur totalreflexion,” Ann. Phys.6(7-8), 333–346 (1947).
[CrossRef]

Heilig, L.

E. J. Galvez, C. H. Holbrow, M. J. Pysher, J. W. Martin, N. Courtemanche, L. Heilig, and J. Spencer, “Interference with correlated photons: five quantum mechanics experiments for undergraduates,” Am. J. Phys.73(2), 127–140 (2005).
[CrossRef]

Hohenau, A.

A. Drezet, A. Hohenau, D. Koller, A. Stepanov, H. Ditlbacher, B. Steinberger, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Leakage radiation microscopy of surface plasmon polaritons,” Mater. Sci. Eng. B149(3), 220–229 (2008).
[CrossRef]

Holbrow, C. H.

E. J. Galvez, C. H. Holbrow, M. J. Pysher, J. W. Martin, N. Courtemanche, L. Heilig, and J. Spencer, “Interference with correlated photons: five quantum mechanics experiments for undergraduates,” Am. J. Phys.73(2), 127–140 (2005).
[CrossRef]

Holtz, M. E.

S. P. Frisbie, C. Chesnutt, M. E. Holtz, A. Krishnan, L. de Peralta, and A. A. Bernussi, “Image formation in wide-field microscopes based on leakage of surface plasmon-coupled fluorescence,” IEEE Photon. J.1(2), 153–162 (2009).
[CrossRef]

Houk, A.

A. Houk, R. Lopez-Boada, A. Ruiz-Columbie, S. Park, A. A. Bernussi, and L. Grave de Peralta, “Erratum: some consequences of experiments with a plasmonic quantum eraser for plasmon tomography,” J. Appl. Phys.109(11), 119901 (2011).
[CrossRef]

Kim, Y. H.

Koller, D.

A. Drezet, A. Hohenau, D. Koller, A. Stepanov, H. Ditlbacher, B. Steinberger, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Leakage radiation microscopy of surface plasmon polaritons,” Mater. Sci. Eng. B149(3), 220–229 (2008).
[CrossRef]

Krenn, J. R.

A. Drezet, A. Hohenau, D. Koller, A. Stepanov, H. Ditlbacher, B. Steinberger, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Leakage radiation microscopy of surface plasmon polaritons,” Mater. Sci. Eng. B149(3), 220–229 (2008).
[CrossRef]

Krishnan, A.

C. J. Regan, A. Krishnan, R. Lopez-Boada, L. Grave de Peralta, and A. A. Bernussi, “Direct observation of photonic Fermi surfaces by plasmon tomography,” Appl. Phys. Lett.98(15), 151113 (2011).
[CrossRef]

S. P. Frisbie, C. Chesnutt, M. E. Holtz, A. Krishnan, L. de Peralta, and A. A. Bernussi, “Image formation in wide-field microscopes based on leakage of surface plasmon-coupled fluorescence,” IEEE Photon. J.1(2), 153–162 (2009).
[CrossRef]

Lacowicz, J.

I. Gryczinski, J. Malicka, K. Nowaczyk, Z. Gryczynski, and J. Lacowicz, “Effects of sample thickness on the optical properties of surface plasmon-coupled emission,” J. Phys. Chem. B108(32), 12073–12083 (2004).
[CrossRef]

Lakowicz, J. R.

I. Gryczynski, J. Malicka, Z. Gryczynski, and J. R. Lakowicz, “Surface plasmon-coupled emission with gold films,” J. Phys. Chem. B108(33), 12568–12574 (2004).
[CrossRef] [PubMed]

Lee, H.

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science315(5819), 1686 (2007).
[CrossRef] [PubMed]

Z. Liu, S. Durant, H. Lee, Y. Pikus, N. Fang, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical superlens,” Nano Lett.7(2), 403–408 (2007).
[CrossRef] [PubMed]

Leitner, A.

A. Drezet, A. Hohenau, D. Koller, A. Stepanov, H. Ditlbacher, B. Steinberger, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Leakage radiation microscopy of surface plasmon polaritons,” Mater. Sci. Eng. B149(3), 220–229 (2008).
[CrossRef]

Liu, Z.

X. Zhang and Z. Liu, “Superlenses to overcome the diffraction limit,” Nat. Mater.7(6), 435–441 (2008).
[CrossRef] [PubMed]

Z. Liu, S. Durant, H. Lee, Y. Pikus, N. Fang, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical superlens,” Nano Lett.7(2), 403–408 (2007).
[CrossRef] [PubMed]

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science315(5819), 1686 (2007).
[CrossRef] [PubMed]

S. Durant, Z. Liu, J. M. Steele, and X. Zhang, “Theory of the transmission properties of an optical far-field superlens for imaging beyond the diffraction limit,” J. Opt. Soc. Am. B23(11), 2383–2392 (2006).
[CrossRef]

Z. Liu, N. Fang, T. Yen, and X. Zhang, “Rapid growth of evanescent wave by silver superlens,” Appl. Phys. Lett.83(25), 5184–5186 (2003).
[CrossRef]

Lopez-Boada, R.

A. Houk, R. Lopez-Boada, A. Ruiz-Columbie, S. Park, A. A. Bernussi, and L. Grave de Peralta, “Erratum: some consequences of experiments with a plasmonic quantum eraser for plasmon tomography,” J. Appl. Phys.109(11), 119901 (2011).
[CrossRef]

L. Grave de Peralta, R. Lopez-Boada, A. Ruiz-Columbie, S. Park, and A. A. Bernussi, “Some consequences of experiments with a plasmonic quantum eraser for plasmon tomography,” J. Appl. Phys.109(2), 023101 (2011).
[CrossRef]

C. J. Regan, A. Krishnan, R. Lopez-Boada, L. Grave de Peralta, and A. A. Bernussi, “Direct observation of photonic Fermi surfaces by plasmon tomography,” Appl. Phys. Lett.98(15), 151113 (2011).
[CrossRef]

Luo, Q.

W. Srituravanich, N. Fang, C. Sun, Q. Luo, and X. Zhang, “Plasmonic Nanolithography,” Nano Lett.4(6), 1085–1088 (2004).
[CrossRef]

Malicka, J.

I. Gryczinski, J. Malicka, K. Nowaczyk, Z. Gryczynski, and J. Lacowicz, “Effects of sample thickness on the optical properties of surface plasmon-coupled emission,” J. Phys. Chem. B108(32), 12073–12083 (2004).
[CrossRef]

I. Gryczynski, J. Malicka, Z. Gryczynski, and J. R. Lakowicz, “Surface plasmon-coupled emission with gold films,” J. Phys. Chem. B108(33), 12568–12574 (2004).
[CrossRef] [PubMed]

Martin, J. W.

E. J. Galvez, C. H. Holbrow, M. J. Pysher, J. W. Martin, N. Courtemanche, L. Heilig, and J. Spencer, “Interference with correlated photons: five quantum mechanics experiments for undergraduates,” Am. J. Phys.73(2), 127–140 (2005).
[CrossRef]

Melville, D. O. S.

D. O. S. Melville, R. J. Blaikie, and C. R. Wolf, “Submicron imaging with a planar silver lens,” Appl. Phys. Lett.84(22), 4403–4405 (2004).
[CrossRef]

Mias, C.

G. Christou and C. Mias, “Critique of optical negative refraction superlensing,” Plasmonics6(2), 307–309 (2011).
[CrossRef]

Ming, H.

Nieto-Vesperinas, M.

N. Garcia and M. Nieto-Vesperinas, “Left-handed materials do not make a perfect lens,” Phys. Rev. Lett.88(20), 207403 (2002).
[CrossRef] [PubMed]

Nowaczyk, K.

I. Gryczinski, J. Malicka, K. Nowaczyk, Z. Gryczynski, and J. Lacowicz, “Effects of sample thickness on the optical properties of surface plasmon-coupled emission,” J. Phys. Chem. B108(32), 12073–12083 (2004).
[CrossRef]

Offermans, P.

Park, S.

A. Houk, R. Lopez-Boada, A. Ruiz-Columbie, S. Park, A. A. Bernussi, and L. Grave de Peralta, “Erratum: some consequences of experiments with a plasmonic quantum eraser for plasmon tomography,” J. Appl. Phys.109(11), 119901 (2011).
[CrossRef]

L. Grave de Peralta, R. Lopez-Boada, A. Ruiz-Columbie, S. Park, and A. A. Bernussi, “Some consequences of experiments with a plasmonic quantum eraser for plasmon tomography,” J. Appl. Phys.109(2), 023101 (2011).
[CrossRef]

Pendry, J. B.

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett.85(18), 3966–3969 (2000).
[CrossRef] [PubMed]

Pereira, S. F.

O. E. Gawhary, N. J. Schilder, A. C. Assafrao, S. F. Pereira, and H. P. Urbach, “Restoration of s-polarized evanescen waves and subwavelength imaging by a single dielectric slab,” New J. Phys.14(5), 053025 (2012).
[CrossRef]

Pikus, Y.

Z. Liu, S. Durant, H. Lee, Y. Pikus, N. Fang, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical superlens,” Nano Lett.7(2), 403–408 (2007).
[CrossRef] [PubMed]

Pysher, M. J.

E. J. Galvez, C. H. Holbrow, M. J. Pysher, J. W. Martin, N. Courtemanche, L. Heilig, and J. Spencer, “Interference with correlated photons: five quantum mechanics experiments for undergraduates,” Am. J. Phys.73(2), 127–140 (2005).
[CrossRef]

Regan, C. J.

L. Grave de Peralta, C. J. Regan, and A. A. Bernussi, “SPP tomography: a simple wide-field nanoscope,” Scanningn/a (2012), doi:.
[CrossRef] [PubMed]

C. J. Regan, L. Grave de Peralta, and A. A. Bernussi, “Equifrequency curve dispersion in dielectric-loaded plasmonic crystals,” J. Appl. Phys.111(7), 073105 (2012).
[CrossRef]

C. J. Regan, O. Thiabgoh, L. Grave de Peralta, and A. A. Bernussi, “Probing photonic Bloch wavefunctions with plasmon-coupled leakage radiation,” Opt. Express20(8), 8658–8666 (2012).
[CrossRef] [PubMed]

C. J. Regan, R. Rodriguez, S. C. Gourshetty, L. Grave de Peralta, and A. A. Bernussi, “Imaging nanoscale features with plasmon-coupled leakage radiation far-field superlenses,” Opt. Express20(19), 20827–20834 (2012).
[CrossRef] [PubMed]

C. J. Regan, A. Krishnan, R. Lopez-Boada, L. Grave de Peralta, and A. A. Bernussi, “Direct observation of photonic Fermi surfaces by plasmon tomography,” Appl. Phys. Lett.98(15), 151113 (2011).
[CrossRef]

R. Rodriguez, C. J. Regan, A. Ruiz-Columbié, W. Agutu, A. A. Bernussi, and L. Grave de Peralta, “Study of plasmonic crystals using Fourier-plane images obtained with plasmon tomography far-field superlenses,” J. Appl. Phys.110(8), 083109 (2011).
[CrossRef]

C. J. Regan, D. Dominguez, A. A. Bernussi, and L. Grave de Peralta, “Far-field optical superlens without metal,” J. Appl. Phys. ((to be published).

Rivas, J.

Rodriguez, R.

C. J. Regan, R. Rodriguez, S. C. Gourshetty, L. Grave de Peralta, and A. A. Bernussi, “Imaging nanoscale features with plasmon-coupled leakage radiation far-field superlenses,” Opt. Express20(19), 20827–20834 (2012).
[CrossRef] [PubMed]

R. Rodriguez, C. J. Regan, A. Ruiz-Columbié, W. Agutu, A. A. Bernussi, and L. Grave de Peralta, “Study of plasmonic crystals using Fourier-plane images obtained with plasmon tomography far-field superlenses,” J. Appl. Phys.110(8), 083109 (2011).
[CrossRef]

Rui, G.

Ruiz-Columbie, A.

L. Grave de Peralta, R. Lopez-Boada, A. Ruiz-Columbie, S. Park, and A. A. Bernussi, “Some consequences of experiments with a plasmonic quantum eraser for plasmon tomography,” J. Appl. Phys.109(2), 023101 (2011).
[CrossRef]

A. Houk, R. Lopez-Boada, A. Ruiz-Columbie, S. Park, A. A. Bernussi, and L. Grave de Peralta, “Erratum: some consequences of experiments with a plasmonic quantum eraser for plasmon tomography,” J. Appl. Phys.109(11), 119901 (2011).
[CrossRef]

Ruiz-Columbié, A.

R. Rodriguez, C. J. Regan, A. Ruiz-Columbié, W. Agutu, A. A. Bernussi, and L. Grave de Peralta, “Study of plasmonic crystals using Fourier-plane images obtained with plasmon tomography far-field superlenses,” J. Appl. Phys.110(8), 083109 (2011).
[CrossRef]

Schilder, N. J.

O. E. Gawhary, N. J. Schilder, A. C. Assafrao, S. F. Pereira, and H. P. Urbach, “Restoration of s-polarized evanescen waves and subwavelength imaging by a single dielectric slab,” New J. Phys.14(5), 053025 (2012).
[CrossRef]

Sheppard, C. J.

So, P. T. C.

Spencer, J.

E. J. Galvez, C. H. Holbrow, M. J. Pysher, J. W. Martin, N. Courtemanche, L. Heilig, and J. Spencer, “Interference with correlated photons: five quantum mechanics experiments for undergraduates,” Am. J. Phys.73(2), 127–140 (2005).
[CrossRef]

Srituravanich, W.

W. Srituravanich, N. Fang, C. Sun, Q. Luo, and X. Zhang, “Plasmonic Nanolithography,” Nano Lett.4(6), 1085–1088 (2004).
[CrossRef]

Steele, J. M.

Stegeman, G. I.

J. J. Burke, G. I. Stegeman, and T. Tamir, “Surface-polariton-like waves guided by thin, lossy metal films,” Phys. Rev. B Condens. Matter33(8), 5186–5201 (1986).
[CrossRef] [PubMed]

Steinberger, B.

A. Drezet, A. Hohenau, D. Koller, A. Stepanov, H. Ditlbacher, B. Steinberger, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Leakage radiation microscopy of surface plasmon polaritons,” Mater. Sci. Eng. B149(3), 220–229 (2008).
[CrossRef]

Stepanov, A.

A. Drezet, A. Hohenau, D. Koller, A. Stepanov, H. Ditlbacher, B. Steinberger, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Leakage radiation microscopy of surface plasmon polaritons,” Mater. Sci. Eng. B149(3), 220–229 (2008).
[CrossRef]

Sun, C.

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science315(5819), 1686 (2007).
[CrossRef] [PubMed]

Z. Liu, S. Durant, H. Lee, Y. Pikus, N. Fang, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical superlens,” Nano Lett.7(2), 403–408 (2007).
[CrossRef] [PubMed]

W. Srituravanich, N. Fang, C. Sun, Q. Luo, and X. Zhang, “Plasmonic Nanolithography,” Nano Lett.4(6), 1085–1088 (2004).
[CrossRef]

Tamir, T.

J. J. Burke, G. I. Stegeman, and T. Tamir, “Surface-polariton-like waves guided by thin, lossy metal films,” Phys. Rev. B Condens. Matter33(8), 5186–5201 (1986).
[CrossRef] [PubMed]

Tang, W. T.

Taya, S. A.

S. A. Taya, E. J. El-Farram, and T. M. El-Agez, “Goos-Hänchen shift as a probe in evanescent slab waveguides sensors,” Int. J. Electron. Commun.66(3), 204–210 (2012).
[CrossRef]

Thiabgoh, O.

Urbach, H. P.

O. E. Gawhary, N. J. Schilder, A. C. Assafrao, S. F. Pereira, and H. P. Urbach, “Restoration of s-polarized evanescen waves and subwavelength imaging by a single dielectric slab,” New J. Phys.14(5), 053025 (2012).
[CrossRef]

Wang, P.

Wang, X.

Wolf, C. R.

D. O. S. Melville, R. J. Blaikie, and C. R. Wolf, “Submicron imaging with a planar silver lens,” Appl. Phys. Lett.84(22), 4403–4405 (2004).
[CrossRef]

Xiong, Y.

Z. Liu, S. Durant, H. Lee, Y. Pikus, N. Fang, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical superlens,” Nano Lett.7(2), 403–408 (2007).
[CrossRef] [PubMed]

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science315(5819), 1686 (2007).
[CrossRef] [PubMed]

Yen, T.

Z. Liu, N. Fang, T. Yen, and X. Zhang, “Rapid growth of evanescent wave by silver superlens,” Appl. Phys. Lett.83(25), 5184–5186 (2003).
[CrossRef]

Zhang, D.

Zhang, X.

X. Zhang and Z. Liu, “Superlenses to overcome the diffraction limit,” Nat. Mater.7(6), 435–441 (2008).
[CrossRef] [PubMed]

Z. Liu, S. Durant, H. Lee, Y. Pikus, N. Fang, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical superlens,” Nano Lett.7(2), 403–408 (2007).
[CrossRef] [PubMed]

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science315(5819), 1686 (2007).
[CrossRef] [PubMed]

S. Durant, Z. Liu, J. M. Steele, and X. Zhang, “Theory of the transmission properties of an optical far-field superlens for imaging beyond the diffraction limit,” J. Opt. Soc. Am. B23(11), 2383–2392 (2006).
[CrossRef]

W. Srituravanich, N. Fang, C. Sun, Q. Luo, and X. Zhang, “Plasmonic Nanolithography,” Nano Lett.4(6), 1085–1088 (2004).
[CrossRef]

Z. Liu, N. Fang, T. Yen, and X. Zhang, “Rapid growth of evanescent wave by silver superlens,” Appl. Phys. Lett.83(25), 5184–5186 (2003).
[CrossRef]

Zhang, Y.

Am. J. Phys. (1)

E. J. Galvez, C. H. Holbrow, M. J. Pysher, J. W. Martin, N. Courtemanche, L. Heilig, and J. Spencer, “Interference with correlated photons: five quantum mechanics experiments for undergraduates,” Am. J. Phys.73(2), 127–140 (2005).
[CrossRef]

Ann. Phys. (1)

F. Goos and H. Hänchen, “Ein neuer und fundamentaler versuch zur totalreflexion,” Ann. Phys.6(7-8), 333–346 (1947).
[CrossRef]

Appl. Phys. Lett. (3)

Z. Liu, N. Fang, T. Yen, and X. Zhang, “Rapid growth of evanescent wave by silver superlens,” Appl. Phys. Lett.83(25), 5184–5186 (2003).
[CrossRef]

D. O. S. Melville, R. J. Blaikie, and C. R. Wolf, “Submicron imaging with a planar silver lens,” Appl. Phys. Lett.84(22), 4403–4405 (2004).
[CrossRef]

C. J. Regan, A. Krishnan, R. Lopez-Boada, L. Grave de Peralta, and A. A. Bernussi, “Direct observation of photonic Fermi surfaces by plasmon tomography,” Appl. Phys. Lett.98(15), 151113 (2011).
[CrossRef]

IEEE Photon. J. (1)

S. P. Frisbie, C. Chesnutt, M. E. Holtz, A. Krishnan, L. de Peralta, and A. A. Bernussi, “Image formation in wide-field microscopes based on leakage of surface plasmon-coupled fluorescence,” IEEE Photon. J.1(2), 153–162 (2009).
[CrossRef]

Int. J. Electron. Commun. (1)

S. A. Taya, E. J. El-Farram, and T. M. El-Agez, “Goos-Hänchen shift as a probe in evanescent slab waveguides sensors,” Int. J. Electron. Commun.66(3), 204–210 (2012).
[CrossRef]

J. Appl. Phys. (6)

L. Grave de Peralta, R. Lopez-Boada, A. Ruiz-Columbie, S. Park, and A. A. Bernussi, “Some consequences of experiments with a plasmonic quantum eraser for plasmon tomography,” J. Appl. Phys.109(2), 023101 (2011).
[CrossRef]

A. Houk, R. Lopez-Boada, A. Ruiz-Columbie, S. Park, A. A. Bernussi, and L. Grave de Peralta, “Erratum: some consequences of experiments with a plasmonic quantum eraser for plasmon tomography,” J. Appl. Phys.109(11), 119901 (2011).
[CrossRef]

L. Grave de Peralta, “Phenomenological quantum description of the ultra fast response of arrayed waveguide gratings,” J. Appl. Phys.108(10), 103110 (2010).
[CrossRef]

C. J. Regan, D. Dominguez, A. A. Bernussi, and L. Grave de Peralta, “Far-field optical superlens without metal,” J. Appl. Phys. ((to be published).

R. Rodriguez, C. J. Regan, A. Ruiz-Columbié, W. Agutu, A. A. Bernussi, and L. Grave de Peralta, “Study of plasmonic crystals using Fourier-plane images obtained with plasmon tomography far-field superlenses,” J. Appl. Phys.110(8), 083109 (2011).
[CrossRef]

C. J. Regan, L. Grave de Peralta, and A. A. Bernussi, “Equifrequency curve dispersion in dielectric-loaded plasmonic crystals,” J. Appl. Phys.111(7), 073105 (2012).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Phys. Chem. B (2)

I. Gryczinski, J. Malicka, K. Nowaczyk, Z. Gryczynski, and J. Lacowicz, “Effects of sample thickness on the optical properties of surface plasmon-coupled emission,” J. Phys. Chem. B108(32), 12073–12083 (2004).
[CrossRef]

I. Gryczynski, J. Malicka, Z. Gryczynski, and J. R. Lakowicz, “Surface plasmon-coupled emission with gold films,” J. Phys. Chem. B108(33), 12568–12574 (2004).
[CrossRef] [PubMed]

Mater. Sci. Eng. B (1)

A. Drezet, A. Hohenau, D. Koller, A. Stepanov, H. Ditlbacher, B. Steinberger, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Leakage radiation microscopy of surface plasmon polaritons,” Mater. Sci. Eng. B149(3), 220–229 (2008).
[CrossRef]

Nano Lett. (2)

W. Srituravanich, N. Fang, C. Sun, Q. Luo, and X. Zhang, “Plasmonic Nanolithography,” Nano Lett.4(6), 1085–1088 (2004).
[CrossRef]

Z. Liu, S. Durant, H. Lee, Y. Pikus, N. Fang, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical superlens,” Nano Lett.7(2), 403–408 (2007).
[CrossRef] [PubMed]

Nat. Mater. (1)

X. Zhang and Z. Liu, “Superlenses to overcome the diffraction limit,” Nat. Mater.7(6), 435–441 (2008).
[CrossRef] [PubMed]

New J. Phys. (1)

O. E. Gawhary, N. J. Schilder, A. C. Assafrao, S. F. Pereira, and H. P. Urbach, “Restoration of s-polarized evanescen waves and subwavelength imaging by a single dielectric slab,” New J. Phys.14(5), 053025 (2012).
[CrossRef]

Opt. Express (3)

Opt. Lett. (2)

Phys. Rev. B Condens. Matter (1)

J. J. Burke, G. I. Stegeman, and T. Tamir, “Surface-polariton-like waves guided by thin, lossy metal films,” Phys. Rev. B Condens. Matter33(8), 5186–5201 (1986).
[CrossRef] [PubMed]

Phys. Rev. Lett. (2)

N. Garcia and M. Nieto-Vesperinas, “Left-handed materials do not make a perfect lens,” Phys. Rev. Lett.88(20), 207403 (2002).
[CrossRef] [PubMed]

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett.85(18), 3966–3969 (2000).
[CrossRef] [PubMed]

Plasmonics (1)

G. Christou and C. Mias, “Critique of optical negative refraction superlensing,” Plasmonics6(2), 307–309 (2011).
[CrossRef]

Scanning (1)

L. Grave de Peralta, C. J. Regan, and A. A. Bernussi, “SPP tomography: a simple wide-field nanoscope,” Scanningn/a (2012), doi:.
[CrossRef] [PubMed]

Science (1)

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science315(5819), 1686 (2007).
[CrossRef] [PubMed]

Other (7)

F. L. Pedrotti, L. S. Pedrotti, and L. M. Pedrotti, Introduction to Optics, 3rd Edition (Person Prentice Hall, 2007).

B. Schumacher, Quantum mechanics: the Physics of the Microscopic World (The Teaching Company, 2009).

J. D. Joannopoulus, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light (Princeton University, 2008).

M. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1988).

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1968).

E. Hetcht, Optics, 3rd edition (Addison Wesley, 1998).

M. Born and E. Wolf, Priciples of Optics, 5th edition (Pergamon Press, 1975).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Cross-section schematic illustration of a sample used in a typical SWIS. (b)-(e) illustrates different excitation schemes: conventional surface wave excitation [(b) and (d)] and the excitation of the surface waves in SWIS [(c) and (e)] for superlenses with [(b) and (c)] and without [(d) and (e)] a thin metal layer.

Fig. 2
Fig. 2

Light leaks in the direction defined by k l , which forms an angle θl with respect to the axis z. Leaked light is contained in the plane ρ, which also contains the z axis and the vectors k w and k l .

Fig. 3
Fig. 3

FP images obtained with a SWIS-microscope arrangement corresponding to a uniform sample where (a) SPPs and (b) surface waves related to TIR, were excited. When the direction of propagation of the surface waves along the medium/PMMA interface, φ, changes from 0 to 2π, k w rotates describing a ring.

Fig. 4
Fig. 4

FP image corresponding to a plasmonic sample with a periodic profile along the x-axis, with p = 4 μm. When the direction φ of the surface waves illumination changes from 0 to 2π, the extreme of each vector k w describes a circumference.

Fig. 5
Fig. 5

Schematic illustration of the transversal structure of a (a) plasmonic SWIS, and (b) SWIS without metal. (c) FP image corresponding to the plasmonic SWIS. (d) Intensity distribution inside of the zero order ring resulting from subtracting the FP image corresponding to a homogeneous SWIS without metal, from the FP image corresponding to the SWIS without metal with a periodic patterned structure.

Fig. 6
Fig. 6

Graphical composition illustrating how the FP images shown in (a) Fig. 5(c), and 5(b) Fig. 5(d) are formed. The red spots represent the diffraction pattern that would be observed using traditional perpendicular out-of-plane illumination. Similar fractions of the first order rings are observed in both images.

Equations (35)

Equations on this page are rendered with MathJax. Learn more.

p min = λ o NA .
E ( r ,t )= E o sin( k w r ωt ),
| k w |= k w = 2π λ = k o n eff ,λ= λ o n eff ,ω=2πν.
E l ( s ,t )= E lo sin( k l s ωt ),
| k l |= k 2 + k 2 = 2π λ s , λ s = λ o n s .
k = k l sin θ l = k w .
l c = λ o 2 Δλ ,
U φ (x,y,z=0)= C φ e i k w · r = C φ e i( x k w cosφ+y k w sinφ ) ,
U φ ( k x , k y )FT[ U φ (x,y,z=0) ] U φ (x,y,z=0) e i( x k x +y k y ) dxdy .
U φ ( k x , k y ) C φ e i[ ( k x k w cosφ )x+( k y k w sinφ )y ] dxdy δ( k x k w cosφ, k y k w sinφ).
I φ ( k x , k y ) | U φ ( k x , k y ) | 2 .
I φ ( k x , k y ) δ 2 ( k x k w cosφ, k y k w sinφ).
I φ,FPI ( k x , k y ) =0,| k w |> k o NA δ 2 ( k x k w cosφ, k y k w sinφ),| k w | k o NA ,
I T ( k x , k y )= φ I φ ( k x , k y ) .
U φ,p (x,y,z=0)= C φ [ 1+sin( 2π p x ) ] e i k w · r = C φ [ 1+sin( 2π p x ) ] e i( x k w cosφ+y k w sinφ ) .
U φ,p ( k x , k y ) C φ [ 1+sin( 2π p x ) ] e i[ ( k x k w cosφ )x+( k y k w sinφ )y ] dxdy .
U φ,p ( k ){ δ[ k k w ]+δ[ k ( G + k w ) ]+δ[ k ( G + k w ) ] },
| G |=G= 2π p .
U φ,p ( k )= U ,p ( k k w ),
U ,p ( k ){ δ[ k ]+δ[ k G ]+δ[ k + G ] }.
U φ (x,y,z=0)=f(x,y) e i k w · r =f(x,y) e i( x k w cosφ+y k w sinφ ) ,
U φ ( k x , k y ) f(x,y) e i[ ( k x k w cosφ )x+( k y k w sinφ )y ] dxdy .
U φ ( k )= U ( k k w ),
U ( k )FT[ f(x,y) ] f(x,y) e i k · r dxdy .
I T ( k ) φ a φ | U ( k x k w cosφ, k y k w sinφ) | 2 .
I T,FPI ( k x , k y ) =0,| k |> k o NA = I T ( k x , k y ),| k | k o NA .
I φ,SEI (x,y) | U φ,IP (x,y) | 2 ,
U φ,FP ( k x , k y ) =0,| k |> k o NA = U φ ( k x , k y ),| k | k o NA .
U φ,IP (x,y)F T 1 [ U φ,FP ( k x , k y ) ] U φ,FP ( k x , k y ) e i( x k x +y k y ) d k x d k y .
I SEI (x,y)= φ I φ,SEI (x,y) .
U φ,IP (x,y)F T 1 [ U ,p ( k k w ) ] F T 1 { δ[ k k w ]+δ[ k ( k w + G ) ]+δ[ k ( k w G ) ] }.
| U φ,IP (x,y) |[ 1+sin( 2π p x ) ].
U 5π 4 ,IP (x,y)F T 1 { δ[ k ( 2 2 k w , 2 2 k w ) ] }.
p SPP,min = λ o NA+ n eff ,
p TIR,min = λ o n sup + n sub ,

Metrics