Abstract

Wavelength reuse in a bidirectional UWB over fiber system using a polarization modulator (PolM) and an electro-absorption modulator (EAM) is proposed and experimentally demonstrated. Since the PolM functions as a special phase modulator that supports phase modulation along the two principal axes with opposite modulation indices and the EAM is a polarization-independent component, the signals due to the phase-modulation to intensity-modulation (PM-IM) conversion along the two orthogonal directions in the upstream link will be complementary and cancelled out, thus the impact of the downstream signal to the upstream transmission due to the PM-IM conversion is fully eliminated. Error-free bidirectional transmission of a 1.25-Gbps UWB signal over 17 km single-mode fiber (SMF) is demonstrated. A power penalty due to the wavelength reuse for upstream transmission is measured to be as low as 0.2 dB.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. R. Aiello and G. D. Rogerson, “Ultra-wideband wireless systems,” IEEE Microw. Mag.4(2), 36–47 (2003).
    [CrossRef]
  2. J. P. Yao, F. Zeng, and Q. Wang, “Photonic generation of ultrawideband signals,” J. Lightwave Technol.25(11), 3219–3235 (2007).
    [CrossRef]
  3. Revision of Part 15 of the Commission’s Rules Regarding Ultra-Wideband Transmission Systems Federal Communications Commission, Feb. 2002.
  4. S. Pan and J. P. Yao, “A photonic UWB generator reconfigurable for multiple modulation formats,” IEEE Photon. Technol. Lett.21(19), 1381–1383 (2009).
    [CrossRef]
  5. S. Pan and J. P. Yao, “UWB-over-fiber communications: modulation and transmission,” J. Lightwave Technol.28(16), 2445–2455 (2010).
    [CrossRef]
  6. T. T. Pham, X. B. Yu, L. Dittmann, and I. T. Monroy, “Integration of optically generated impulse radio UWB signals into baseband WDM-PON,” IEEE Photon. Technol. Lett.23(8), 474–476 (2011).
    [CrossRef]
  7. Q. Guo, A. V. Tran, and C. J. Chae, “10-Gb/s WDM-PON based on low-bandwidth RSOA using partial response equalization,” IEEE Photon. Technol. Lett.23(20), 1442–1444 (2011).
    [CrossRef]
  8. F. Xiong, W. D. Zhong, and H. Kim, “A broadcast-capable WDM-PON based on polarization-sensitive weak-resonant-cavity Fabry-Perot laser diodes,” J. Lightwave Technol.30(3), 355–361 (2012).
    [CrossRef]
  9. M. Presi, R. Proietti, K. Prince, G. Contestabile, and E. Ciaramella, “A 80 km reach fully passive WDM-PON based on reflective ONUs,” Opt. Express16(23), 19043–19048 (2008).
    [CrossRef] [PubMed]
  10. A. Chowdhury, H. C. Chien, and G. K. Chang, “Centralized, colorless, wavelength reusable 25GHz spaced DWDM-PON with 10 Gb/s DPSK downstream and re-modulated 10Gb/s duobinary upstream for next-generation local access system,” in Proceedings of the 34th European Conference on Optical Communications, Brussels, Belgium, 2008, Paper We.3. F. 4.
    [CrossRef]
  11. J. Zheng, H. Wang, L. Wang, N. Zhu, J. Liu, and S. Wang, “Implementation of wavelength reusing upstream service based on distributed intensity conversion in ultrawideband-over-fiber system,” Opt. Lett.38(7), 1167–1169 (2013).
    [CrossRef] [PubMed]
  12. U. Gliese, S. Norskov, and T. N. Nielsen, “Chromatic dispersion in fiber-optic microwave and millimeter-wave links,” IEEE Trans. Microw. Theory Tech.44(10), 1716–1724 (1996).
    [CrossRef]

2013 (1)

2012 (1)

2011 (2)

T. T. Pham, X. B. Yu, L. Dittmann, and I. T. Monroy, “Integration of optically generated impulse radio UWB signals into baseband WDM-PON,” IEEE Photon. Technol. Lett.23(8), 474–476 (2011).
[CrossRef]

Q. Guo, A. V. Tran, and C. J. Chae, “10-Gb/s WDM-PON based on low-bandwidth RSOA using partial response equalization,” IEEE Photon. Technol. Lett.23(20), 1442–1444 (2011).
[CrossRef]

2010 (1)

2009 (1)

S. Pan and J. P. Yao, “A photonic UWB generator reconfigurable for multiple modulation formats,” IEEE Photon. Technol. Lett.21(19), 1381–1383 (2009).
[CrossRef]

2008 (1)

2007 (1)

2003 (1)

G. R. Aiello and G. D. Rogerson, “Ultra-wideband wireless systems,” IEEE Microw. Mag.4(2), 36–47 (2003).
[CrossRef]

1996 (1)

U. Gliese, S. Norskov, and T. N. Nielsen, “Chromatic dispersion in fiber-optic microwave and millimeter-wave links,” IEEE Trans. Microw. Theory Tech.44(10), 1716–1724 (1996).
[CrossRef]

Aiello, G. R.

G. R. Aiello and G. D. Rogerson, “Ultra-wideband wireless systems,” IEEE Microw. Mag.4(2), 36–47 (2003).
[CrossRef]

Chae, C. J.

Q. Guo, A. V. Tran, and C. J. Chae, “10-Gb/s WDM-PON based on low-bandwidth RSOA using partial response equalization,” IEEE Photon. Technol. Lett.23(20), 1442–1444 (2011).
[CrossRef]

Ciaramella, E.

Contestabile, G.

Dittmann, L.

T. T. Pham, X. B. Yu, L. Dittmann, and I. T. Monroy, “Integration of optically generated impulse radio UWB signals into baseband WDM-PON,” IEEE Photon. Technol. Lett.23(8), 474–476 (2011).
[CrossRef]

Gliese, U.

U. Gliese, S. Norskov, and T. N. Nielsen, “Chromatic dispersion in fiber-optic microwave and millimeter-wave links,” IEEE Trans. Microw. Theory Tech.44(10), 1716–1724 (1996).
[CrossRef]

Guo, Q.

Q. Guo, A. V. Tran, and C. J. Chae, “10-Gb/s WDM-PON based on low-bandwidth RSOA using partial response equalization,” IEEE Photon. Technol. Lett.23(20), 1442–1444 (2011).
[CrossRef]

Kim, H.

Liu, J.

Monroy, I. T.

T. T. Pham, X. B. Yu, L. Dittmann, and I. T. Monroy, “Integration of optically generated impulse radio UWB signals into baseband WDM-PON,” IEEE Photon. Technol. Lett.23(8), 474–476 (2011).
[CrossRef]

Nielsen, T. N.

U. Gliese, S. Norskov, and T. N. Nielsen, “Chromatic dispersion in fiber-optic microwave and millimeter-wave links,” IEEE Trans. Microw. Theory Tech.44(10), 1716–1724 (1996).
[CrossRef]

Norskov, S.

U. Gliese, S. Norskov, and T. N. Nielsen, “Chromatic dispersion in fiber-optic microwave and millimeter-wave links,” IEEE Trans. Microw. Theory Tech.44(10), 1716–1724 (1996).
[CrossRef]

Pan, S.

S. Pan and J. P. Yao, “UWB-over-fiber communications: modulation and transmission,” J. Lightwave Technol.28(16), 2445–2455 (2010).
[CrossRef]

S. Pan and J. P. Yao, “A photonic UWB generator reconfigurable for multiple modulation formats,” IEEE Photon. Technol. Lett.21(19), 1381–1383 (2009).
[CrossRef]

Pham, T. T.

T. T. Pham, X. B. Yu, L. Dittmann, and I. T. Monroy, “Integration of optically generated impulse radio UWB signals into baseband WDM-PON,” IEEE Photon. Technol. Lett.23(8), 474–476 (2011).
[CrossRef]

Presi, M.

Prince, K.

Proietti, R.

Rogerson, G. D.

G. R. Aiello and G. D. Rogerson, “Ultra-wideband wireless systems,” IEEE Microw. Mag.4(2), 36–47 (2003).
[CrossRef]

Tran, A. V.

Q. Guo, A. V. Tran, and C. J. Chae, “10-Gb/s WDM-PON based on low-bandwidth RSOA using partial response equalization,” IEEE Photon. Technol. Lett.23(20), 1442–1444 (2011).
[CrossRef]

Wang, H.

Wang, L.

Wang, Q.

Wang, S.

Xiong, F.

Yao, J. P.

Yu, X. B.

T. T. Pham, X. B. Yu, L. Dittmann, and I. T. Monroy, “Integration of optically generated impulse radio UWB signals into baseband WDM-PON,” IEEE Photon. Technol. Lett.23(8), 474–476 (2011).
[CrossRef]

Zeng, F.

Zheng, J.

Zhong, W. D.

Zhu, N.

IEEE Microw. Mag. (1)

G. R. Aiello and G. D. Rogerson, “Ultra-wideband wireless systems,” IEEE Microw. Mag.4(2), 36–47 (2003).
[CrossRef]

IEEE Photon. Technol. Lett. (3)

S. Pan and J. P. Yao, “A photonic UWB generator reconfigurable for multiple modulation formats,” IEEE Photon. Technol. Lett.21(19), 1381–1383 (2009).
[CrossRef]

T. T. Pham, X. B. Yu, L. Dittmann, and I. T. Monroy, “Integration of optically generated impulse radio UWB signals into baseband WDM-PON,” IEEE Photon. Technol. Lett.23(8), 474–476 (2011).
[CrossRef]

Q. Guo, A. V. Tran, and C. J. Chae, “10-Gb/s WDM-PON based on low-bandwidth RSOA using partial response equalization,” IEEE Photon. Technol. Lett.23(20), 1442–1444 (2011).
[CrossRef]

IEEE Trans. Microw. Theory Tech. (1)

U. Gliese, S. Norskov, and T. N. Nielsen, “Chromatic dispersion in fiber-optic microwave and millimeter-wave links,” IEEE Trans. Microw. Theory Tech.44(10), 1716–1724 (1996).
[CrossRef]

J. Lightwave Technol. (3)

Opt. Express (1)

Opt. Lett. (1)

Other (2)

Revision of Part 15 of the Commission’s Rules Regarding Ultra-Wideband Transmission Systems Federal Communications Commission, Feb. 2002.

A. Chowdhury, H. C. Chien, and G. K. Chang, “Centralized, colorless, wavelength reusable 25GHz spaced DWDM-PON with 10 Gb/s DPSK downstream and re-modulated 10Gb/s duobinary upstream for next-generation local access system,” in Proceedings of the 34th European Conference on Optical Communications, Brussels, Belgium, 2008, Paper We.3. F. 4.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) A bidirectional UWBoF system with wavelength reuse for upstream transmission. (b) Equivalent MZM using a PolM, a PC and a polarizer.

Fig. 2
Fig. 2

PM-IM conversion in a SMF link.

Fig. 3
Fig. 3

Experimental setup. LD: laser-diode, PC: polarization controller, PolM: polarization modulator, AWG: arbitrary waveform generator, AMP: electrical amplifier, PD: photodiode, BERT: bit error rate tester, DSO: digital storage oscilloscope, MZM: Mach-Zehnder modulator, SOA: semiconductor optical amplifier

Fig. 4
Fig. 4

(a) Measurement results of the downstream signal. (b) BER result of the upstream signal.

Fig. 5
Fig. 5

Eye diagrams of the upstream signal. (a) Without downstream transmission, (b) with chromatic dispersion cancellation, and (c) without chromatic dispersion cancellation.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

[ E xPolM E yPolM ]= 2 2 E 0 exp( j ω 0 t )[ exp[ jβ V DS ( t ) ] exp[ jβ V DS ( t ) ] ]
[ E xPC2 E yPC2 ]= 2 2 E 0 exp( j ω 0 t )[ exp[ jβ V DS ( t )+jθ ] exp[ jβ V DS ( t ) ] ]
E Pol = 2 2 ( E xPolM + E yPolM )= E 0 exp[ j( ω 0 t+ θ 2 ) ]cos[ β V DS ( t )+ θ 2 ]
i PD1 =R | E Pol | 2 = 1 2 R E 0 2 { 1+cos[ 2β V DS ( t )+θ ] }
i PD1 1 2 R E 0 2 +Rβ E 0 2 V DS ( t )
[ E xPolM E yPolM ]= E 0 exp( j ω 0 t )[ cosαexp[ jβ V RFin ( t ) ] sinαexp[ jβ V RFin ( t ) ] ] E 0 exp( j ω 0 t )[ cosα{ J 0 ( βA )+ J 1 ( βA )[ exp( j ω RF t )exp( j ω RF t ) ] } sinα{ J 0 ( βA )+ J 1 ( βA )[ -exp( j ω RF t )+exp( j ω RF t ) ] } ]
E PD =[ E PDx E PDy ]= E 0 exp( j ω 0 t ) ×[ cosα{ J 0 ( βA )+ J 1 ( βA )[ exp( j( ω RF t+φ( ω RF ) ) )-exp( j( ω RF tφ( ω RF ) ) ) ] } sinα{ J 0 ( βA )+ J 1 ( βA )[ -exp( j( ω RF t+φ( ω RF ) ) )+exp( j( ω RF tφ( ω RF ) ) ) ] } ]
i PD ( t )=k | E PD ( t ) | 2 i DC + i RFout ( t )
i DC =R E 0 2 [ J 0 2 ( βA )+2 J 1 2 ( βA ) ] i RFout ( t )=-2R E 0 2 cos2α J 0 ( βA ) J 1 ( βA )sin( ω RF t )sin[ ϕ( ω RF ) ]
H( ω RF )= -2k E 0 2 cos2α J 0 ( βA ) J 1 ( βA )sin( ϕ( ω RF ) ) A

Metrics