Abstract

In this paper, a new technique exploiting the polarization properties of normal fiber Bragg grating (FBG) for twist sensing is firstly proposed and experimentally demonstrated. The evolution of the polarization dependent loss (PDL) response of the FBG with respect to the twist is studied. The physical model is presented and a numerical simulation based on the transfer matrix method is used to calculate the PDL spectrum of the twisted FBG. The theoretical and experimental results suggest that the PDL response of the FBG have higher twist sensitivities than that of the reflected or transmitted amplitude spectra. Based on comprehensive analysis of the resonant wavelength and the amplitude of the two main lobes of the PDL spectrum, this sensor can measure twist angle and determine twist direction simultaneously. Moreover, the performance of the sensor is not affected by strain and temperature variations.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. J. Rao, T. Zhu, and Q. J. Mo, “Highly sensitive fiber-optic torsion sensor based on an ultra-long period fiber grating,” Opt. Commun.266(1), 187–190 (2006).
    [CrossRef]
  2. C. Y. Lin, L. A. Wang, and G. W. Chern, “Corrugated long-period fiber gratings as strain, torsion, and bending sensors,” J. Lightwave Technol.19(8), 1159–1168 (2001).
    [CrossRef]
  3. X. Chen, K. Zhou, L. Zhang, and I. Bennion, “In-fiber twist sensor based on a fiber Bragg grating with 81 tilted structure,” IEEE Photon. Technol. Lett.18, 2596–2598 (2006).
    [CrossRef]
  4. L. L. Shi, T. Zhu, Y. E. Fan, K. S. Chiang, and Y. J. Rao, “Torsion sensing with a fiber ring laser incorporating a pair of rotary long-period fiber gratings,” Opt. Commun.284(22), 5299–5302 (2011).
    [CrossRef]
  5. J. H. Wo, M. Jiang, M. Malnou, Q. Sun, J. Zhang, P. P. Shum, and D. Liu, “Twist sensor based on axial strain insensitive distributed Bragg reflector fiber laser,” Opt. Express20(3), 2844–2850 (2012).
    [CrossRef] [PubMed]
  6. O. Frazao, C. Jesus, J. M. Baptista, J. L. Santos, and P. Roy, “Fiber-Optic Interferometric torsion sensor based on a two-LP-mode operation in birefringent fiber,” IEEE Photon. Technol. Lett.21(17), 1277–1279 (2009).
    [CrossRef]
  7. H. M. Kim, T. H. Kim, B. K. Kim, and Y. J. Chung, “Temperature-insensitive torsion sensor with enhanced sensitivity by use of a highly birefringent photonic crystal fiber,” IEEE Photon. Technol. Lett.22(20), 1539–1541 (2010).
    [CrossRef]
  8. W. G. Chen, S. Q. Lou, L. W. Wang, H. Zou, W. L. Lu, and S. S. Jian, “Highly sensitive torsion sensor based on Sagnac interferometer using side-leakage photonic crystal Fiber,” IEEE Photon. Technol. Lett.23(21), 1639–1641 (2011).
    [CrossRef]
  9. O. Frazão, R. M. Silva, J. Kobelke, and K. Schuster, “Temperature- and strain-independent torsion sensor using a fiber loop mirror based on suspended twin-core fiber,” Opt. Lett.35(16), 2777–2779 (2010).
    [CrossRef] [PubMed]
  10. S. Bette, C. Caucheteur, M. Wuilpart, P. Mégret, R. Garcia-Olcina, S. Sales, and J. Capmany, “Spectral characterization of differential group delay in uniform fiber Bragg gratings,” Opt. Express13(25), 9954–9960 (2005).
    [CrossRef] [PubMed]
  11. C. Caucheteur, S. Bette, R. Garcia-Olcina, M. Wuilpart, S. Sales, J. Capmany, and P. Mégret, “Transverse strain measurements using the birefringence effect in fiber Bragg gratings,” IEEE Photon. Technol. Lett.19(13), 966–968 (2007).
    [CrossRef]
  12. C. Caucheteur, Y. Shevchenko, L. Y. Shao, M. Wuilpart, and J. Albert, “High resolution interrogation of tilted fiber grating SPR sensors from polarization properties measurement,” Opt. Express19(2), 1656–1664 (2011).
    [CrossRef] [PubMed]
  13. Y. Su, Y. Zhu, B. F. Zhang, J. Li, and Y. Li, “Use of the polarization properties of magneto-optic fiber Bragg gratings for magnetic field sensing purposes,” Opt. Fiber Technol.17(3), 196–200 (2011).
    [CrossRef]
  14. S. T. Oh, W. T. Han, U. C. Paek, and Y. Chung, “Discrimination of temperature and strain with a single FBG based on the birefringence effect,” Opt. Express12(4), 724–729 (2004).
    [CrossRef] [PubMed]
  15. T. Erdogan, “Fiber Grating Spectra,” J. Lightwave Technol.15(8), 1277–1294 (1997).
    [CrossRef]
  16. Y. P. Wang, M. Wang, and X. Q. Huang, “High sensitivity fiber Bragg grating transversal force sensor based on centroid measurement of polarization dependent loss,” Meas. Sci. Technol.21(6), 065304–065308 (2010).
    [CrossRef]
  17. Y. P. Wang, M. Wang, and X. Q. Huang, “Spectral characterization of polarization dependent loss of locally pressed fiber Bragg grating,” Opt. Express19(25), 25535–25544 (2011).
    [CrossRef] [PubMed]

2012 (1)

2011 (5)

L. L. Shi, T. Zhu, Y. E. Fan, K. S. Chiang, and Y. J. Rao, “Torsion sensing with a fiber ring laser incorporating a pair of rotary long-period fiber gratings,” Opt. Commun.284(22), 5299–5302 (2011).
[CrossRef]

W. G. Chen, S. Q. Lou, L. W. Wang, H. Zou, W. L. Lu, and S. S. Jian, “Highly sensitive torsion sensor based on Sagnac interferometer using side-leakage photonic crystal Fiber,” IEEE Photon. Technol. Lett.23(21), 1639–1641 (2011).
[CrossRef]

Y. Su, Y. Zhu, B. F. Zhang, J. Li, and Y. Li, “Use of the polarization properties of magneto-optic fiber Bragg gratings for magnetic field sensing purposes,” Opt. Fiber Technol.17(3), 196–200 (2011).
[CrossRef]

C. Caucheteur, Y. Shevchenko, L. Y. Shao, M. Wuilpart, and J. Albert, “High resolution interrogation of tilted fiber grating SPR sensors from polarization properties measurement,” Opt. Express19(2), 1656–1664 (2011).
[CrossRef] [PubMed]

Y. P. Wang, M. Wang, and X. Q. Huang, “Spectral characterization of polarization dependent loss of locally pressed fiber Bragg grating,” Opt. Express19(25), 25535–25544 (2011).
[CrossRef] [PubMed]

2010 (3)

O. Frazão, R. M. Silva, J. Kobelke, and K. Schuster, “Temperature- and strain-independent torsion sensor using a fiber loop mirror based on suspended twin-core fiber,” Opt. Lett.35(16), 2777–2779 (2010).
[CrossRef] [PubMed]

Y. P. Wang, M. Wang, and X. Q. Huang, “High sensitivity fiber Bragg grating transversal force sensor based on centroid measurement of polarization dependent loss,” Meas. Sci. Technol.21(6), 065304–065308 (2010).
[CrossRef]

H. M. Kim, T. H. Kim, B. K. Kim, and Y. J. Chung, “Temperature-insensitive torsion sensor with enhanced sensitivity by use of a highly birefringent photonic crystal fiber,” IEEE Photon. Technol. Lett.22(20), 1539–1541 (2010).
[CrossRef]

2009 (1)

O. Frazao, C. Jesus, J. M. Baptista, J. L. Santos, and P. Roy, “Fiber-Optic Interferometric torsion sensor based on a two-LP-mode operation in birefringent fiber,” IEEE Photon. Technol. Lett.21(17), 1277–1279 (2009).
[CrossRef]

2007 (1)

C. Caucheteur, S. Bette, R. Garcia-Olcina, M. Wuilpart, S. Sales, J. Capmany, and P. Mégret, “Transverse strain measurements using the birefringence effect in fiber Bragg gratings,” IEEE Photon. Technol. Lett.19(13), 966–968 (2007).
[CrossRef]

2006 (2)

Y. J. Rao, T. Zhu, and Q. J. Mo, “Highly sensitive fiber-optic torsion sensor based on an ultra-long period fiber grating,” Opt. Commun.266(1), 187–190 (2006).
[CrossRef]

X. Chen, K. Zhou, L. Zhang, and I. Bennion, “In-fiber twist sensor based on a fiber Bragg grating with 81 tilted structure,” IEEE Photon. Technol. Lett.18, 2596–2598 (2006).
[CrossRef]

2005 (1)

2004 (1)

2001 (1)

1997 (1)

T. Erdogan, “Fiber Grating Spectra,” J. Lightwave Technol.15(8), 1277–1294 (1997).
[CrossRef]

Albert, J.

Baptista, J. M.

O. Frazao, C. Jesus, J. M. Baptista, J. L. Santos, and P. Roy, “Fiber-Optic Interferometric torsion sensor based on a two-LP-mode operation in birefringent fiber,” IEEE Photon. Technol. Lett.21(17), 1277–1279 (2009).
[CrossRef]

Bennion, I.

X. Chen, K. Zhou, L. Zhang, and I. Bennion, “In-fiber twist sensor based on a fiber Bragg grating with 81 tilted structure,” IEEE Photon. Technol. Lett.18, 2596–2598 (2006).
[CrossRef]

Bette, S.

C. Caucheteur, S. Bette, R. Garcia-Olcina, M. Wuilpart, S. Sales, J. Capmany, and P. Mégret, “Transverse strain measurements using the birefringence effect in fiber Bragg gratings,” IEEE Photon. Technol. Lett.19(13), 966–968 (2007).
[CrossRef]

S. Bette, C. Caucheteur, M. Wuilpart, P. Mégret, R. Garcia-Olcina, S. Sales, and J. Capmany, “Spectral characterization of differential group delay in uniform fiber Bragg gratings,” Opt. Express13(25), 9954–9960 (2005).
[CrossRef] [PubMed]

Capmany, J.

C. Caucheteur, S. Bette, R. Garcia-Olcina, M. Wuilpart, S. Sales, J. Capmany, and P. Mégret, “Transverse strain measurements using the birefringence effect in fiber Bragg gratings,” IEEE Photon. Technol. Lett.19(13), 966–968 (2007).
[CrossRef]

S. Bette, C. Caucheteur, M. Wuilpart, P. Mégret, R. Garcia-Olcina, S. Sales, and J. Capmany, “Spectral characterization of differential group delay in uniform fiber Bragg gratings,” Opt. Express13(25), 9954–9960 (2005).
[CrossRef] [PubMed]

Caucheteur, C.

Chen, W. G.

W. G. Chen, S. Q. Lou, L. W. Wang, H. Zou, W. L. Lu, and S. S. Jian, “Highly sensitive torsion sensor based on Sagnac interferometer using side-leakage photonic crystal Fiber,” IEEE Photon. Technol. Lett.23(21), 1639–1641 (2011).
[CrossRef]

Chen, X.

X. Chen, K. Zhou, L. Zhang, and I. Bennion, “In-fiber twist sensor based on a fiber Bragg grating with 81 tilted structure,” IEEE Photon. Technol. Lett.18, 2596–2598 (2006).
[CrossRef]

Chern, G. W.

Chiang, K. S.

L. L. Shi, T. Zhu, Y. E. Fan, K. S. Chiang, and Y. J. Rao, “Torsion sensing with a fiber ring laser incorporating a pair of rotary long-period fiber gratings,” Opt. Commun.284(22), 5299–5302 (2011).
[CrossRef]

Chung, Y.

Chung, Y. J.

H. M. Kim, T. H. Kim, B. K. Kim, and Y. J. Chung, “Temperature-insensitive torsion sensor with enhanced sensitivity by use of a highly birefringent photonic crystal fiber,” IEEE Photon. Technol. Lett.22(20), 1539–1541 (2010).
[CrossRef]

Erdogan, T.

T. Erdogan, “Fiber Grating Spectra,” J. Lightwave Technol.15(8), 1277–1294 (1997).
[CrossRef]

Fan, Y. E.

L. L. Shi, T. Zhu, Y. E. Fan, K. S. Chiang, and Y. J. Rao, “Torsion sensing with a fiber ring laser incorporating a pair of rotary long-period fiber gratings,” Opt. Commun.284(22), 5299–5302 (2011).
[CrossRef]

Frazao, O.

O. Frazao, C. Jesus, J. M. Baptista, J. L. Santos, and P. Roy, “Fiber-Optic Interferometric torsion sensor based on a two-LP-mode operation in birefringent fiber,” IEEE Photon. Technol. Lett.21(17), 1277–1279 (2009).
[CrossRef]

Frazão, O.

Garcia-Olcina, R.

C. Caucheteur, S. Bette, R. Garcia-Olcina, M. Wuilpart, S. Sales, J. Capmany, and P. Mégret, “Transverse strain measurements using the birefringence effect in fiber Bragg gratings,” IEEE Photon. Technol. Lett.19(13), 966–968 (2007).
[CrossRef]

S. Bette, C. Caucheteur, M. Wuilpart, P. Mégret, R. Garcia-Olcina, S. Sales, and J. Capmany, “Spectral characterization of differential group delay in uniform fiber Bragg gratings,” Opt. Express13(25), 9954–9960 (2005).
[CrossRef] [PubMed]

Han, W. T.

Huang, X. Q.

Y. P. Wang, M. Wang, and X. Q. Huang, “Spectral characterization of polarization dependent loss of locally pressed fiber Bragg grating,” Opt. Express19(25), 25535–25544 (2011).
[CrossRef] [PubMed]

Y. P. Wang, M. Wang, and X. Q. Huang, “High sensitivity fiber Bragg grating transversal force sensor based on centroid measurement of polarization dependent loss,” Meas. Sci. Technol.21(6), 065304–065308 (2010).
[CrossRef]

Jesus, C.

O. Frazao, C. Jesus, J. M. Baptista, J. L. Santos, and P. Roy, “Fiber-Optic Interferometric torsion sensor based on a two-LP-mode operation in birefringent fiber,” IEEE Photon. Technol. Lett.21(17), 1277–1279 (2009).
[CrossRef]

Jian, S. S.

W. G. Chen, S. Q. Lou, L. W. Wang, H. Zou, W. L. Lu, and S. S. Jian, “Highly sensitive torsion sensor based on Sagnac interferometer using side-leakage photonic crystal Fiber,” IEEE Photon. Technol. Lett.23(21), 1639–1641 (2011).
[CrossRef]

Jiang, M.

Kim, B. K.

H. M. Kim, T. H. Kim, B. K. Kim, and Y. J. Chung, “Temperature-insensitive torsion sensor with enhanced sensitivity by use of a highly birefringent photonic crystal fiber,” IEEE Photon. Technol. Lett.22(20), 1539–1541 (2010).
[CrossRef]

Kim, H. M.

H. M. Kim, T. H. Kim, B. K. Kim, and Y. J. Chung, “Temperature-insensitive torsion sensor with enhanced sensitivity by use of a highly birefringent photonic crystal fiber,” IEEE Photon. Technol. Lett.22(20), 1539–1541 (2010).
[CrossRef]

Kim, T. H.

H. M. Kim, T. H. Kim, B. K. Kim, and Y. J. Chung, “Temperature-insensitive torsion sensor with enhanced sensitivity by use of a highly birefringent photonic crystal fiber,” IEEE Photon. Technol. Lett.22(20), 1539–1541 (2010).
[CrossRef]

Kobelke, J.

Li, J.

Y. Su, Y. Zhu, B. F. Zhang, J. Li, and Y. Li, “Use of the polarization properties of magneto-optic fiber Bragg gratings for magnetic field sensing purposes,” Opt. Fiber Technol.17(3), 196–200 (2011).
[CrossRef]

Li, Y.

Y. Su, Y. Zhu, B. F. Zhang, J. Li, and Y. Li, “Use of the polarization properties of magneto-optic fiber Bragg gratings for magnetic field sensing purposes,” Opt. Fiber Technol.17(3), 196–200 (2011).
[CrossRef]

Lin, C. Y.

Liu, D.

Lou, S. Q.

W. G. Chen, S. Q. Lou, L. W. Wang, H. Zou, W. L. Lu, and S. S. Jian, “Highly sensitive torsion sensor based on Sagnac interferometer using side-leakage photonic crystal Fiber,” IEEE Photon. Technol. Lett.23(21), 1639–1641 (2011).
[CrossRef]

Lu, W. L.

W. G. Chen, S. Q. Lou, L. W. Wang, H. Zou, W. L. Lu, and S. S. Jian, “Highly sensitive torsion sensor based on Sagnac interferometer using side-leakage photonic crystal Fiber,” IEEE Photon. Technol. Lett.23(21), 1639–1641 (2011).
[CrossRef]

Malnou, M.

Mégret, P.

C. Caucheteur, S. Bette, R. Garcia-Olcina, M. Wuilpart, S. Sales, J. Capmany, and P. Mégret, “Transverse strain measurements using the birefringence effect in fiber Bragg gratings,” IEEE Photon. Technol. Lett.19(13), 966–968 (2007).
[CrossRef]

S. Bette, C. Caucheteur, M. Wuilpart, P. Mégret, R. Garcia-Olcina, S. Sales, and J. Capmany, “Spectral characterization of differential group delay in uniform fiber Bragg gratings,” Opt. Express13(25), 9954–9960 (2005).
[CrossRef] [PubMed]

Mo, Q. J.

Y. J. Rao, T. Zhu, and Q. J. Mo, “Highly sensitive fiber-optic torsion sensor based on an ultra-long period fiber grating,” Opt. Commun.266(1), 187–190 (2006).
[CrossRef]

Oh, S. T.

Paek, U. C.

Rao, Y. J.

L. L. Shi, T. Zhu, Y. E. Fan, K. S. Chiang, and Y. J. Rao, “Torsion sensing with a fiber ring laser incorporating a pair of rotary long-period fiber gratings,” Opt. Commun.284(22), 5299–5302 (2011).
[CrossRef]

Y. J. Rao, T. Zhu, and Q. J. Mo, “Highly sensitive fiber-optic torsion sensor based on an ultra-long period fiber grating,” Opt. Commun.266(1), 187–190 (2006).
[CrossRef]

Roy, P.

O. Frazao, C. Jesus, J. M. Baptista, J. L. Santos, and P. Roy, “Fiber-Optic Interferometric torsion sensor based on a two-LP-mode operation in birefringent fiber,” IEEE Photon. Technol. Lett.21(17), 1277–1279 (2009).
[CrossRef]

Sales, S.

C. Caucheteur, S. Bette, R. Garcia-Olcina, M. Wuilpart, S. Sales, J. Capmany, and P. Mégret, “Transverse strain measurements using the birefringence effect in fiber Bragg gratings,” IEEE Photon. Technol. Lett.19(13), 966–968 (2007).
[CrossRef]

S. Bette, C. Caucheteur, M. Wuilpart, P. Mégret, R. Garcia-Olcina, S. Sales, and J. Capmany, “Spectral characterization of differential group delay in uniform fiber Bragg gratings,” Opt. Express13(25), 9954–9960 (2005).
[CrossRef] [PubMed]

Santos, J. L.

O. Frazao, C. Jesus, J. M. Baptista, J. L. Santos, and P. Roy, “Fiber-Optic Interferometric torsion sensor based on a two-LP-mode operation in birefringent fiber,” IEEE Photon. Technol. Lett.21(17), 1277–1279 (2009).
[CrossRef]

Schuster, K.

Shao, L. Y.

Shevchenko, Y.

Shi, L. L.

L. L. Shi, T. Zhu, Y. E. Fan, K. S. Chiang, and Y. J. Rao, “Torsion sensing with a fiber ring laser incorporating a pair of rotary long-period fiber gratings,” Opt. Commun.284(22), 5299–5302 (2011).
[CrossRef]

Shum, P. P.

Silva, R. M.

Su, Y.

Y. Su, Y. Zhu, B. F. Zhang, J. Li, and Y. Li, “Use of the polarization properties of magneto-optic fiber Bragg gratings for magnetic field sensing purposes,” Opt. Fiber Technol.17(3), 196–200 (2011).
[CrossRef]

Sun, Q.

Wang, L. A.

Wang, L. W.

W. G. Chen, S. Q. Lou, L. W. Wang, H. Zou, W. L. Lu, and S. S. Jian, “Highly sensitive torsion sensor based on Sagnac interferometer using side-leakage photonic crystal Fiber,” IEEE Photon. Technol. Lett.23(21), 1639–1641 (2011).
[CrossRef]

Wang, M.

Y. P. Wang, M. Wang, and X. Q. Huang, “Spectral characterization of polarization dependent loss of locally pressed fiber Bragg grating,” Opt. Express19(25), 25535–25544 (2011).
[CrossRef] [PubMed]

Y. P. Wang, M. Wang, and X. Q. Huang, “High sensitivity fiber Bragg grating transversal force sensor based on centroid measurement of polarization dependent loss,” Meas. Sci. Technol.21(6), 065304–065308 (2010).
[CrossRef]

Wang, Y. P.

Y. P. Wang, M. Wang, and X. Q. Huang, “Spectral characterization of polarization dependent loss of locally pressed fiber Bragg grating,” Opt. Express19(25), 25535–25544 (2011).
[CrossRef] [PubMed]

Y. P. Wang, M. Wang, and X. Q. Huang, “High sensitivity fiber Bragg grating transversal force sensor based on centroid measurement of polarization dependent loss,” Meas. Sci. Technol.21(6), 065304–065308 (2010).
[CrossRef]

Wo, J. H.

Wuilpart, M.

Zhang, B. F.

Y. Su, Y. Zhu, B. F. Zhang, J. Li, and Y. Li, “Use of the polarization properties of magneto-optic fiber Bragg gratings for magnetic field sensing purposes,” Opt. Fiber Technol.17(3), 196–200 (2011).
[CrossRef]

Zhang, J.

Zhang, L.

X. Chen, K. Zhou, L. Zhang, and I. Bennion, “In-fiber twist sensor based on a fiber Bragg grating with 81 tilted structure,” IEEE Photon. Technol. Lett.18, 2596–2598 (2006).
[CrossRef]

Zhou, K.

X. Chen, K. Zhou, L. Zhang, and I. Bennion, “In-fiber twist sensor based on a fiber Bragg grating with 81 tilted structure,” IEEE Photon. Technol. Lett.18, 2596–2598 (2006).
[CrossRef]

Zhu, T.

L. L. Shi, T. Zhu, Y. E. Fan, K. S. Chiang, and Y. J. Rao, “Torsion sensing with a fiber ring laser incorporating a pair of rotary long-period fiber gratings,” Opt. Commun.284(22), 5299–5302 (2011).
[CrossRef]

Y. J. Rao, T. Zhu, and Q. J. Mo, “Highly sensitive fiber-optic torsion sensor based on an ultra-long period fiber grating,” Opt. Commun.266(1), 187–190 (2006).
[CrossRef]

Zhu, Y.

Y. Su, Y. Zhu, B. F. Zhang, J. Li, and Y. Li, “Use of the polarization properties of magneto-optic fiber Bragg gratings for magnetic field sensing purposes,” Opt. Fiber Technol.17(3), 196–200 (2011).
[CrossRef]

Zou, H.

W. G. Chen, S. Q. Lou, L. W. Wang, H. Zou, W. L. Lu, and S. S. Jian, “Highly sensitive torsion sensor based on Sagnac interferometer using side-leakage photonic crystal Fiber,” IEEE Photon. Technol. Lett.23(21), 1639–1641 (2011).
[CrossRef]

IEEE Photon. Technol. Lett. (5)

O. Frazao, C. Jesus, J. M. Baptista, J. L. Santos, and P. Roy, “Fiber-Optic Interferometric torsion sensor based on a two-LP-mode operation in birefringent fiber,” IEEE Photon. Technol. Lett.21(17), 1277–1279 (2009).
[CrossRef]

H. M. Kim, T. H. Kim, B. K. Kim, and Y. J. Chung, “Temperature-insensitive torsion sensor with enhanced sensitivity by use of a highly birefringent photonic crystal fiber,” IEEE Photon. Technol. Lett.22(20), 1539–1541 (2010).
[CrossRef]

W. G. Chen, S. Q. Lou, L. W. Wang, H. Zou, W. L. Lu, and S. S. Jian, “Highly sensitive torsion sensor based on Sagnac interferometer using side-leakage photonic crystal Fiber,” IEEE Photon. Technol. Lett.23(21), 1639–1641 (2011).
[CrossRef]

C. Caucheteur, S. Bette, R. Garcia-Olcina, M. Wuilpart, S. Sales, J. Capmany, and P. Mégret, “Transverse strain measurements using the birefringence effect in fiber Bragg gratings,” IEEE Photon. Technol. Lett.19(13), 966–968 (2007).
[CrossRef]

X. Chen, K. Zhou, L. Zhang, and I. Bennion, “In-fiber twist sensor based on a fiber Bragg grating with 81 tilted structure,” IEEE Photon. Technol. Lett.18, 2596–2598 (2006).
[CrossRef]

J. Lightwave Technol. (2)

Meas. Sci. Technol. (1)

Y. P. Wang, M. Wang, and X. Q. Huang, “High sensitivity fiber Bragg grating transversal force sensor based on centroid measurement of polarization dependent loss,” Meas. Sci. Technol.21(6), 065304–065308 (2010).
[CrossRef]

Opt. Commun. (2)

L. L. Shi, T. Zhu, Y. E. Fan, K. S. Chiang, and Y. J. Rao, “Torsion sensing with a fiber ring laser incorporating a pair of rotary long-period fiber gratings,” Opt. Commun.284(22), 5299–5302 (2011).
[CrossRef]

Y. J. Rao, T. Zhu, and Q. J. Mo, “Highly sensitive fiber-optic torsion sensor based on an ultra-long period fiber grating,” Opt. Commun.266(1), 187–190 (2006).
[CrossRef]

Opt. Express (5)

Opt. Fiber Technol. (1)

Y. Su, Y. Zhu, B. F. Zhang, J. Li, and Y. Li, “Use of the polarization properties of magneto-optic fiber Bragg gratings for magnetic field sensing purposes,” Opt. Fiber Technol.17(3), 196–200 (2011).
[CrossRef]

Opt. Lett. (1)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic diagram of our FBG twist sensor.

Fig. 2
Fig. 2

Simulated evolutions of (a). Transmitted spectra. (b) PDL response for a variety of twist angles.

Fig. 3
Fig. 3

FBG’s PDL response to (a) Counter-clockwise twisting; (b) Clockwise twist; (c)Temperature; (d) Strain.

Fig. 4
Fig. 4

Experimental set-up of the proposed FBG based twist sensor.

Fig. 5
Fig. 5

Measured PDL spectra when the FBG was twisted 90° (a) Counter-clockwise; (c) Clockwise; and the relationship between P1-P2 and applied twist angle for (b) Counter-clockwise; (d) Clockwise.

Fig. 6
Fig. 6

Measured P1-P2 with different (a) Temperature; (b) Strain levels for 90o twisted FBG.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

E i+1 =R(iωdl) T i (dl)R(ωdl) E i
R(ωdl)=[ cos(ωdl) sin(ωdl) sin(ωdl) cos(ωdl) ]
T i (dl)=[ A x B x 0 0 B x * A x * 0 0 0 0 A y B y 0 0 B y * A y * ]
A x(y) =cosh( γ x(y) dl)j σ x(y) ^ γ x(y) sinh( γ x(y) dl)
B x(y) =j σ x(y) ^ γ x(y) sinh( γ x(y) dl)
γ B = κ 2 σ 2 ^ , σ ^ =δ+σ,
E n =R(θ)( i=1 n T i (dl)R(ωdl)) E 0
PDL=10 log 10 ( | t max | 2 / | t min | 2 )
PDL=10| log 10 ( 1 | r x | 2 1 | r y | 2 ) |

Metrics