Abstract

A novel approach to calibrate a phase-shift formed in a long-period fiber grating (LPG) is firstly proposed and numerically demonstrated, which is based on the use of either intensity- or wavelength-interrogation technique to the main loss-peak of the phase-shift LPG in the spectrum. Moreover, by using a CO2 laser with high-repetition-rate pulses emission, an equivalent phase-shift is successfully created at middle of the LPG. As an application of the proposed calibration scheme, measurement for the temperature and the refractive index of the ambient solution has been proposed and successfully demonstrated by using a phase-shifted LPG.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long-period fiber gratings as Band Rejection Filters,” J. Lightwave Technol.14(1), 58–65 (1996).
    [CrossRef]
  2. V. Bhatia and A. M. Vengsarkar, “Optical fiber long-period grating sensors,” Opt. Lett.21(9), 692–694 (1996).
    [CrossRef] [PubMed]
  3. B. J. Eggleton, R. E. Slusher, J. B. Judkins, J. B. Stark, and A. M. Vengsarkar, “All-optical switching in long-period fiber gratings,” Opt. Lett.22(12), 883–885 (1997).
    [CrossRef] [PubMed]
  4. V. Bhatia, “Applications of long-period gratings to single and multi-parameter sensing,” Opt. Express4(11), 457–466 (1999).
    [CrossRef] [PubMed]
  5. L. Zhang, Y. Liu, L. Everall, J. A. R. Williams, and I. Bennion, “Design and realization of long-period grating devices in conventional and high birefringence fibers and their novel applications as fiber-optic load sensors,” IEEE J. Sel. Top. Quantum Electron.5(5), 1373–1378 (1999).
    [CrossRef]
  6. S. W. James and R. P. Tatam, “Optical fibre long-period grating sensors: characteristics and application,” Meas. Sci. Technol.14(5), R49–R61 (2003).
    [CrossRef]
  7. I. Del Villar, F. J. Arregui, I. R. Matias, A. Cusano, D. Paladino, and A. Cutolo, “Fringe generation with non-uniformly coated long-period fiber gratings,” Opt. Express15(15), 9326–9340 (2007).
    [CrossRef] [PubMed]
  8. P. Pilla, P. Foglia Manzillo, M. Giordano, M. L. Korwin-Pawlowski, W. J. Bock, and A. Cusano, “Spectral behavior of thin film coated cascaded tapered long period gratings in multiple configurations,” Opt. Express16(13), 9765–9780 (2008).
    [CrossRef] [PubMed]
  9. Y. Liu, J. A. R. Williams, L. Zhang, and I. Bennion, “Phase shifted and cascaded long-period fiber gratings,” Opt. Commun.164(1-3), 27–31 (1999).
    [CrossRef]
  10. R. Falate, O. Frazão, G. Rego, J. L. Fabris, and J. L. Santos, “Refractometric sensor based on a phase-shifted long-period fiber grating,” Appl. Opt.45(21), 5066–5072 (2006).
    [CrossRef] [PubMed]
  11. M. Kulishov, D. Krcmarík, and R. Slavík, “Design of terahertz-bandwidth arbitrary-order temporal differentiators based on long-period fiber gratings,” Opt. Lett.32(20), 2978–2980 (2007).
    [CrossRef] [PubMed]
  12. J. Canning and M. Sceats, “π-phase-shifted periodic distributed structures in optical fibres by UV post-processing,” Electron. Lett.30(16), 1344–1345 (1994).
    [CrossRef]
  13. K. W. Chung and S. Yin, “Design of a phase-shifted long-period grating using the partial-etching technique,” Microw. Opt. Technol. Lett.45(1), 18–21 (2005).
    [CrossRef]
  14. X. Chen, K. Zhou, L. Zhang, and I. Bennion, “Optical chemical sensors utilizing long-period fiber gratings UV inscribed in D-fiber with enhanced sensitivity through cladding etching,” IEEE Photon. Technol. Lett.16(5), 1352–1354 (2004).
    [CrossRef]
  15. G. Rego, O. Okhotnikov, E. Dianov, and V. Sulimov, “High temperature stability of long-period fiber gratings produced using an electric arc,” J. Lightwave Technol.19(10), 1574–1579 (2001).
    [CrossRef]
  16. S. Savin, M. J. K. Digonnet, G. S. Kino, and H. J. Shaw, “Tunable mechanically induced long-period fiber gratings,” Opt. Lett.25(10), 710–712 (2000).
    [CrossRef] [PubMed]
  17. G. Rego, J. R. A. Fernandes, J. L. Santos, H. M. Salgado, and P. V. S. Marques, “New technique to mechanically induce lone-period fibre gratings,” Opt. Commun.220, 111–118 (2003).
  18. H. J. Patrick, A. D. Kersey, and F. Bucholtz, “Analysis of the response of long period fiber gratings to external index of refraction,” J. Lightwave Technol.16(9), 1606–1612 (1998).
    [CrossRef]
  19. R. P. Murphy, S. W. James, and R. P. Tatam, “Multiplexing of fiber-optic long-period grating-based interferometric sensors,” J. Lightwave Technol.25(3), 825–829 (2007).
    [CrossRef]
  20. T. Erdogan, “Fiber Grating Spectra,” J. Lightwave Technol.15(8), 1277–1294 (1997).
    [CrossRef]
  21. T. Erdogan, “Cladding-mode resonances in short- and long-period fiber gratings filters,” J. Opt. Soc. Am. A14(8), 1760–1773 (1997).
    [CrossRef]
  22. M. Sumetsky, Y. Dulashko, and A. Hale, “Fabrication and study of bent and coiled free silica nanowires: self-coupling microloop optical interferometer,” Opt. Express12(15), 3521–3531 (2004).
    [CrossRef] [PubMed]
  23. D. D. Davis, T. K. Gaylord, E. N. Glytsis, S. G. Kosinski, S. C. Mettler, and A. M. Vengsarkar, “Long-period fibre grating fabrication with focused CO2 laser pulses,” Electron. Lett.34(3), 302–303 (1998).
    [CrossRef]
  24. Y. Rao, T. Zhu, Z. Ran, Y. Wang, J. Jiang, and A. Hu, “Novel long-period fiber gratings written by high-frequency CO2 laser pulses and applications in optical fiber communications,” Opt. Commun.229(1-6), 209–221 (2004).
    [CrossRef]
  25. Y. Gu, K. S. Chiang, and Y. J. Rao, “Writing of apodized phase-shifted long-period fiber gratings with a computer-controlled CO2 laser,” IEEE Photon. Technol. Lett.21(10), 657–659 (2009).
    [CrossRef]
  26. Y. Wang, “Review of long period fiber gratings written by CO2 laser,” J. Appl. Phys.108(8), 081101 (2010).
    [CrossRef]

2010 (1)

Y. Wang, “Review of long period fiber gratings written by CO2 laser,” J. Appl. Phys.108(8), 081101 (2010).
[CrossRef]

2009 (1)

Y. Gu, K. S. Chiang, and Y. J. Rao, “Writing of apodized phase-shifted long-period fiber gratings with a computer-controlled CO2 laser,” IEEE Photon. Technol. Lett.21(10), 657–659 (2009).
[CrossRef]

2008 (1)

2007 (3)

2006 (1)

2005 (1)

K. W. Chung and S. Yin, “Design of a phase-shifted long-period grating using the partial-etching technique,” Microw. Opt. Technol. Lett.45(1), 18–21 (2005).
[CrossRef]

2004 (3)

X. Chen, K. Zhou, L. Zhang, and I. Bennion, “Optical chemical sensors utilizing long-period fiber gratings UV inscribed in D-fiber with enhanced sensitivity through cladding etching,” IEEE Photon. Technol. Lett.16(5), 1352–1354 (2004).
[CrossRef]

Y. Rao, T. Zhu, Z. Ran, Y. Wang, J. Jiang, and A. Hu, “Novel long-period fiber gratings written by high-frequency CO2 laser pulses and applications in optical fiber communications,” Opt. Commun.229(1-6), 209–221 (2004).
[CrossRef]

M. Sumetsky, Y. Dulashko, and A. Hale, “Fabrication and study of bent and coiled free silica nanowires: self-coupling microloop optical interferometer,” Opt. Express12(15), 3521–3531 (2004).
[CrossRef] [PubMed]

2003 (2)

G. Rego, J. R. A. Fernandes, J. L. Santos, H. M. Salgado, and P. V. S. Marques, “New technique to mechanically induce lone-period fibre gratings,” Opt. Commun.220, 111–118 (2003).

S. W. James and R. P. Tatam, “Optical fibre long-period grating sensors: characteristics and application,” Meas. Sci. Technol.14(5), R49–R61 (2003).
[CrossRef]

2001 (1)

2000 (1)

1999 (3)

L. Zhang, Y. Liu, L. Everall, J. A. R. Williams, and I. Bennion, “Design and realization of long-period grating devices in conventional and high birefringence fibers and their novel applications as fiber-optic load sensors,” IEEE J. Sel. Top. Quantum Electron.5(5), 1373–1378 (1999).
[CrossRef]

Y. Liu, J. A. R. Williams, L. Zhang, and I. Bennion, “Phase shifted and cascaded long-period fiber gratings,” Opt. Commun.164(1-3), 27–31 (1999).
[CrossRef]

V. Bhatia, “Applications of long-period gratings to single and multi-parameter sensing,” Opt. Express4(11), 457–466 (1999).
[CrossRef] [PubMed]

1998 (2)

H. J. Patrick, A. D. Kersey, and F. Bucholtz, “Analysis of the response of long period fiber gratings to external index of refraction,” J. Lightwave Technol.16(9), 1606–1612 (1998).
[CrossRef]

D. D. Davis, T. K. Gaylord, E. N. Glytsis, S. G. Kosinski, S. C. Mettler, and A. M. Vengsarkar, “Long-period fibre grating fabrication with focused CO2 laser pulses,” Electron. Lett.34(3), 302–303 (1998).
[CrossRef]

1997 (3)

1996 (2)

V. Bhatia and A. M. Vengsarkar, “Optical fiber long-period grating sensors,” Opt. Lett.21(9), 692–694 (1996).
[CrossRef] [PubMed]

M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long-period fiber gratings as Band Rejection Filters,” J. Lightwave Technol.14(1), 58–65 (1996).
[CrossRef]

1994 (1)

J. Canning and M. Sceats, “π-phase-shifted periodic distributed structures in optical fibres by UV post-processing,” Electron. Lett.30(16), 1344–1345 (1994).
[CrossRef]

Arregui, F. J.

Bennion, I.

X. Chen, K. Zhou, L. Zhang, and I. Bennion, “Optical chemical sensors utilizing long-period fiber gratings UV inscribed in D-fiber with enhanced sensitivity through cladding etching,” IEEE Photon. Technol. Lett.16(5), 1352–1354 (2004).
[CrossRef]

L. Zhang, Y. Liu, L. Everall, J. A. R. Williams, and I. Bennion, “Design and realization of long-period grating devices in conventional and high birefringence fibers and their novel applications as fiber-optic load sensors,” IEEE J. Sel. Top. Quantum Electron.5(5), 1373–1378 (1999).
[CrossRef]

Y. Liu, J. A. R. Williams, L. Zhang, and I. Bennion, “Phase shifted and cascaded long-period fiber gratings,” Opt. Commun.164(1-3), 27–31 (1999).
[CrossRef]

Bhatia, V.

Bock, W. J.

Bucholtz, F.

Canning, J.

J. Canning and M. Sceats, “π-phase-shifted periodic distributed structures in optical fibres by UV post-processing,” Electron. Lett.30(16), 1344–1345 (1994).
[CrossRef]

Chen, X.

X. Chen, K. Zhou, L. Zhang, and I. Bennion, “Optical chemical sensors utilizing long-period fiber gratings UV inscribed in D-fiber with enhanced sensitivity through cladding etching,” IEEE Photon. Technol. Lett.16(5), 1352–1354 (2004).
[CrossRef]

Chiang, K. S.

Y. Gu, K. S. Chiang, and Y. J. Rao, “Writing of apodized phase-shifted long-period fiber gratings with a computer-controlled CO2 laser,” IEEE Photon. Technol. Lett.21(10), 657–659 (2009).
[CrossRef]

Chung, K. W.

K. W. Chung and S. Yin, “Design of a phase-shifted long-period grating using the partial-etching technique,” Microw. Opt. Technol. Lett.45(1), 18–21 (2005).
[CrossRef]

Cusano, A.

Cutolo, A.

Davis, D. D.

D. D. Davis, T. K. Gaylord, E. N. Glytsis, S. G. Kosinski, S. C. Mettler, and A. M. Vengsarkar, “Long-period fibre grating fabrication with focused CO2 laser pulses,” Electron. Lett.34(3), 302–303 (1998).
[CrossRef]

Del Villar, I.

Dianov, E.

Digonnet, M. J. K.

Dulashko, Y.

Eggleton, B. J.

Erdogan, T.

T. Erdogan, “Cladding-mode resonances in short- and long-period fiber gratings filters,” J. Opt. Soc. Am. A14(8), 1760–1773 (1997).
[CrossRef]

T. Erdogan, “Fiber Grating Spectra,” J. Lightwave Technol.15(8), 1277–1294 (1997).
[CrossRef]

M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long-period fiber gratings as Band Rejection Filters,” J. Lightwave Technol.14(1), 58–65 (1996).
[CrossRef]

Everall, L.

L. Zhang, Y. Liu, L. Everall, J. A. R. Williams, and I. Bennion, “Design and realization of long-period grating devices in conventional and high birefringence fibers and their novel applications as fiber-optic load sensors,” IEEE J. Sel. Top. Quantum Electron.5(5), 1373–1378 (1999).
[CrossRef]

Fabris, J. L.

Falate, R.

Fernandes, J. R. A.

G. Rego, J. R. A. Fernandes, J. L. Santos, H. M. Salgado, and P. V. S. Marques, “New technique to mechanically induce lone-period fibre gratings,” Opt. Commun.220, 111–118 (2003).

Foglia Manzillo, P.

Frazão, O.

Gaylord, T. K.

D. D. Davis, T. K. Gaylord, E. N. Glytsis, S. G. Kosinski, S. C. Mettler, and A. M. Vengsarkar, “Long-period fibre grating fabrication with focused CO2 laser pulses,” Electron. Lett.34(3), 302–303 (1998).
[CrossRef]

Giordano, M.

Glytsis, E. N.

D. D. Davis, T. K. Gaylord, E. N. Glytsis, S. G. Kosinski, S. C. Mettler, and A. M. Vengsarkar, “Long-period fibre grating fabrication with focused CO2 laser pulses,” Electron. Lett.34(3), 302–303 (1998).
[CrossRef]

Gu, Y.

Y. Gu, K. S. Chiang, and Y. J. Rao, “Writing of apodized phase-shifted long-period fiber gratings with a computer-controlled CO2 laser,” IEEE Photon. Technol. Lett.21(10), 657–659 (2009).
[CrossRef]

Hale, A.

Hu, A.

Y. Rao, T. Zhu, Z. Ran, Y. Wang, J. Jiang, and A. Hu, “Novel long-period fiber gratings written by high-frequency CO2 laser pulses and applications in optical fiber communications,” Opt. Commun.229(1-6), 209–221 (2004).
[CrossRef]

James, S. W.

R. P. Murphy, S. W. James, and R. P. Tatam, “Multiplexing of fiber-optic long-period grating-based interferometric sensors,” J. Lightwave Technol.25(3), 825–829 (2007).
[CrossRef]

S. W. James and R. P. Tatam, “Optical fibre long-period grating sensors: characteristics and application,” Meas. Sci. Technol.14(5), R49–R61 (2003).
[CrossRef]

Jiang, J.

Y. Rao, T. Zhu, Z. Ran, Y. Wang, J. Jiang, and A. Hu, “Novel long-period fiber gratings written by high-frequency CO2 laser pulses and applications in optical fiber communications,” Opt. Commun.229(1-6), 209–221 (2004).
[CrossRef]

Judkins, J. B.

B. J. Eggleton, R. E. Slusher, J. B. Judkins, J. B. Stark, and A. M. Vengsarkar, “All-optical switching in long-period fiber gratings,” Opt. Lett.22(12), 883–885 (1997).
[CrossRef] [PubMed]

M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long-period fiber gratings as Band Rejection Filters,” J. Lightwave Technol.14(1), 58–65 (1996).
[CrossRef]

Kersey, A. D.

Kino, G. S.

Korwin-Pawlowski, M. L.

Kosinski, S. G.

D. D. Davis, T. K. Gaylord, E. N. Glytsis, S. G. Kosinski, S. C. Mettler, and A. M. Vengsarkar, “Long-period fibre grating fabrication with focused CO2 laser pulses,” Electron. Lett.34(3), 302–303 (1998).
[CrossRef]

Krcmarík, D.

Kulishov, M.

Lemaire, P. J.

M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long-period fiber gratings as Band Rejection Filters,” J. Lightwave Technol.14(1), 58–65 (1996).
[CrossRef]

Liu, Y.

Y. Liu, J. A. R. Williams, L. Zhang, and I. Bennion, “Phase shifted and cascaded long-period fiber gratings,” Opt. Commun.164(1-3), 27–31 (1999).
[CrossRef]

L. Zhang, Y. Liu, L. Everall, J. A. R. Williams, and I. Bennion, “Design and realization of long-period grating devices in conventional and high birefringence fibers and their novel applications as fiber-optic load sensors,” IEEE J. Sel. Top. Quantum Electron.5(5), 1373–1378 (1999).
[CrossRef]

Marques, P. V. S.

G. Rego, J. R. A. Fernandes, J. L. Santos, H. M. Salgado, and P. V. S. Marques, “New technique to mechanically induce lone-period fibre gratings,” Opt. Commun.220, 111–118 (2003).

Matias, I. R.

Mettler, S. C.

D. D. Davis, T. K. Gaylord, E. N. Glytsis, S. G. Kosinski, S. C. Mettler, and A. M. Vengsarkar, “Long-period fibre grating fabrication with focused CO2 laser pulses,” Electron. Lett.34(3), 302–303 (1998).
[CrossRef]

Murphy, R. P.

Okhotnikov, O.

Paladino, D.

Patrick, H. J.

Pilla, P.

Ran, Z.

Y. Rao, T. Zhu, Z. Ran, Y. Wang, J. Jiang, and A. Hu, “Novel long-period fiber gratings written by high-frequency CO2 laser pulses and applications in optical fiber communications,” Opt. Commun.229(1-6), 209–221 (2004).
[CrossRef]

Rao, Y.

Y. Rao, T. Zhu, Z. Ran, Y. Wang, J. Jiang, and A. Hu, “Novel long-period fiber gratings written by high-frequency CO2 laser pulses and applications in optical fiber communications,” Opt. Commun.229(1-6), 209–221 (2004).
[CrossRef]

Rao, Y. J.

Y. Gu, K. S. Chiang, and Y. J. Rao, “Writing of apodized phase-shifted long-period fiber gratings with a computer-controlled CO2 laser,” IEEE Photon. Technol. Lett.21(10), 657–659 (2009).
[CrossRef]

Rego, G.

Salgado, H. M.

G. Rego, J. R. A. Fernandes, J. L. Santos, H. M. Salgado, and P. V. S. Marques, “New technique to mechanically induce lone-period fibre gratings,” Opt. Commun.220, 111–118 (2003).

Santos, J. L.

R. Falate, O. Frazão, G. Rego, J. L. Fabris, and J. L. Santos, “Refractometric sensor based on a phase-shifted long-period fiber grating,” Appl. Opt.45(21), 5066–5072 (2006).
[CrossRef] [PubMed]

G. Rego, J. R. A. Fernandes, J. L. Santos, H. M. Salgado, and P. V. S. Marques, “New technique to mechanically induce lone-period fibre gratings,” Opt. Commun.220, 111–118 (2003).

Savin, S.

Sceats, M.

J. Canning and M. Sceats, “π-phase-shifted periodic distributed structures in optical fibres by UV post-processing,” Electron. Lett.30(16), 1344–1345 (1994).
[CrossRef]

Shaw, H. J.

Sipe, J. E.

M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long-period fiber gratings as Band Rejection Filters,” J. Lightwave Technol.14(1), 58–65 (1996).
[CrossRef]

Slavík, R.

Slusher, R. E.

Stark, J. B.

Sulimov, V.

Sumetsky, M.

Tatam, R. P.

R. P. Murphy, S. W. James, and R. P. Tatam, “Multiplexing of fiber-optic long-period grating-based interferometric sensors,” J. Lightwave Technol.25(3), 825–829 (2007).
[CrossRef]

S. W. James and R. P. Tatam, “Optical fibre long-period grating sensors: characteristics and application,” Meas. Sci. Technol.14(5), R49–R61 (2003).
[CrossRef]

Vengsarkar, A. M.

Vengsarkar, M.

M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long-period fiber gratings as Band Rejection Filters,” J. Lightwave Technol.14(1), 58–65 (1996).
[CrossRef]

Wang, Y.

Y. Wang, “Review of long period fiber gratings written by CO2 laser,” J. Appl. Phys.108(8), 081101 (2010).
[CrossRef]

Y. Rao, T. Zhu, Z. Ran, Y. Wang, J. Jiang, and A. Hu, “Novel long-period fiber gratings written by high-frequency CO2 laser pulses and applications in optical fiber communications,” Opt. Commun.229(1-6), 209–221 (2004).
[CrossRef]

Williams, J. A. R.

L. Zhang, Y. Liu, L. Everall, J. A. R. Williams, and I. Bennion, “Design and realization of long-period grating devices in conventional and high birefringence fibers and their novel applications as fiber-optic load sensors,” IEEE J. Sel. Top. Quantum Electron.5(5), 1373–1378 (1999).
[CrossRef]

Y. Liu, J. A. R. Williams, L. Zhang, and I. Bennion, “Phase shifted and cascaded long-period fiber gratings,” Opt. Commun.164(1-3), 27–31 (1999).
[CrossRef]

Yin, S.

K. W. Chung and S. Yin, “Design of a phase-shifted long-period grating using the partial-etching technique,” Microw. Opt. Technol. Lett.45(1), 18–21 (2005).
[CrossRef]

Zhang, L.

X. Chen, K. Zhou, L. Zhang, and I. Bennion, “Optical chemical sensors utilizing long-period fiber gratings UV inscribed in D-fiber with enhanced sensitivity through cladding etching,” IEEE Photon. Technol. Lett.16(5), 1352–1354 (2004).
[CrossRef]

Y. Liu, J. A. R. Williams, L. Zhang, and I. Bennion, “Phase shifted and cascaded long-period fiber gratings,” Opt. Commun.164(1-3), 27–31 (1999).
[CrossRef]

L. Zhang, Y. Liu, L. Everall, J. A. R. Williams, and I. Bennion, “Design and realization of long-period grating devices in conventional and high birefringence fibers and their novel applications as fiber-optic load sensors,” IEEE J. Sel. Top. Quantum Electron.5(5), 1373–1378 (1999).
[CrossRef]

Zhou, K.

X. Chen, K. Zhou, L. Zhang, and I. Bennion, “Optical chemical sensors utilizing long-period fiber gratings UV inscribed in D-fiber with enhanced sensitivity through cladding etching,” IEEE Photon. Technol. Lett.16(5), 1352–1354 (2004).
[CrossRef]

Zhu, T.

Y. Rao, T. Zhu, Z. Ran, Y. Wang, J. Jiang, and A. Hu, “Novel long-period fiber gratings written by high-frequency CO2 laser pulses and applications in optical fiber communications,” Opt. Commun.229(1-6), 209–221 (2004).
[CrossRef]

Appl. Opt. (1)

Electron. Lett. (2)

J. Canning and M. Sceats, “π-phase-shifted periodic distributed structures in optical fibres by UV post-processing,” Electron. Lett.30(16), 1344–1345 (1994).
[CrossRef]

D. D. Davis, T. K. Gaylord, E. N. Glytsis, S. G. Kosinski, S. C. Mettler, and A. M. Vengsarkar, “Long-period fibre grating fabrication with focused CO2 laser pulses,” Electron. Lett.34(3), 302–303 (1998).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

L. Zhang, Y. Liu, L. Everall, J. A. R. Williams, and I. Bennion, “Design and realization of long-period grating devices in conventional and high birefringence fibers and their novel applications as fiber-optic load sensors,” IEEE J. Sel. Top. Quantum Electron.5(5), 1373–1378 (1999).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

X. Chen, K. Zhou, L. Zhang, and I. Bennion, “Optical chemical sensors utilizing long-period fiber gratings UV inscribed in D-fiber with enhanced sensitivity through cladding etching,” IEEE Photon. Technol. Lett.16(5), 1352–1354 (2004).
[CrossRef]

Y. Gu, K. S. Chiang, and Y. J. Rao, “Writing of apodized phase-shifted long-period fiber gratings with a computer-controlled CO2 laser,” IEEE Photon. Technol. Lett.21(10), 657–659 (2009).
[CrossRef]

J. Appl. Phys. (1)

Y. Wang, “Review of long period fiber gratings written by CO2 laser,” J. Appl. Phys.108(8), 081101 (2010).
[CrossRef]

J. Lightwave Technol. (5)

J. Opt. Soc. Am. A (1)

Meas. Sci. Technol. (1)

S. W. James and R. P. Tatam, “Optical fibre long-period grating sensors: characteristics and application,” Meas. Sci. Technol.14(5), R49–R61 (2003).
[CrossRef]

Microw. Opt. Technol. Lett. (1)

K. W. Chung and S. Yin, “Design of a phase-shifted long-period grating using the partial-etching technique,” Microw. Opt. Technol. Lett.45(1), 18–21 (2005).
[CrossRef]

Opt. Commun. (3)

Y. Liu, J. A. R. Williams, L. Zhang, and I. Bennion, “Phase shifted and cascaded long-period fiber gratings,” Opt. Commun.164(1-3), 27–31 (1999).
[CrossRef]

G. Rego, J. R. A. Fernandes, J. L. Santos, H. M. Salgado, and P. V. S. Marques, “New technique to mechanically induce lone-period fibre gratings,” Opt. Commun.220, 111–118 (2003).

Y. Rao, T. Zhu, Z. Ran, Y. Wang, J. Jiang, and A. Hu, “Novel long-period fiber gratings written by high-frequency CO2 laser pulses and applications in optical fiber communications,” Opt. Commun.229(1-6), 209–221 (2004).
[CrossRef]

Opt. Express (4)

Opt. Lett. (4)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1
Fig. 1

Theoretical results for the transmission spectra of LPG with and without a phase-shift. The phase shift inserted is within the region of (a) (o, π), and (b) (π, 2π).

Fig. 2
Fig. 2

Theoretical results for the wavelength of loss peak vs. the amount of the inserted phase-shift.

Fig. 3
Fig. 3

Theoretical results for the wavelength of loss peak vs. the amount of the inserted phase-shift.

Fig. 4
Fig. 4

Scheme of the proposed refractometric sensor based on a phase shifted LPG.

Fig. 5
Fig. 5

Dependent of the core effective index n eff (2) on the refractive index of the ambient solvent n a .

Fig. 6
Fig. 6

Change of the phase-shifts formed in the LPG vs. the refractive index of the ambient solvent n a , where the length of sensing area L is (a) 0.15 mm and (b) 0.3 mm.

Fig. 7
Fig. 7

Calculated results for the case of L = 0.15 mm. (a) Dependent of the depth of the resulted loss-band on the refractive index of the ambient solvent n a and (b) dependent of the peak wavelength on the refractive index of the ambient solvent.

Fig. 8
Fig. 8

Calculated results for the case of L = 0.3 mm. (a) Dependent of the depth of the resulted loss-band on the refractive index of the ambient solvent n a and (b) dependent of the peak wavelength on the refractive index of the ambient solvent.

Fig. 9
Fig. 9

Fabrication setup for a phase shifted long-period fiber grating.

Fig. 10
Fig. 10

Experimental results for the measured transmission spectrum of LPG with and without phase-shift. (a) Without the phase shift and (b) with a phase-shift inserted.

Fig. 11
Fig. 11

Micrograph for the central part of the phase shifted LPG, where the fiber is tapered by using CO2 laser.

Fig. 12
Fig. 12

Change of the peak wavelength vs. the ambient temperature of the phase shifted LPG.

Fig. 13
Fig. 13

Measuring results for the dependence of the loss-peak on the temperatures.

Fig. 14
Fig. 14

Measuring results for the transmission spectra of the phase-shift LPG while concentration of the ambient saline solution refractive are 0%, 5%, 10%, 15%, 20% and 25%, respectively.

Fig. 15
Fig. 15

Measurement results. (a) Dependent of the depth of the resulted loss-band on the refractive index of the ambient solution and (b) dependent of the peak wavelength on the refractive index of the ambient solvent.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

Φ= 2π λ 0 L( n eff (2) n eff (1) ),
Φ= T L /α,
n=F(Φ),
ΔT=(Δλ β 1 Φ)/ β 2 ,

Metrics