Abstract

We describe the monolithic integration of microfluidic channels, optical waveguides, a collimating lens and a curved focusing transmission grating in a single PDMS-based microsystem. All optical and fluidic components of the device were simultaneously formed in a single layer of high refractive index (n~1.43) PDMS by soft lithography. Outer layers of lower-index (n~1.41) PDMS were subsequently added to provide optical and fluidic confinement. Here, we focus on the design and characterization of the microspectrometer part, which employs a novel self-focusing strategy based on cylindrical facets, and exhibits resolution <10 nm in the visible wavelength range. The dispersive behavior of the grating was analyzed both experimentally and using numerical simulations, and the results are in good agreement with simplified analytical predictions.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. P. Bacon, Y. Mattley, and R. DeFrece, “Miniature spectroscopic instrumentation: applications to biology and chemistry,” Rev. Sci. Instrum.75(1), 1–16 (2004).
    [CrossRef]
  2. R. F. Wolffenbuttel, “State-of-the-art in integrated optical microspectrometers,” IEEE Trans. Instrum. Meas.53(1), 197–202 (2004).
    [CrossRef]
  3. S. C. Jakeway, A. J. de Mello, and E. L. Russell, “Miniaturized total analysis systems for biological analysis,” Fresenius J. Anal. Chem.366(6-7), 525–539 (2000).
    [CrossRef] [PubMed]
  4. D. S. Goldman, P. L. White, and N. C. Anheier, “Miniaturized spectrometer employing planar waveguides and grating couplers for chemical analysis,” Appl. Opt.29(31), 4583–4589 (1990).
    [CrossRef] [PubMed]
  5. G. M. Yee, N. I. Maluf, P. A. Hing, M. Albin, and G. T. A. Kovacs, “Miniature spectrometers for biochemical analysis,” Sens. Actuators A Phys.58(1), 61–66 (1997).
    [CrossRef]
  6. S. Traut and H. P. Herzig, “Holographically recorded gratings on microlenses for a miniaturized spectrometer array,” Opt. Eng.39(1), 290–298 (2000).
    [CrossRef]
  7. S. Grabarnik, R. Wolffenbuttel, A. Emadi, M. Loktev, E. Sokolova, and G. Vdovin, “Planar double-grating microspectrometer,” Opt. Express15(6), 3581–3588 (2007).
    [CrossRef] [PubMed]
  8. M. L. Adams, M. Enzelberger, S. Quake, and A. Scherer, “Microfluidic integration on detector arrays, for absorption and fluorescence micro-spectrometers,” Sens. Actuators A Phys.104(1), 25–31 (2003).
    [CrossRef]
  9. S. K. Sia and G. M. Whitesides, “Microfluidic devices fabricated in poly(dimethylsiloxane) for biological studies,” Electrophoresis24(21), 3563–3576 (2003).
    [CrossRef] [PubMed]
  10. C. M. Klapperich, “Microfluidic diagnostics: time for industry standards,” Expert Rev. Med. Devices6(3), 211–213 (2009).
    [CrossRef] [PubMed]
  11. S. M. Azmayesh-Fard, E. Flaim, and J. N. McMullin, “PDMS biochips with integrated waveguides,” J. Micromech. Microeng.20(8), 087002 (2010).
    [CrossRef]
  12. S. Camou, H. Fujita, and T. Fujii, “PDMS 2D optical lens integrated with microfluidic channels: principle and characterization,” Lab Chip3(1), 40–45 (2003).
    [CrossRef] [PubMed]
  13. P. Domachuk, H. Perry, M. Cronin-Golomb, and F. G. Omenetto, “Towards an integrated optofluidic diffractive spectrometer,” IEEE Photon. Technol. Lett.19(24), 1976–1978 (2007).
    [CrossRef]
  14. C. Yang, K. Shi, P. Edwards, and Z. Liu, “Demonstration of a PDMS based hybrid grating and Fresnel lens (G-Fresnel) device,” Opt. Express18(23), 23529–23534 (2010).
    [CrossRef] [PubMed]
  15. Z. Hu, A. Glidle, C. N. Ironside, M. Sorel, M. J. Strain, J. Cooper, and H. Yin, “Integrated microspectrometer for fluorescence based analysis in a microfluidic format,” Lab Chip12(16), 2850–2857 (2012).
    [CrossRef] [PubMed]
  16. J. S. Kee, D. P. Poenar, P. Neužil, L. Yobaş, and Y. Chen, “Design and fabrication of Poly(dimethylsiloxane) arrayed waveguide grating,” Opt. Express18(21), 21732–21742 (2010).
    [CrossRef] [PubMed]
  17. D. Sander and J. Müller, “Selffocussing phase transmission grating for an integrated optical microspectrometer,” Sens. Actuators A Phys.88(1), 1–9 (2001).
    [CrossRef]
  18. F. E. Lytle and B. G. Splawn, “Performance of submillimeter square hollow waveguides,” Appl. Opt.41(31), 6660–6665 (2002).
    [CrossRef] [PubMed]
  19. J. N. McMullin, R. G. DeCorby, and C. J. Haugen, “Theory and simulation of a concave diffraction grating demultiplexer for coarse WDM systems,” J. Lightwave Technol.20(4), 758–765 (2002).
    [CrossRef]
  20. X. Chen, J. N. McMullin, C. J. Haugen, and R. G. DeCorby, “Planar concave grating demultiplexer for coarse WDM based on confocal ellipses,” Opt. Commun.237(1–3), 71–77 (2004).
    [CrossRef]
  21. X. Chen, J. N. McMullin, C. J. Haugen, and R. G. DeCorby, “Integrated diffraction grating for lab-on-a-chip microspectrometers,” Proc. SPIE5699, 511–516 (2005).
    [CrossRef]
  22. H. A. Haus, Waves and Fields in Optoelectronics (Prentice-Hall, 1984), Ch. 4.
  23. A. Sommerfeld, Optics, Volume III of Lectures on Theoretical Physics, translated from German (Academic Press, 1964).
  24. M. Totzeck, “Validity of the scalar Kirchhoff and Rayleigh-Sommerfeld diffraction theories in the near field of small phase objects,” J. Opt. Soc. Am. A8(1), 27–32 (1991).
    [CrossRef]
  25. S. M. Azmayesh-Fard, “Gaussian beam propagation: comparison of the analytical closed-form Fresnel integral solution to the simulations of the Huygens, Fresnel, and Rayleigh-Sommerfeld I approximations,” J. Opt. Soc. Am. A30(4), 640–644 (2013).
    [CrossRef] [PubMed]

2013

2012

Z. Hu, A. Glidle, C. N. Ironside, M. Sorel, M. J. Strain, J. Cooper, and H. Yin, “Integrated microspectrometer for fluorescence based analysis in a microfluidic format,” Lab Chip12(16), 2850–2857 (2012).
[CrossRef] [PubMed]

2010

2009

C. M. Klapperich, “Microfluidic diagnostics: time for industry standards,” Expert Rev. Med. Devices6(3), 211–213 (2009).
[CrossRef] [PubMed]

2007

P. Domachuk, H. Perry, M. Cronin-Golomb, and F. G. Omenetto, “Towards an integrated optofluidic diffractive spectrometer,” IEEE Photon. Technol. Lett.19(24), 1976–1978 (2007).
[CrossRef]

S. Grabarnik, R. Wolffenbuttel, A. Emadi, M. Loktev, E. Sokolova, and G. Vdovin, “Planar double-grating microspectrometer,” Opt. Express15(6), 3581–3588 (2007).
[CrossRef] [PubMed]

2005

X. Chen, J. N. McMullin, C. J. Haugen, and R. G. DeCorby, “Integrated diffraction grating for lab-on-a-chip microspectrometers,” Proc. SPIE5699, 511–516 (2005).
[CrossRef]

2004

X. Chen, J. N. McMullin, C. J. Haugen, and R. G. DeCorby, “Planar concave grating demultiplexer for coarse WDM based on confocal ellipses,” Opt. Commun.237(1–3), 71–77 (2004).
[CrossRef]

C. P. Bacon, Y. Mattley, and R. DeFrece, “Miniature spectroscopic instrumentation: applications to biology and chemistry,” Rev. Sci. Instrum.75(1), 1–16 (2004).
[CrossRef]

R. F. Wolffenbuttel, “State-of-the-art in integrated optical microspectrometers,” IEEE Trans. Instrum. Meas.53(1), 197–202 (2004).
[CrossRef]

2003

M. L. Adams, M. Enzelberger, S. Quake, and A. Scherer, “Microfluidic integration on detector arrays, for absorption and fluorescence micro-spectrometers,” Sens. Actuators A Phys.104(1), 25–31 (2003).
[CrossRef]

S. K. Sia and G. M. Whitesides, “Microfluidic devices fabricated in poly(dimethylsiloxane) for biological studies,” Electrophoresis24(21), 3563–3576 (2003).
[CrossRef] [PubMed]

S. Camou, H. Fujita, and T. Fujii, “PDMS 2D optical lens integrated with microfluidic channels: principle and characterization,” Lab Chip3(1), 40–45 (2003).
[CrossRef] [PubMed]

2002

2001

D. Sander and J. Müller, “Selffocussing phase transmission grating for an integrated optical microspectrometer,” Sens. Actuators A Phys.88(1), 1–9 (2001).
[CrossRef]

2000

S. Traut and H. P. Herzig, “Holographically recorded gratings on microlenses for a miniaturized spectrometer array,” Opt. Eng.39(1), 290–298 (2000).
[CrossRef]

S. C. Jakeway, A. J. de Mello, and E. L. Russell, “Miniaturized total analysis systems for biological analysis,” Fresenius J. Anal. Chem.366(6-7), 525–539 (2000).
[CrossRef] [PubMed]

1997

G. M. Yee, N. I. Maluf, P. A. Hing, M. Albin, and G. T. A. Kovacs, “Miniature spectrometers for biochemical analysis,” Sens. Actuators A Phys.58(1), 61–66 (1997).
[CrossRef]

1991

1990

Adams, M. L.

M. L. Adams, M. Enzelberger, S. Quake, and A. Scherer, “Microfluidic integration on detector arrays, for absorption and fluorescence micro-spectrometers,” Sens. Actuators A Phys.104(1), 25–31 (2003).
[CrossRef]

Albin, M.

G. M. Yee, N. I. Maluf, P. A. Hing, M. Albin, and G. T. A. Kovacs, “Miniature spectrometers for biochemical analysis,” Sens. Actuators A Phys.58(1), 61–66 (1997).
[CrossRef]

Anheier, N. C.

Azmayesh-Fard, S. M.

Bacon, C. P.

C. P. Bacon, Y. Mattley, and R. DeFrece, “Miniature spectroscopic instrumentation: applications to biology and chemistry,” Rev. Sci. Instrum.75(1), 1–16 (2004).
[CrossRef]

Camou, S.

S. Camou, H. Fujita, and T. Fujii, “PDMS 2D optical lens integrated with microfluidic channels: principle and characterization,” Lab Chip3(1), 40–45 (2003).
[CrossRef] [PubMed]

Chen, X.

X. Chen, J. N. McMullin, C. J. Haugen, and R. G. DeCorby, “Integrated diffraction grating for lab-on-a-chip microspectrometers,” Proc. SPIE5699, 511–516 (2005).
[CrossRef]

X. Chen, J. N. McMullin, C. J. Haugen, and R. G. DeCorby, “Planar concave grating demultiplexer for coarse WDM based on confocal ellipses,” Opt. Commun.237(1–3), 71–77 (2004).
[CrossRef]

Chen, Y.

Cooper, J.

Z. Hu, A. Glidle, C. N. Ironside, M. Sorel, M. J. Strain, J. Cooper, and H. Yin, “Integrated microspectrometer for fluorescence based analysis in a microfluidic format,” Lab Chip12(16), 2850–2857 (2012).
[CrossRef] [PubMed]

Cronin-Golomb, M.

P. Domachuk, H. Perry, M. Cronin-Golomb, and F. G. Omenetto, “Towards an integrated optofluidic diffractive spectrometer,” IEEE Photon. Technol. Lett.19(24), 1976–1978 (2007).
[CrossRef]

de Mello, A. J.

S. C. Jakeway, A. J. de Mello, and E. L. Russell, “Miniaturized total analysis systems for biological analysis,” Fresenius J. Anal. Chem.366(6-7), 525–539 (2000).
[CrossRef] [PubMed]

DeCorby, R. G.

X. Chen, J. N. McMullin, C. J. Haugen, and R. G. DeCorby, “Integrated diffraction grating for lab-on-a-chip microspectrometers,” Proc. SPIE5699, 511–516 (2005).
[CrossRef]

X. Chen, J. N. McMullin, C. J. Haugen, and R. G. DeCorby, “Planar concave grating demultiplexer for coarse WDM based on confocal ellipses,” Opt. Commun.237(1–3), 71–77 (2004).
[CrossRef]

J. N. McMullin, R. G. DeCorby, and C. J. Haugen, “Theory and simulation of a concave diffraction grating demultiplexer for coarse WDM systems,” J. Lightwave Technol.20(4), 758–765 (2002).
[CrossRef]

DeFrece, R.

C. P. Bacon, Y. Mattley, and R. DeFrece, “Miniature spectroscopic instrumentation: applications to biology and chemistry,” Rev. Sci. Instrum.75(1), 1–16 (2004).
[CrossRef]

Domachuk, P.

P. Domachuk, H. Perry, M. Cronin-Golomb, and F. G. Omenetto, “Towards an integrated optofluidic diffractive spectrometer,” IEEE Photon. Technol. Lett.19(24), 1976–1978 (2007).
[CrossRef]

Edwards, P.

Emadi, A.

Enzelberger, M.

M. L. Adams, M. Enzelberger, S. Quake, and A. Scherer, “Microfluidic integration on detector arrays, for absorption and fluorescence micro-spectrometers,” Sens. Actuators A Phys.104(1), 25–31 (2003).
[CrossRef]

Flaim, E.

S. M. Azmayesh-Fard, E. Flaim, and J. N. McMullin, “PDMS biochips with integrated waveguides,” J. Micromech. Microeng.20(8), 087002 (2010).
[CrossRef]

Fujii, T.

S. Camou, H. Fujita, and T. Fujii, “PDMS 2D optical lens integrated with microfluidic channels: principle and characterization,” Lab Chip3(1), 40–45 (2003).
[CrossRef] [PubMed]

Fujita, H.

S. Camou, H. Fujita, and T. Fujii, “PDMS 2D optical lens integrated with microfluidic channels: principle and characterization,” Lab Chip3(1), 40–45 (2003).
[CrossRef] [PubMed]

Glidle, A.

Z. Hu, A. Glidle, C. N. Ironside, M. Sorel, M. J. Strain, J. Cooper, and H. Yin, “Integrated microspectrometer for fluorescence based analysis in a microfluidic format,” Lab Chip12(16), 2850–2857 (2012).
[CrossRef] [PubMed]

Goldman, D. S.

Grabarnik, S.

Haugen, C. J.

X. Chen, J. N. McMullin, C. J. Haugen, and R. G. DeCorby, “Integrated diffraction grating for lab-on-a-chip microspectrometers,” Proc. SPIE5699, 511–516 (2005).
[CrossRef]

X. Chen, J. N. McMullin, C. J. Haugen, and R. G. DeCorby, “Planar concave grating demultiplexer for coarse WDM based on confocal ellipses,” Opt. Commun.237(1–3), 71–77 (2004).
[CrossRef]

J. N. McMullin, R. G. DeCorby, and C. J. Haugen, “Theory and simulation of a concave diffraction grating demultiplexer for coarse WDM systems,” J. Lightwave Technol.20(4), 758–765 (2002).
[CrossRef]

Herzig, H. P.

S. Traut and H. P. Herzig, “Holographically recorded gratings on microlenses for a miniaturized spectrometer array,” Opt. Eng.39(1), 290–298 (2000).
[CrossRef]

Hing, P. A.

G. M. Yee, N. I. Maluf, P. A. Hing, M. Albin, and G. T. A. Kovacs, “Miniature spectrometers for biochemical analysis,” Sens. Actuators A Phys.58(1), 61–66 (1997).
[CrossRef]

Hu, Z.

Z. Hu, A. Glidle, C. N. Ironside, M. Sorel, M. J. Strain, J. Cooper, and H. Yin, “Integrated microspectrometer for fluorescence based analysis in a microfluidic format,” Lab Chip12(16), 2850–2857 (2012).
[CrossRef] [PubMed]

Ironside, C. N.

Z. Hu, A. Glidle, C. N. Ironside, M. Sorel, M. J. Strain, J. Cooper, and H. Yin, “Integrated microspectrometer for fluorescence based analysis in a microfluidic format,” Lab Chip12(16), 2850–2857 (2012).
[CrossRef] [PubMed]

Jakeway, S. C.

S. C. Jakeway, A. J. de Mello, and E. L. Russell, “Miniaturized total analysis systems for biological analysis,” Fresenius J. Anal. Chem.366(6-7), 525–539 (2000).
[CrossRef] [PubMed]

Kee, J. S.

Klapperich, C. M.

C. M. Klapperich, “Microfluidic diagnostics: time for industry standards,” Expert Rev. Med. Devices6(3), 211–213 (2009).
[CrossRef] [PubMed]

Kovacs, G. T. A.

G. M. Yee, N. I. Maluf, P. A. Hing, M. Albin, and G. T. A. Kovacs, “Miniature spectrometers for biochemical analysis,” Sens. Actuators A Phys.58(1), 61–66 (1997).
[CrossRef]

Liu, Z.

Loktev, M.

Lytle, F. E.

Maluf, N. I.

G. M. Yee, N. I. Maluf, P. A. Hing, M. Albin, and G. T. A. Kovacs, “Miniature spectrometers for biochemical analysis,” Sens. Actuators A Phys.58(1), 61–66 (1997).
[CrossRef]

Mattley, Y.

C. P. Bacon, Y. Mattley, and R. DeFrece, “Miniature spectroscopic instrumentation: applications to biology and chemistry,” Rev. Sci. Instrum.75(1), 1–16 (2004).
[CrossRef]

McMullin, J. N.

S. M. Azmayesh-Fard, E. Flaim, and J. N. McMullin, “PDMS biochips with integrated waveguides,” J. Micromech. Microeng.20(8), 087002 (2010).
[CrossRef]

X. Chen, J. N. McMullin, C. J. Haugen, and R. G. DeCorby, “Integrated diffraction grating for lab-on-a-chip microspectrometers,” Proc. SPIE5699, 511–516 (2005).
[CrossRef]

X. Chen, J. N. McMullin, C. J. Haugen, and R. G. DeCorby, “Planar concave grating demultiplexer for coarse WDM based on confocal ellipses,” Opt. Commun.237(1–3), 71–77 (2004).
[CrossRef]

J. N. McMullin, R. G. DeCorby, and C. J. Haugen, “Theory and simulation of a concave diffraction grating demultiplexer for coarse WDM systems,” J. Lightwave Technol.20(4), 758–765 (2002).
[CrossRef]

Müller, J.

D. Sander and J. Müller, “Selffocussing phase transmission grating for an integrated optical microspectrometer,” Sens. Actuators A Phys.88(1), 1–9 (2001).
[CrossRef]

Neužil, P.

Omenetto, F. G.

P. Domachuk, H. Perry, M. Cronin-Golomb, and F. G. Omenetto, “Towards an integrated optofluidic diffractive spectrometer,” IEEE Photon. Technol. Lett.19(24), 1976–1978 (2007).
[CrossRef]

Perry, H.

P. Domachuk, H. Perry, M. Cronin-Golomb, and F. G. Omenetto, “Towards an integrated optofluidic diffractive spectrometer,” IEEE Photon. Technol. Lett.19(24), 1976–1978 (2007).
[CrossRef]

Poenar, D. P.

Quake, S.

M. L. Adams, M. Enzelberger, S. Quake, and A. Scherer, “Microfluidic integration on detector arrays, for absorption and fluorescence micro-spectrometers,” Sens. Actuators A Phys.104(1), 25–31 (2003).
[CrossRef]

Russell, E. L.

S. C. Jakeway, A. J. de Mello, and E. L. Russell, “Miniaturized total analysis systems for biological analysis,” Fresenius J. Anal. Chem.366(6-7), 525–539 (2000).
[CrossRef] [PubMed]

Sander, D.

D. Sander and J. Müller, “Selffocussing phase transmission grating for an integrated optical microspectrometer,” Sens. Actuators A Phys.88(1), 1–9 (2001).
[CrossRef]

Scherer, A.

M. L. Adams, M. Enzelberger, S. Quake, and A. Scherer, “Microfluidic integration on detector arrays, for absorption and fluorescence micro-spectrometers,” Sens. Actuators A Phys.104(1), 25–31 (2003).
[CrossRef]

Shi, K.

Sia, S. K.

S. K. Sia and G. M. Whitesides, “Microfluidic devices fabricated in poly(dimethylsiloxane) for biological studies,” Electrophoresis24(21), 3563–3576 (2003).
[CrossRef] [PubMed]

Sokolova, E.

Sorel, M.

Z. Hu, A. Glidle, C. N. Ironside, M. Sorel, M. J. Strain, J. Cooper, and H. Yin, “Integrated microspectrometer for fluorescence based analysis in a microfluidic format,” Lab Chip12(16), 2850–2857 (2012).
[CrossRef] [PubMed]

Splawn, B. G.

Strain, M. J.

Z. Hu, A. Glidle, C. N. Ironside, M. Sorel, M. J. Strain, J. Cooper, and H. Yin, “Integrated microspectrometer for fluorescence based analysis in a microfluidic format,” Lab Chip12(16), 2850–2857 (2012).
[CrossRef] [PubMed]

Totzeck, M.

Traut, S.

S. Traut and H. P. Herzig, “Holographically recorded gratings on microlenses for a miniaturized spectrometer array,” Opt. Eng.39(1), 290–298 (2000).
[CrossRef]

Vdovin, G.

White, P. L.

Whitesides, G. M.

S. K. Sia and G. M. Whitesides, “Microfluidic devices fabricated in poly(dimethylsiloxane) for biological studies,” Electrophoresis24(21), 3563–3576 (2003).
[CrossRef] [PubMed]

Wolffenbuttel, R.

Wolffenbuttel, R. F.

R. F. Wolffenbuttel, “State-of-the-art in integrated optical microspectrometers,” IEEE Trans. Instrum. Meas.53(1), 197–202 (2004).
[CrossRef]

Yang, C.

Yee, G. M.

G. M. Yee, N. I. Maluf, P. A. Hing, M. Albin, and G. T. A. Kovacs, “Miniature spectrometers for biochemical analysis,” Sens. Actuators A Phys.58(1), 61–66 (1997).
[CrossRef]

Yin, H.

Z. Hu, A. Glidle, C. N. Ironside, M. Sorel, M. J. Strain, J. Cooper, and H. Yin, “Integrated microspectrometer for fluorescence based analysis in a microfluidic format,” Lab Chip12(16), 2850–2857 (2012).
[CrossRef] [PubMed]

Yobas, L.

Appl. Opt.

Electrophoresis

S. K. Sia and G. M. Whitesides, “Microfluidic devices fabricated in poly(dimethylsiloxane) for biological studies,” Electrophoresis24(21), 3563–3576 (2003).
[CrossRef] [PubMed]

Expert Rev. Med. Devices

C. M. Klapperich, “Microfluidic diagnostics: time for industry standards,” Expert Rev. Med. Devices6(3), 211–213 (2009).
[CrossRef] [PubMed]

Fresenius J. Anal. Chem.

S. C. Jakeway, A. J. de Mello, and E. L. Russell, “Miniaturized total analysis systems for biological analysis,” Fresenius J. Anal. Chem.366(6-7), 525–539 (2000).
[CrossRef] [PubMed]

IEEE Photon. Technol. Lett.

P. Domachuk, H. Perry, M. Cronin-Golomb, and F. G. Omenetto, “Towards an integrated optofluidic diffractive spectrometer,” IEEE Photon. Technol. Lett.19(24), 1976–1978 (2007).
[CrossRef]

IEEE Trans. Instrum. Meas.

R. F. Wolffenbuttel, “State-of-the-art in integrated optical microspectrometers,” IEEE Trans. Instrum. Meas.53(1), 197–202 (2004).
[CrossRef]

J. Lightwave Technol.

J. Micromech. Microeng.

S. M. Azmayesh-Fard, E. Flaim, and J. N. McMullin, “PDMS biochips with integrated waveguides,” J. Micromech. Microeng.20(8), 087002 (2010).
[CrossRef]

J. Opt. Soc. Am. A

Lab Chip

Z. Hu, A. Glidle, C. N. Ironside, M. Sorel, M. J. Strain, J. Cooper, and H. Yin, “Integrated microspectrometer for fluorescence based analysis in a microfluidic format,” Lab Chip12(16), 2850–2857 (2012).
[CrossRef] [PubMed]

S. Camou, H. Fujita, and T. Fujii, “PDMS 2D optical lens integrated with microfluidic channels: principle and characterization,” Lab Chip3(1), 40–45 (2003).
[CrossRef] [PubMed]

Opt. Commun.

X. Chen, J. N. McMullin, C. J. Haugen, and R. G. DeCorby, “Planar concave grating demultiplexer for coarse WDM based on confocal ellipses,” Opt. Commun.237(1–3), 71–77 (2004).
[CrossRef]

Opt. Eng.

S. Traut and H. P. Herzig, “Holographically recorded gratings on microlenses for a miniaturized spectrometer array,” Opt. Eng.39(1), 290–298 (2000).
[CrossRef]

Opt. Express

Proc. SPIE

X. Chen, J. N. McMullin, C. J. Haugen, and R. G. DeCorby, “Integrated diffraction grating for lab-on-a-chip microspectrometers,” Proc. SPIE5699, 511–516 (2005).
[CrossRef]

Rev. Sci. Instrum.

C. P. Bacon, Y. Mattley, and R. DeFrece, “Miniature spectroscopic instrumentation: applications to biology and chemistry,” Rev. Sci. Instrum.75(1), 1–16 (2004).
[CrossRef]

Sens. Actuators A Phys.

G. M. Yee, N. I. Maluf, P. A. Hing, M. Albin, and G. T. A. Kovacs, “Miniature spectrometers for biochemical analysis,” Sens. Actuators A Phys.58(1), 61–66 (1997).
[CrossRef]

M. L. Adams, M. Enzelberger, S. Quake, and A. Scherer, “Microfluidic integration on detector arrays, for absorption and fluorescence micro-spectrometers,” Sens. Actuators A Phys.104(1), 25–31 (2003).
[CrossRef]

D. Sander and J. Müller, “Selffocussing phase transmission grating for an integrated optical microspectrometer,” Sens. Actuators A Phys.88(1), 1–9 (2001).
[CrossRef]

Other

H. A. Haus, Waves and Fields in Optoelectronics (Prentice-Hall, 1984), Ch. 4.

A. Sommerfeld, Optics, Volume III of Lectures on Theoretical Physics, translated from German (Academic Press, 1964).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

(a) Mask design layout of the LOC spectrometer device. In the fabricated chip, the filled black regions become hollow (air-filled) cavities. The teardrop shaped features at upper and lower left are microfluidic reservoirs. (b) Magnified view of the intersection point between the microfluidic channel and three waveguides. (c) Magnified view of the parabolic collimating lens together with the curved focusing transmission grating.

Fig. 2
Fig. 2

Geometry of the focusing grating/lens. The facets of the grating are sections of circles that act like lenses with a common focal point. X and Z are coordinates within the horizontal plane of the slab-waveguide system.

Fig. 3
Fig. 3

The detailed layout of the grating/lens device is shown. The focal point is chosen to lie at the same height as the first grating facet (i.e. at x = −1293 μm). The inset shows a magnified view of the central part of the curved grating, which can be approximated as a linear grating with mean facet period ~7.4 μm.

Fig. 4
Fig. 4

The intensity profile at the output plane is shown, for a 40 μm input Gaussian beam and wavelengths ranging from 532 to 758 nm. The zero, first and second diffracted orders are labeled accordingly.

Fig. 5
Fig. 5

The intensity profile at the output plane is plotted, for an input Gaussian beam and λ = 0.532μm. The horizontal axis was scaled to encompass 10 diffracted orders as indicated by the labels, including the m = + 2 design order centered at – 1551μm.

Fig. 6
Fig. 6

(a) A schematic illustration of the integration strategy is shown. The diagram represents the cross-sectional view of the 3-layer PDMS system with waveguides and microfluidic channels patterned in the higher-index, central PDMS layer. (b) SEM image of the grating facets on the silicon master. (c) SEM image of the grating facets transferred to PDMS using a soft-lithography process.

Fig. 7
Fig. 7

Scattered light images captured by a color camera are shown. The images correspond to diffraction of a green laser, λ = 532 nm (a), a red laser, λ = 632 nm (b), and an amber laser, λ = 594 nm (c). The light path, including the input waveguide, spherical lens interface, and diffraction grating interface, are most clearly visible in part (c).

Fig. 8
Fig. 8

Average pixel intensity plotted versus vertical distance x along the output plane for the 2nd order diffracted modes of 594 nm (left peak) and 532 nm laser light (right peak).

Tables (1)

Tables Icon

Table 1 - Relative angles between adjacent orders

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

R= n 2 n 1 n 2 f,
Δf= m λ n 2 n 1 ,
Λ( n 2 sin θ 2 n 1 sin θ 1 )=mλ,
D λ = θ 2 λ = m n 2 Λcos( θ 2 ) ,
D x = x λ = f eff θ 2 λ .
E(x,z)= i λ.Δz * e i. k eff .Δz * e i. k eff . (Δx) 2 2*Δz *E( x 0 , z 0 )*dx,
U I (ρ)= i k eff 2 b b H 1 ( k eff |ρ ρ ' |)cos(ϑ) U 0 ( ρ ' )d x ' .

Metrics