Abstract

Recently, mechanobiology has received increased attention. For investigation of biofilm and cellular tissue, measurements of the surface topography and deformation in real-time are a pre-requisite for understanding the growth mechanisms. In this paper, a novel three-dimensional (3D) fluorescent microscopic method for surface profilometry and deformation measurements is developed. In this technique a pair of cameras are connected to a binocular fluorescent microscope to acquire micrographs from two different viewing angles of a sample surface doped or sprayed with fluorescent microparticles. Digital image correlation technique is used to search for matching points in the pairing fluorescence micrographs. After calibration of the system, the 3D surface topography is reconstructed from the pair of planar images. When the deformed surface topography is compared with undeformed topography using fluorescent microparticles for movement tracking of individual material points, the full field deformation of the surface is determined. The technique is demonstrated on topography measurement of a biofilm, and also on surface deformation measurement of the biofilm during growth. The use of 3D imaging of the fluorescent microparticles eliminates the formation of bright parts in an image caused by specular reflections. The technique is appropriate for non-contact, full-field and real-time 3D surface profilometry and deformation measurements of materials and structures at the microscale.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Asally, M. Kittisopikul, P. Rué, Y. Du, Z. Hu, T. Çağatay, A. B. Robinson, H. Lu, J. Garcia-Ojalvo, and G. M. Süel, “Localized cell death focuses mechanical forces during 3D patterning in a biofilm,” Proc. Natl. Acad. Sci. U.S.A.109(46), 18891–18896 (2012).
    [CrossRef] [PubMed]
  2. M. T. Raimondi, E. Bonacina, G. Candiani, M. Laganà, E. Rolando, G. Talò, D. Pezzoli, R. D’Anchise, R. Pietrabissa, and M. Moretti, “Comparative chondrogenesis of human cells in a 3D integrated experimental-computational mechanobiology model,” Biomech. Model. Mechanobiol.10(2), 259–268 (2011).
    [CrossRef] [PubMed]
  3. S. A. Maskarinec, C. Franck, D. A. Tirrell, and G. Ravichandran, “Quantifying cellular traction forces in three dimensions,” Proc. Natl. Acad. Sci. U.S.A.106(52), 22108–22113 (2009).
    [CrossRef] [PubMed]
  4. U. Dürig, D. W. Pohl, and F. Rohner, “Near-field optical scanning microscopy,” J. Appl. Phys.59(10), 3318–3327 (1986).
    [CrossRef]
  5. Y. Oshikane, T. Kataoka, M. Okuda, S. Hara, H. Inoue, and M. Nakano, “Observation of nanostructure by scanning near-field optical microscope with small sphere probe,” Sci. Technol. Adv. Mater.8(3), 181–185 (2007).
    [CrossRef]
  6. J. P. Kerrigan, K. Yamazaki, R. K. Meyer, T. Mori, Y. Otake, E. Outa, M. Umezu, H. S. Borovetz, R. L. Kormos, B. P. Griffith, H. Koyanagi, and J. F. Antaki, “High-resolution fluorescent particle-tracking flow visualization within an intraventricular axial flow left ventricular assist device,” Artif. Organs20(5), 534–540 (1996).
    [CrossRef] [PubMed]
  7. J. Sakakibara, K. Hishida, and M. Maeda, “Vortex structure and heat transfer in the stagnation region of an impinging plane jet (simultaneous measurements of velocity and temperature fields by digital particle image velocimetry and laser-induced fluorescence),” Int. J. Heat Mass Tran.40(13), 3163–3176 (1997).
    [CrossRef]
  8. C. M. Wells and M. Parsons, Cell Migration: Developmental Methods and Protocols (Humana, 2011).
  9. G. V. Soni, B. M. Jaffar Ali, Y. Hatwalne, and G. V. Shivashankar, “Single particle tracking of correlated bacterial dynamics,” Biophys. J.84(4), 2634–2637 (2003).
    [CrossRef] [PubMed]
  10. A. D. Dinsmore, E. R. Weeks, V. Prasad, A. C. Levitt, and D. A. Weitz, “Three-dimensional confocal microscopy of colloids,” Appl. Opt.40(24), 4152–4159 (2001).
    [CrossRef] [PubMed]
  11. O. Loh, R. Lam, M. Chen, N. Moldovan, H. Huang, D. Ho, and H. D. Espinosa, “Nanofountain-probe-based high-resolution patterning and single-cell injection of functionalized nanodiamonds,” Small5(14), 1667–1674 (2009).
    [CrossRef] [PubMed]
  12. M. Wu, J. W. Roberts, and M. Buckley, “Three-dimensional fluorescent particle tracking at micron-scale using a single camera,” Exp. Fluids38(4), 461–465 (2005).
    [CrossRef]
  13. T. A. Berfield, J. K. Patel, R. G. Shimmin, P. V. Braun, J. Lambros, and N. R. Sottos, “Fluorescent image correlation for nanoscale deformation measurements,” Small2(5), 631–635 (2006).
    [CrossRef] [PubMed]
  14. A. Hamilton, N. Sottos, and S. White, “Local strain concentrations in a microvascular network,” Exp. Mech.50(2), 255–263 (2010).
    [CrossRef]
  15. B. A. Samuel, M. C. Demirel, and A. Haque, “High resolution deformation and damage detection using fluorescent dyes,” J. Micromech. Microeng.17(11), 2324–2327 (2007).
    [CrossRef]
  16. C. Franck, S. Hong, S. A. Maskarinec, D. A. Tirrell, and G. Ravichandran, “Three-dimensional full-field measurements of large deformations in soft materials using confocal microscopy and digital volume correlation,” Exp. Mech.47(3), 427–438 (2007).
    [CrossRef]
  17. B. K. Bay, T. S. Smith, D. P. Fyhrie, and M. Saad, “Digital volume correlation: three-dimensional strain mapping using X-ray tomography,” Exp. Mech.39(3), 217–226 (1999).
    [CrossRef]
  18. Z. Hu, H. Luo, W. Young, and H. Lu, “Three-dimensional internal large deformation measurement of PMI foam using incremental digital volume correlation,” presented in International Mechanical Engineering Congress and Exposition, Houston, USA, 9–15 Nov. 2012.
  19. S. Li, Z. Xu, I. Reading, S. F. Yoon, Z. P. Fang, and J. Zhao, “Three dimensional sidewall measurements by laser fluorescent confocal microscopy,” Opt. Express16(6), 4001–4014 (2008).
    [CrossRef] [PubMed]
  20. R. Gräf, J. Rietdorf, and T. Zimmermann, “Live Cell Spinning Disk Microscopy,” in Microscopy Techniques, J. Rietdorf, ed. (Springer Berlin Heidelberg, 2005), pp. 57–75.
  21. H. Luo, C. Dai, R. Z. Gan, and H. Lu, “Measurement of young’s modulus of human tympanic membrane at high strain rates,” J. Biomech. Eng.131(6), 064501 (2009).
    [CrossRef] [PubMed]
  22. H. Luo, H. Lu, C. Dai, and R. Z. Gan, “A comparison of Young’s modulus for normal and diseased human eardrums at high strain rates,” Int. J. Exp. Comp. Biomech.1(1), 1–22 (2009).
    [CrossRef]
  23. A. Boyde, “Combining confocal and conventional modes in tandem scanning reflected light-microscopy,” Scanning11(3), 147–152 (1989).
    [CrossRef]
  24. L. Deck and P. de Groot, “High-speed noncontact profiler based on scanning white-light interferometry,” Appl. Opt.33(31), 7334–7338 (1994).
    [CrossRef] [PubMed]
  25. J.-J. Orteu, “3-D computer vision in experimental mechanics,” Opt. Lasers Eng.47(3-4), 282–291 (2009).
    [CrossRef]
  26. W. Chen, J. Z. Zhang, and A. G. Joly, “Optical properties and potential applications of doped semiconductor nanoparticles,” J. Nanosci. Nanotechnol.4(8), 919–947 (2004).
    [CrossRef] [PubMed]
  27. W. H. Peters and W. F. Ranson, “Digital imaging techniques in experimental stress-analysis,” Opt. Eng.21(3), 427–432 (1982).
    [CrossRef]
  28. M. A. Sutton, W. J. Wolters, W. H. Peters, W. F. Ranson, and S. R. McNeill, “Determination of displacements using an improved digital correlation method,” Image Vis. Comput.1(3), 133–139 (1983).
    [CrossRef]
  29. H. Lu, G. Vendroux, and W. Knauss, “Surface deformation measurements of a cylindrical specimen by digital image correlation,” Exp. Mech.37(4), 433–439 (1997).
    [CrossRef]
  30. H. Lu and P. Cary, “Deformation measurements by digital image correlation: Implementation of a second-order displacement gradient,” Exp. Mech.40(4), 393–400 (2000).
    [CrossRef]
  31. P. Luo, Y. Chao, M. Sutton, and W. Peters, “Accurate measurement of three-dimensional deformations in deformable and rigid bodies using computer vision,” Exp. Mech.33(2), 123–132 (1993).
    [CrossRef]
  32. Y. Wang, Error Assessment in 3D Computer Vision Ph.D Dissertations, (University of South Carolina, 2010).
  33. X. D. Ke, H. Schreier, M. Sutton, and Y. Wang, “Error Assessment in Stereo-based Deformation Measurements,” Exp. Mech.51(4), 423–441 (2011).
    [CrossRef]
  34. Y. Q. Wang, M. Sutton, X. D. Ke, H. Schreier, P. Reu, and T. Miller, “On error assessment in stereo-based deformation measurements,” Exp. Mech.51(4), 405–422 (2011).
    [CrossRef]
  35. M. A. Sutton, T. L. Chae, J. L. Turner, and H. A. Bruck, “Development of a computer vision methodology for the analysis of surface deformations in magnified images,” MiCon 90: Adv. in Video Tech. for Microstruc.Con.l, 109–131 (1990).
  36. M. Sutton, J. Orteu, and H. Schreier, Image Correlation for Shape, Motion and Deformation Measurements: Basic Concepts, Theory and Applications (Springer-Verlag, 2009).
  37. H. Schreier, D. Garcia, and M. Sutton, “Advances in light microscope stereo vision,” Exp. Mech.44(3), 278–288 (2004).
    [CrossRef]
  38. M. A. Sutton, X. Ke, S. M. Lessner, M. Goldbach, M. Yost, F. Zhao, and H. W. Schreier, “Strain field measurements on mouse carotid arteries using microscopic three-dimensional digital image correlation,” J. Biomed. Mater. Res. A84A(1), 178–190 (2008).
    [CrossRef] [PubMed]
  39. Z. Y. Zhang, “A flexible new technique for camera calibration,” IEEE T. Pattern Anal.22(11), 1330–1334 (2000).
    [CrossRef]
  40. J.-Y. Bougue, “Camera calibration toolbox for Matlab” (2010). http://www.vision.caltech.edu/bouguetj/calib_doc .
  41. H. A. Bruck, S. R. McNeill, M. A. Sutton, and W. H. Peters, “Digital image correlation using Newton-Raphson method of partial-differential correlation,” Exp. Mech.29(3), 261–267 (1989).
    [CrossRef]
  42. B. Pan, “Reliability-guided digital image correlation for image deformation measurement,” Appl. Opt.48(8), 1535–1542 (2009).
    [CrossRef] [PubMed]
  43. Y. L. You and M. Kaveh, “Fourth-order partial differential equations for noise removal,” IEEE Trans. Image Process.9(10), 1723–1730 (2000).
    [CrossRef] [PubMed]
  44. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes 3rd Edition: The Art Of Scientific Computing (Cambridge University, 2007).
  45. L. Hall-Stoodley, J. W. Costerton, and P. Stoodley, “Bacterial biofilms: from the natural environment to infectious diseases,” Nat. Rev. Microbiol.2(2), 95–108 (2004).
    [CrossRef] [PubMed]
  46. G. Lear and G. D. Lewis, Microbial Biofilms: Current Research and Applications (Caister Academic, 2012).
  47. V. Clausnitzer and J. W. Hopmans, “Determination of phase-volume fractions from tomographic measurements in two-phase systems,” Adv. Water Resour.22(6), 577–584 (1999).
    [CrossRef]
  48. T. Hua, H. Xie, S. Wang, Z. Hu, P. Chen, and Q. Zhang, “Evaluation of the quality of a speckle pattern in the digital image correlation method by mean subset fluctuation,” Opt. Laser Technol.43(1), 9–13 (2011).
    [CrossRef]
  49. Z. Hu, H. Xie, J. Lu, H. Wang, and J. Zhu, “Error evaluation technique for three-dimensional digital image correlation,” Appl. Opt.50(33), 6239–6247 (2011).
    [CrossRef] [PubMed]

2012 (1)

M. Asally, M. Kittisopikul, P. Rué, Y. Du, Z. Hu, T. Çağatay, A. B. Robinson, H. Lu, J. Garcia-Ojalvo, and G. M. Süel, “Localized cell death focuses mechanical forces during 3D patterning in a biofilm,” Proc. Natl. Acad. Sci. U.S.A.109(46), 18891–18896 (2012).
[CrossRef] [PubMed]

2011 (5)

M. T. Raimondi, E. Bonacina, G. Candiani, M. Laganà, E. Rolando, G. Talò, D. Pezzoli, R. D’Anchise, R. Pietrabissa, and M. Moretti, “Comparative chondrogenesis of human cells in a 3D integrated experimental-computational mechanobiology model,” Biomech. Model. Mechanobiol.10(2), 259–268 (2011).
[CrossRef] [PubMed]

X. D. Ke, H. Schreier, M. Sutton, and Y. Wang, “Error Assessment in Stereo-based Deformation Measurements,” Exp. Mech.51(4), 423–441 (2011).
[CrossRef]

Y. Q. Wang, M. Sutton, X. D. Ke, H. Schreier, P. Reu, and T. Miller, “On error assessment in stereo-based deformation measurements,” Exp. Mech.51(4), 405–422 (2011).
[CrossRef]

T. Hua, H. Xie, S. Wang, Z. Hu, P. Chen, and Q. Zhang, “Evaluation of the quality of a speckle pattern in the digital image correlation method by mean subset fluctuation,” Opt. Laser Technol.43(1), 9–13 (2011).
[CrossRef]

Z. Hu, H. Xie, J. Lu, H. Wang, and J. Zhu, “Error evaluation technique for three-dimensional digital image correlation,” Appl. Opt.50(33), 6239–6247 (2011).
[CrossRef] [PubMed]

2010 (1)

A. Hamilton, N. Sottos, and S. White, “Local strain concentrations in a microvascular network,” Exp. Mech.50(2), 255–263 (2010).
[CrossRef]

2009 (6)

O. Loh, R. Lam, M. Chen, N. Moldovan, H. Huang, D. Ho, and H. D. Espinosa, “Nanofountain-probe-based high-resolution patterning and single-cell injection of functionalized nanodiamonds,” Small5(14), 1667–1674 (2009).
[CrossRef] [PubMed]

J.-J. Orteu, “3-D computer vision in experimental mechanics,” Opt. Lasers Eng.47(3-4), 282–291 (2009).
[CrossRef]

S. A. Maskarinec, C. Franck, D. A. Tirrell, and G. Ravichandran, “Quantifying cellular traction forces in three dimensions,” Proc. Natl. Acad. Sci. U.S.A.106(52), 22108–22113 (2009).
[CrossRef] [PubMed]

H. Luo, C. Dai, R. Z. Gan, and H. Lu, “Measurement of young’s modulus of human tympanic membrane at high strain rates,” J. Biomech. Eng.131(6), 064501 (2009).
[CrossRef] [PubMed]

H. Luo, H. Lu, C. Dai, and R. Z. Gan, “A comparison of Young’s modulus for normal and diseased human eardrums at high strain rates,” Int. J. Exp. Comp. Biomech.1(1), 1–22 (2009).
[CrossRef]

B. Pan, “Reliability-guided digital image correlation for image deformation measurement,” Appl. Opt.48(8), 1535–1542 (2009).
[CrossRef] [PubMed]

2008 (2)

S. Li, Z. Xu, I. Reading, S. F. Yoon, Z. P. Fang, and J. Zhao, “Three dimensional sidewall measurements by laser fluorescent confocal microscopy,” Opt. Express16(6), 4001–4014 (2008).
[CrossRef] [PubMed]

M. A. Sutton, X. Ke, S. M. Lessner, M. Goldbach, M. Yost, F. Zhao, and H. W. Schreier, “Strain field measurements on mouse carotid arteries using microscopic three-dimensional digital image correlation,” J. Biomed. Mater. Res. A84A(1), 178–190 (2008).
[CrossRef] [PubMed]

2007 (3)

Y. Oshikane, T. Kataoka, M. Okuda, S. Hara, H. Inoue, and M. Nakano, “Observation of nanostructure by scanning near-field optical microscope with small sphere probe,” Sci. Technol. Adv. Mater.8(3), 181–185 (2007).
[CrossRef]

B. A. Samuel, M. C. Demirel, and A. Haque, “High resolution deformation and damage detection using fluorescent dyes,” J. Micromech. Microeng.17(11), 2324–2327 (2007).
[CrossRef]

C. Franck, S. Hong, S. A. Maskarinec, D. A. Tirrell, and G. Ravichandran, “Three-dimensional full-field measurements of large deformations in soft materials using confocal microscopy and digital volume correlation,” Exp. Mech.47(3), 427–438 (2007).
[CrossRef]

2006 (1)

T. A. Berfield, J. K. Patel, R. G. Shimmin, P. V. Braun, J. Lambros, and N. R. Sottos, “Fluorescent image correlation for nanoscale deformation measurements,” Small2(5), 631–635 (2006).
[CrossRef] [PubMed]

2005 (1)

M. Wu, J. W. Roberts, and M. Buckley, “Three-dimensional fluorescent particle tracking at micron-scale using a single camera,” Exp. Fluids38(4), 461–465 (2005).
[CrossRef]

2004 (3)

W. Chen, J. Z. Zhang, and A. G. Joly, “Optical properties and potential applications of doped semiconductor nanoparticles,” J. Nanosci. Nanotechnol.4(8), 919–947 (2004).
[CrossRef] [PubMed]

H. Schreier, D. Garcia, and M. Sutton, “Advances in light microscope stereo vision,” Exp. Mech.44(3), 278–288 (2004).
[CrossRef]

L. Hall-Stoodley, J. W. Costerton, and P. Stoodley, “Bacterial biofilms: from the natural environment to infectious diseases,” Nat. Rev. Microbiol.2(2), 95–108 (2004).
[CrossRef] [PubMed]

2003 (1)

G. V. Soni, B. M. Jaffar Ali, Y. Hatwalne, and G. V. Shivashankar, “Single particle tracking of correlated bacterial dynamics,” Biophys. J.84(4), 2634–2637 (2003).
[CrossRef] [PubMed]

2001 (1)

2000 (3)

Y. L. You and M. Kaveh, “Fourth-order partial differential equations for noise removal,” IEEE Trans. Image Process.9(10), 1723–1730 (2000).
[CrossRef] [PubMed]

Z. Y. Zhang, “A flexible new technique for camera calibration,” IEEE T. Pattern Anal.22(11), 1330–1334 (2000).
[CrossRef]

H. Lu and P. Cary, “Deformation measurements by digital image correlation: Implementation of a second-order displacement gradient,” Exp. Mech.40(4), 393–400 (2000).
[CrossRef]

1999 (2)

V. Clausnitzer and J. W. Hopmans, “Determination of phase-volume fractions from tomographic measurements in two-phase systems,” Adv. Water Resour.22(6), 577–584 (1999).
[CrossRef]

B. K. Bay, T. S. Smith, D. P. Fyhrie, and M. Saad, “Digital volume correlation: three-dimensional strain mapping using X-ray tomography,” Exp. Mech.39(3), 217–226 (1999).
[CrossRef]

1997 (2)

J. Sakakibara, K. Hishida, and M. Maeda, “Vortex structure and heat transfer in the stagnation region of an impinging plane jet (simultaneous measurements of velocity and temperature fields by digital particle image velocimetry and laser-induced fluorescence),” Int. J. Heat Mass Tran.40(13), 3163–3176 (1997).
[CrossRef]

H. Lu, G. Vendroux, and W. Knauss, “Surface deformation measurements of a cylindrical specimen by digital image correlation,” Exp. Mech.37(4), 433–439 (1997).
[CrossRef]

1996 (1)

J. P. Kerrigan, K. Yamazaki, R. K. Meyer, T. Mori, Y. Otake, E. Outa, M. Umezu, H. S. Borovetz, R. L. Kormos, B. P. Griffith, H. Koyanagi, and J. F. Antaki, “High-resolution fluorescent particle-tracking flow visualization within an intraventricular axial flow left ventricular assist device,” Artif. Organs20(5), 534–540 (1996).
[CrossRef] [PubMed]

1994 (1)

1993 (1)

P. Luo, Y. Chao, M. Sutton, and W. Peters, “Accurate measurement of three-dimensional deformations in deformable and rigid bodies using computer vision,” Exp. Mech.33(2), 123–132 (1993).
[CrossRef]

1990 (1)

M. A. Sutton, T. L. Chae, J. L. Turner, and H. A. Bruck, “Development of a computer vision methodology for the analysis of surface deformations in magnified images,” MiCon 90: Adv. in Video Tech. for Microstruc.Con.l, 109–131 (1990).

1989 (2)

H. A. Bruck, S. R. McNeill, M. A. Sutton, and W. H. Peters, “Digital image correlation using Newton-Raphson method of partial-differential correlation,” Exp. Mech.29(3), 261–267 (1989).
[CrossRef]

A. Boyde, “Combining confocal and conventional modes in tandem scanning reflected light-microscopy,” Scanning11(3), 147–152 (1989).
[CrossRef]

1986 (1)

U. Dürig, D. W. Pohl, and F. Rohner, “Near-field optical scanning microscopy,” J. Appl. Phys.59(10), 3318–3327 (1986).
[CrossRef]

1983 (1)

M. A. Sutton, W. J. Wolters, W. H. Peters, W. F. Ranson, and S. R. McNeill, “Determination of displacements using an improved digital correlation method,” Image Vis. Comput.1(3), 133–139 (1983).
[CrossRef]

1982 (1)

W. H. Peters and W. F. Ranson, “Digital imaging techniques in experimental stress-analysis,” Opt. Eng.21(3), 427–432 (1982).
[CrossRef]

Antaki, J. F.

J. P. Kerrigan, K. Yamazaki, R. K. Meyer, T. Mori, Y. Otake, E. Outa, M. Umezu, H. S. Borovetz, R. L. Kormos, B. P. Griffith, H. Koyanagi, and J. F. Antaki, “High-resolution fluorescent particle-tracking flow visualization within an intraventricular axial flow left ventricular assist device,” Artif. Organs20(5), 534–540 (1996).
[CrossRef] [PubMed]

Asally, M.

M. Asally, M. Kittisopikul, P. Rué, Y. Du, Z. Hu, T. Çağatay, A. B. Robinson, H. Lu, J. Garcia-Ojalvo, and G. M. Süel, “Localized cell death focuses mechanical forces during 3D patterning in a biofilm,” Proc. Natl. Acad. Sci. U.S.A.109(46), 18891–18896 (2012).
[CrossRef] [PubMed]

Bay, B. K.

B. K. Bay, T. S. Smith, D. P. Fyhrie, and M. Saad, “Digital volume correlation: three-dimensional strain mapping using X-ray tomography,” Exp. Mech.39(3), 217–226 (1999).
[CrossRef]

Berfield, T. A.

T. A. Berfield, J. K. Patel, R. G. Shimmin, P. V. Braun, J. Lambros, and N. R. Sottos, “Fluorescent image correlation for nanoscale deformation measurements,” Small2(5), 631–635 (2006).
[CrossRef] [PubMed]

Bonacina, E.

M. T. Raimondi, E. Bonacina, G. Candiani, M. Laganà, E. Rolando, G. Talò, D. Pezzoli, R. D’Anchise, R. Pietrabissa, and M. Moretti, “Comparative chondrogenesis of human cells in a 3D integrated experimental-computational mechanobiology model,” Biomech. Model. Mechanobiol.10(2), 259–268 (2011).
[CrossRef] [PubMed]

Borovetz, H. S.

J. P. Kerrigan, K. Yamazaki, R. K. Meyer, T. Mori, Y. Otake, E. Outa, M. Umezu, H. S. Borovetz, R. L. Kormos, B. P. Griffith, H. Koyanagi, and J. F. Antaki, “High-resolution fluorescent particle-tracking flow visualization within an intraventricular axial flow left ventricular assist device,” Artif. Organs20(5), 534–540 (1996).
[CrossRef] [PubMed]

Boyde, A.

A. Boyde, “Combining confocal and conventional modes in tandem scanning reflected light-microscopy,” Scanning11(3), 147–152 (1989).
[CrossRef]

Braun, P. V.

T. A. Berfield, J. K. Patel, R. G. Shimmin, P. V. Braun, J. Lambros, and N. R. Sottos, “Fluorescent image correlation for nanoscale deformation measurements,” Small2(5), 631–635 (2006).
[CrossRef] [PubMed]

Bruck, H. A.

M. A. Sutton, T. L. Chae, J. L. Turner, and H. A. Bruck, “Development of a computer vision methodology for the analysis of surface deformations in magnified images,” MiCon 90: Adv. in Video Tech. for Microstruc.Con.l, 109–131 (1990).

H. A. Bruck, S. R. McNeill, M. A. Sutton, and W. H. Peters, “Digital image correlation using Newton-Raphson method of partial-differential correlation,” Exp. Mech.29(3), 261–267 (1989).
[CrossRef]

Buckley, M.

M. Wu, J. W. Roberts, and M. Buckley, “Three-dimensional fluorescent particle tracking at micron-scale using a single camera,” Exp. Fluids38(4), 461–465 (2005).
[CrossRef]

Çagatay, T.

M. Asally, M. Kittisopikul, P. Rué, Y. Du, Z. Hu, T. Çağatay, A. B. Robinson, H. Lu, J. Garcia-Ojalvo, and G. M. Süel, “Localized cell death focuses mechanical forces during 3D patterning in a biofilm,” Proc. Natl. Acad. Sci. U.S.A.109(46), 18891–18896 (2012).
[CrossRef] [PubMed]

Candiani, G.

M. T. Raimondi, E. Bonacina, G. Candiani, M. Laganà, E. Rolando, G. Talò, D. Pezzoli, R. D’Anchise, R. Pietrabissa, and M. Moretti, “Comparative chondrogenesis of human cells in a 3D integrated experimental-computational mechanobiology model,” Biomech. Model. Mechanobiol.10(2), 259–268 (2011).
[CrossRef] [PubMed]

Cary, P.

H. Lu and P. Cary, “Deformation measurements by digital image correlation: Implementation of a second-order displacement gradient,” Exp. Mech.40(4), 393–400 (2000).
[CrossRef]

Chae, T. L.

M. A. Sutton, T. L. Chae, J. L. Turner, and H. A. Bruck, “Development of a computer vision methodology for the analysis of surface deformations in magnified images,” MiCon 90: Adv. in Video Tech. for Microstruc.Con.l, 109–131 (1990).

Chao, Y.

P. Luo, Y. Chao, M. Sutton, and W. Peters, “Accurate measurement of three-dimensional deformations in deformable and rigid bodies using computer vision,” Exp. Mech.33(2), 123–132 (1993).
[CrossRef]

Chen, M.

O. Loh, R. Lam, M. Chen, N. Moldovan, H. Huang, D. Ho, and H. D. Espinosa, “Nanofountain-probe-based high-resolution patterning and single-cell injection of functionalized nanodiamonds,” Small5(14), 1667–1674 (2009).
[CrossRef] [PubMed]

Chen, P.

T. Hua, H. Xie, S. Wang, Z. Hu, P. Chen, and Q. Zhang, “Evaluation of the quality of a speckle pattern in the digital image correlation method by mean subset fluctuation,” Opt. Laser Technol.43(1), 9–13 (2011).
[CrossRef]

Chen, W.

W. Chen, J. Z. Zhang, and A. G. Joly, “Optical properties and potential applications of doped semiconductor nanoparticles,” J. Nanosci. Nanotechnol.4(8), 919–947 (2004).
[CrossRef] [PubMed]

Clausnitzer, V.

V. Clausnitzer and J. W. Hopmans, “Determination of phase-volume fractions from tomographic measurements in two-phase systems,” Adv. Water Resour.22(6), 577–584 (1999).
[CrossRef]

Costerton, J. W.

L. Hall-Stoodley, J. W. Costerton, and P. Stoodley, “Bacterial biofilms: from the natural environment to infectious diseases,” Nat. Rev. Microbiol.2(2), 95–108 (2004).
[CrossRef] [PubMed]

D’Anchise, R.

M. T. Raimondi, E. Bonacina, G. Candiani, M. Laganà, E. Rolando, G. Talò, D. Pezzoli, R. D’Anchise, R. Pietrabissa, and M. Moretti, “Comparative chondrogenesis of human cells in a 3D integrated experimental-computational mechanobiology model,” Biomech. Model. Mechanobiol.10(2), 259–268 (2011).
[CrossRef] [PubMed]

Dai, C.

H. Luo, H. Lu, C. Dai, and R. Z. Gan, “A comparison of Young’s modulus for normal and diseased human eardrums at high strain rates,” Int. J. Exp. Comp. Biomech.1(1), 1–22 (2009).
[CrossRef]

H. Luo, C. Dai, R. Z. Gan, and H. Lu, “Measurement of young’s modulus of human tympanic membrane at high strain rates,” J. Biomech. Eng.131(6), 064501 (2009).
[CrossRef] [PubMed]

de Groot, P.

Deck, L.

Demirel, M. C.

B. A. Samuel, M. C. Demirel, and A. Haque, “High resolution deformation and damage detection using fluorescent dyes,” J. Micromech. Microeng.17(11), 2324–2327 (2007).
[CrossRef]

Dinsmore, A. D.

Du, Y.

M. Asally, M. Kittisopikul, P. Rué, Y. Du, Z. Hu, T. Çağatay, A. B. Robinson, H. Lu, J. Garcia-Ojalvo, and G. M. Süel, “Localized cell death focuses mechanical forces during 3D patterning in a biofilm,” Proc. Natl. Acad. Sci. U.S.A.109(46), 18891–18896 (2012).
[CrossRef] [PubMed]

Dürig, U.

U. Dürig, D. W. Pohl, and F. Rohner, “Near-field optical scanning microscopy,” J. Appl. Phys.59(10), 3318–3327 (1986).
[CrossRef]

Espinosa, H. D.

O. Loh, R. Lam, M. Chen, N. Moldovan, H. Huang, D. Ho, and H. D. Espinosa, “Nanofountain-probe-based high-resolution patterning and single-cell injection of functionalized nanodiamonds,” Small5(14), 1667–1674 (2009).
[CrossRef] [PubMed]

Fang, Z. P.

Franck, C.

S. A. Maskarinec, C. Franck, D. A. Tirrell, and G. Ravichandran, “Quantifying cellular traction forces in three dimensions,” Proc. Natl. Acad. Sci. U.S.A.106(52), 22108–22113 (2009).
[CrossRef] [PubMed]

C. Franck, S. Hong, S. A. Maskarinec, D. A. Tirrell, and G. Ravichandran, “Three-dimensional full-field measurements of large deformations in soft materials using confocal microscopy and digital volume correlation,” Exp. Mech.47(3), 427–438 (2007).
[CrossRef]

Fyhrie, D. P.

B. K. Bay, T. S. Smith, D. P. Fyhrie, and M. Saad, “Digital volume correlation: three-dimensional strain mapping using X-ray tomography,” Exp. Mech.39(3), 217–226 (1999).
[CrossRef]

Gan, R. Z.

H. Luo, C. Dai, R. Z. Gan, and H. Lu, “Measurement of young’s modulus of human tympanic membrane at high strain rates,” J. Biomech. Eng.131(6), 064501 (2009).
[CrossRef] [PubMed]

H. Luo, H. Lu, C. Dai, and R. Z. Gan, “A comparison of Young’s modulus for normal and diseased human eardrums at high strain rates,” Int. J. Exp. Comp. Biomech.1(1), 1–22 (2009).
[CrossRef]

Garcia, D.

H. Schreier, D. Garcia, and M. Sutton, “Advances in light microscope stereo vision,” Exp. Mech.44(3), 278–288 (2004).
[CrossRef]

Garcia-Ojalvo, J.

M. Asally, M. Kittisopikul, P. Rué, Y. Du, Z. Hu, T. Çağatay, A. B. Robinson, H. Lu, J. Garcia-Ojalvo, and G. M. Süel, “Localized cell death focuses mechanical forces during 3D patterning in a biofilm,” Proc. Natl. Acad. Sci. U.S.A.109(46), 18891–18896 (2012).
[CrossRef] [PubMed]

Goldbach, M.

M. A. Sutton, X. Ke, S. M. Lessner, M. Goldbach, M. Yost, F. Zhao, and H. W. Schreier, “Strain field measurements on mouse carotid arteries using microscopic three-dimensional digital image correlation,” J. Biomed. Mater. Res. A84A(1), 178–190 (2008).
[CrossRef] [PubMed]

Griffith, B. P.

J. P. Kerrigan, K. Yamazaki, R. K. Meyer, T. Mori, Y. Otake, E. Outa, M. Umezu, H. S. Borovetz, R. L. Kormos, B. P. Griffith, H. Koyanagi, and J. F. Antaki, “High-resolution fluorescent particle-tracking flow visualization within an intraventricular axial flow left ventricular assist device,” Artif. Organs20(5), 534–540 (1996).
[CrossRef] [PubMed]

Hall-Stoodley, L.

L. Hall-Stoodley, J. W. Costerton, and P. Stoodley, “Bacterial biofilms: from the natural environment to infectious diseases,” Nat. Rev. Microbiol.2(2), 95–108 (2004).
[CrossRef] [PubMed]

Hamilton, A.

A. Hamilton, N. Sottos, and S. White, “Local strain concentrations in a microvascular network,” Exp. Mech.50(2), 255–263 (2010).
[CrossRef]

Haque, A.

B. A. Samuel, M. C. Demirel, and A. Haque, “High resolution deformation and damage detection using fluorescent dyes,” J. Micromech. Microeng.17(11), 2324–2327 (2007).
[CrossRef]

Hara, S.

Y. Oshikane, T. Kataoka, M. Okuda, S. Hara, H. Inoue, and M. Nakano, “Observation of nanostructure by scanning near-field optical microscope with small sphere probe,” Sci. Technol. Adv. Mater.8(3), 181–185 (2007).
[CrossRef]

Hatwalne, Y.

G. V. Soni, B. M. Jaffar Ali, Y. Hatwalne, and G. V. Shivashankar, “Single particle tracking of correlated bacterial dynamics,” Biophys. J.84(4), 2634–2637 (2003).
[CrossRef] [PubMed]

Hishida, K.

J. Sakakibara, K. Hishida, and M. Maeda, “Vortex structure and heat transfer in the stagnation region of an impinging plane jet (simultaneous measurements of velocity and temperature fields by digital particle image velocimetry and laser-induced fluorescence),” Int. J. Heat Mass Tran.40(13), 3163–3176 (1997).
[CrossRef]

Ho, D.

O. Loh, R. Lam, M. Chen, N. Moldovan, H. Huang, D. Ho, and H. D. Espinosa, “Nanofountain-probe-based high-resolution patterning and single-cell injection of functionalized nanodiamonds,” Small5(14), 1667–1674 (2009).
[CrossRef] [PubMed]

Hong, S.

C. Franck, S. Hong, S. A. Maskarinec, D. A. Tirrell, and G. Ravichandran, “Three-dimensional full-field measurements of large deformations in soft materials using confocal microscopy and digital volume correlation,” Exp. Mech.47(3), 427–438 (2007).
[CrossRef]

Hopmans, J. W.

V. Clausnitzer and J. W. Hopmans, “Determination of phase-volume fractions from tomographic measurements in two-phase systems,” Adv. Water Resour.22(6), 577–584 (1999).
[CrossRef]

Hu, Z.

M. Asally, M. Kittisopikul, P. Rué, Y. Du, Z. Hu, T. Çağatay, A. B. Robinson, H. Lu, J. Garcia-Ojalvo, and G. M. Süel, “Localized cell death focuses mechanical forces during 3D patterning in a biofilm,” Proc. Natl. Acad. Sci. U.S.A.109(46), 18891–18896 (2012).
[CrossRef] [PubMed]

T. Hua, H. Xie, S. Wang, Z. Hu, P. Chen, and Q. Zhang, “Evaluation of the quality of a speckle pattern in the digital image correlation method by mean subset fluctuation,” Opt. Laser Technol.43(1), 9–13 (2011).
[CrossRef]

Z. Hu, H. Xie, J. Lu, H. Wang, and J. Zhu, “Error evaluation technique for three-dimensional digital image correlation,” Appl. Opt.50(33), 6239–6247 (2011).
[CrossRef] [PubMed]

Hua, T.

T. Hua, H. Xie, S. Wang, Z. Hu, P. Chen, and Q. Zhang, “Evaluation of the quality of a speckle pattern in the digital image correlation method by mean subset fluctuation,” Opt. Laser Technol.43(1), 9–13 (2011).
[CrossRef]

Huang, H.

O. Loh, R. Lam, M. Chen, N. Moldovan, H. Huang, D. Ho, and H. D. Espinosa, “Nanofountain-probe-based high-resolution patterning and single-cell injection of functionalized nanodiamonds,” Small5(14), 1667–1674 (2009).
[CrossRef] [PubMed]

Inoue, H.

Y. Oshikane, T. Kataoka, M. Okuda, S. Hara, H. Inoue, and M. Nakano, “Observation of nanostructure by scanning near-field optical microscope with small sphere probe,” Sci. Technol. Adv. Mater.8(3), 181–185 (2007).
[CrossRef]

Jaffar Ali, B. M.

G. V. Soni, B. M. Jaffar Ali, Y. Hatwalne, and G. V. Shivashankar, “Single particle tracking of correlated bacterial dynamics,” Biophys. J.84(4), 2634–2637 (2003).
[CrossRef] [PubMed]

Joly, A. G.

W. Chen, J. Z. Zhang, and A. G. Joly, “Optical properties and potential applications of doped semiconductor nanoparticles,” J. Nanosci. Nanotechnol.4(8), 919–947 (2004).
[CrossRef] [PubMed]

Kataoka, T.

Y. Oshikane, T. Kataoka, M. Okuda, S. Hara, H. Inoue, and M. Nakano, “Observation of nanostructure by scanning near-field optical microscope with small sphere probe,” Sci. Technol. Adv. Mater.8(3), 181–185 (2007).
[CrossRef]

Kaveh, M.

Y. L. You and M. Kaveh, “Fourth-order partial differential equations for noise removal,” IEEE Trans. Image Process.9(10), 1723–1730 (2000).
[CrossRef] [PubMed]

Ke, X.

M. A. Sutton, X. Ke, S. M. Lessner, M. Goldbach, M. Yost, F. Zhao, and H. W. Schreier, “Strain field measurements on mouse carotid arteries using microscopic three-dimensional digital image correlation,” J. Biomed. Mater. Res. A84A(1), 178–190 (2008).
[CrossRef] [PubMed]

Ke, X. D.

X. D. Ke, H. Schreier, M. Sutton, and Y. Wang, “Error Assessment in Stereo-based Deformation Measurements,” Exp. Mech.51(4), 423–441 (2011).
[CrossRef]

Y. Q. Wang, M. Sutton, X. D. Ke, H. Schreier, P. Reu, and T. Miller, “On error assessment in stereo-based deformation measurements,” Exp. Mech.51(4), 405–422 (2011).
[CrossRef]

Kerrigan, J. P.

J. P. Kerrigan, K. Yamazaki, R. K. Meyer, T. Mori, Y. Otake, E. Outa, M. Umezu, H. S. Borovetz, R. L. Kormos, B. P. Griffith, H. Koyanagi, and J. F. Antaki, “High-resolution fluorescent particle-tracking flow visualization within an intraventricular axial flow left ventricular assist device,” Artif. Organs20(5), 534–540 (1996).
[CrossRef] [PubMed]

Kittisopikul, M.

M. Asally, M. Kittisopikul, P. Rué, Y. Du, Z. Hu, T. Çağatay, A. B. Robinson, H. Lu, J. Garcia-Ojalvo, and G. M. Süel, “Localized cell death focuses mechanical forces during 3D patterning in a biofilm,” Proc. Natl. Acad. Sci. U.S.A.109(46), 18891–18896 (2012).
[CrossRef] [PubMed]

Knauss, W.

H. Lu, G. Vendroux, and W. Knauss, “Surface deformation measurements of a cylindrical specimen by digital image correlation,” Exp. Mech.37(4), 433–439 (1997).
[CrossRef]

Kormos, R. L.

J. P. Kerrigan, K. Yamazaki, R. K. Meyer, T. Mori, Y. Otake, E. Outa, M. Umezu, H. S. Borovetz, R. L. Kormos, B. P. Griffith, H. Koyanagi, and J. F. Antaki, “High-resolution fluorescent particle-tracking flow visualization within an intraventricular axial flow left ventricular assist device,” Artif. Organs20(5), 534–540 (1996).
[CrossRef] [PubMed]

Koyanagi, H.

J. P. Kerrigan, K. Yamazaki, R. K. Meyer, T. Mori, Y. Otake, E. Outa, M. Umezu, H. S. Borovetz, R. L. Kormos, B. P. Griffith, H. Koyanagi, and J. F. Antaki, “High-resolution fluorescent particle-tracking flow visualization within an intraventricular axial flow left ventricular assist device,” Artif. Organs20(5), 534–540 (1996).
[CrossRef] [PubMed]

Laganà, M.

M. T. Raimondi, E. Bonacina, G. Candiani, M. Laganà, E. Rolando, G. Talò, D. Pezzoli, R. D’Anchise, R. Pietrabissa, and M. Moretti, “Comparative chondrogenesis of human cells in a 3D integrated experimental-computational mechanobiology model,” Biomech. Model. Mechanobiol.10(2), 259–268 (2011).
[CrossRef] [PubMed]

Lam, R.

O. Loh, R. Lam, M. Chen, N. Moldovan, H. Huang, D. Ho, and H. D. Espinosa, “Nanofountain-probe-based high-resolution patterning and single-cell injection of functionalized nanodiamonds,” Small5(14), 1667–1674 (2009).
[CrossRef] [PubMed]

Lambros, J.

T. A. Berfield, J. K. Patel, R. G. Shimmin, P. V. Braun, J. Lambros, and N. R. Sottos, “Fluorescent image correlation for nanoscale deformation measurements,” Small2(5), 631–635 (2006).
[CrossRef] [PubMed]

Lessner, S. M.

M. A. Sutton, X. Ke, S. M. Lessner, M. Goldbach, M. Yost, F. Zhao, and H. W. Schreier, “Strain field measurements on mouse carotid arteries using microscopic three-dimensional digital image correlation,” J. Biomed. Mater. Res. A84A(1), 178–190 (2008).
[CrossRef] [PubMed]

Levitt, A. C.

Li, S.

Loh, O.

O. Loh, R. Lam, M. Chen, N. Moldovan, H. Huang, D. Ho, and H. D. Espinosa, “Nanofountain-probe-based high-resolution patterning and single-cell injection of functionalized nanodiamonds,” Small5(14), 1667–1674 (2009).
[CrossRef] [PubMed]

Lu, H.

M. Asally, M. Kittisopikul, P. Rué, Y. Du, Z. Hu, T. Çağatay, A. B. Robinson, H. Lu, J. Garcia-Ojalvo, and G. M. Süel, “Localized cell death focuses mechanical forces during 3D patterning in a biofilm,” Proc. Natl. Acad. Sci. U.S.A.109(46), 18891–18896 (2012).
[CrossRef] [PubMed]

H. Luo, H. Lu, C. Dai, and R. Z. Gan, “A comparison of Young’s modulus for normal and diseased human eardrums at high strain rates,” Int. J. Exp. Comp. Biomech.1(1), 1–22 (2009).
[CrossRef]

H. Luo, C. Dai, R. Z. Gan, and H. Lu, “Measurement of young’s modulus of human tympanic membrane at high strain rates,” J. Biomech. Eng.131(6), 064501 (2009).
[CrossRef] [PubMed]

H. Lu and P. Cary, “Deformation measurements by digital image correlation: Implementation of a second-order displacement gradient,” Exp. Mech.40(4), 393–400 (2000).
[CrossRef]

H. Lu, G. Vendroux, and W. Knauss, “Surface deformation measurements of a cylindrical specimen by digital image correlation,” Exp. Mech.37(4), 433–439 (1997).
[CrossRef]

Lu, J.

Luo, H.

H. Luo, C. Dai, R. Z. Gan, and H. Lu, “Measurement of young’s modulus of human tympanic membrane at high strain rates,” J. Biomech. Eng.131(6), 064501 (2009).
[CrossRef] [PubMed]

H. Luo, H. Lu, C. Dai, and R. Z. Gan, “A comparison of Young’s modulus for normal and diseased human eardrums at high strain rates,” Int. J. Exp. Comp. Biomech.1(1), 1–22 (2009).
[CrossRef]

Luo, P.

P. Luo, Y. Chao, M. Sutton, and W. Peters, “Accurate measurement of three-dimensional deformations in deformable and rigid bodies using computer vision,” Exp. Mech.33(2), 123–132 (1993).
[CrossRef]

Maeda, M.

J. Sakakibara, K. Hishida, and M. Maeda, “Vortex structure and heat transfer in the stagnation region of an impinging plane jet (simultaneous measurements of velocity and temperature fields by digital particle image velocimetry and laser-induced fluorescence),” Int. J. Heat Mass Tran.40(13), 3163–3176 (1997).
[CrossRef]

Maskarinec, S. A.

S. A. Maskarinec, C. Franck, D. A. Tirrell, and G. Ravichandran, “Quantifying cellular traction forces in three dimensions,” Proc. Natl. Acad. Sci. U.S.A.106(52), 22108–22113 (2009).
[CrossRef] [PubMed]

C. Franck, S. Hong, S. A. Maskarinec, D. A. Tirrell, and G. Ravichandran, “Three-dimensional full-field measurements of large deformations in soft materials using confocal microscopy and digital volume correlation,” Exp. Mech.47(3), 427–438 (2007).
[CrossRef]

McNeill, S. R.

H. A. Bruck, S. R. McNeill, M. A. Sutton, and W. H. Peters, “Digital image correlation using Newton-Raphson method of partial-differential correlation,” Exp. Mech.29(3), 261–267 (1989).
[CrossRef]

M. A. Sutton, W. J. Wolters, W. H. Peters, W. F. Ranson, and S. R. McNeill, “Determination of displacements using an improved digital correlation method,” Image Vis. Comput.1(3), 133–139 (1983).
[CrossRef]

Meyer, R. K.

J. P. Kerrigan, K. Yamazaki, R. K. Meyer, T. Mori, Y. Otake, E. Outa, M. Umezu, H. S. Borovetz, R. L. Kormos, B. P. Griffith, H. Koyanagi, and J. F. Antaki, “High-resolution fluorescent particle-tracking flow visualization within an intraventricular axial flow left ventricular assist device,” Artif. Organs20(5), 534–540 (1996).
[CrossRef] [PubMed]

Miller, T.

Y. Q. Wang, M. Sutton, X. D. Ke, H. Schreier, P. Reu, and T. Miller, “On error assessment in stereo-based deformation measurements,” Exp. Mech.51(4), 405–422 (2011).
[CrossRef]

Moldovan, N.

O. Loh, R. Lam, M. Chen, N. Moldovan, H. Huang, D. Ho, and H. D. Espinosa, “Nanofountain-probe-based high-resolution patterning and single-cell injection of functionalized nanodiamonds,” Small5(14), 1667–1674 (2009).
[CrossRef] [PubMed]

Moretti, M.

M. T. Raimondi, E. Bonacina, G. Candiani, M. Laganà, E. Rolando, G. Talò, D. Pezzoli, R. D’Anchise, R. Pietrabissa, and M. Moretti, “Comparative chondrogenesis of human cells in a 3D integrated experimental-computational mechanobiology model,” Biomech. Model. Mechanobiol.10(2), 259–268 (2011).
[CrossRef] [PubMed]

Mori, T.

J. P. Kerrigan, K. Yamazaki, R. K. Meyer, T. Mori, Y. Otake, E. Outa, M. Umezu, H. S. Borovetz, R. L. Kormos, B. P. Griffith, H. Koyanagi, and J. F. Antaki, “High-resolution fluorescent particle-tracking flow visualization within an intraventricular axial flow left ventricular assist device,” Artif. Organs20(5), 534–540 (1996).
[CrossRef] [PubMed]

Nakano, M.

Y. Oshikane, T. Kataoka, M. Okuda, S. Hara, H. Inoue, and M. Nakano, “Observation of nanostructure by scanning near-field optical microscope with small sphere probe,” Sci. Technol. Adv. Mater.8(3), 181–185 (2007).
[CrossRef]

Okuda, M.

Y. Oshikane, T. Kataoka, M. Okuda, S. Hara, H. Inoue, and M. Nakano, “Observation of nanostructure by scanning near-field optical microscope with small sphere probe,” Sci. Technol. Adv. Mater.8(3), 181–185 (2007).
[CrossRef]

Orteu, J.-J.

J.-J. Orteu, “3-D computer vision in experimental mechanics,” Opt. Lasers Eng.47(3-4), 282–291 (2009).
[CrossRef]

Oshikane, Y.

Y. Oshikane, T. Kataoka, M. Okuda, S. Hara, H. Inoue, and M. Nakano, “Observation of nanostructure by scanning near-field optical microscope with small sphere probe,” Sci. Technol. Adv. Mater.8(3), 181–185 (2007).
[CrossRef]

Otake, Y.

J. P. Kerrigan, K. Yamazaki, R. K. Meyer, T. Mori, Y. Otake, E. Outa, M. Umezu, H. S. Borovetz, R. L. Kormos, B. P. Griffith, H. Koyanagi, and J. F. Antaki, “High-resolution fluorescent particle-tracking flow visualization within an intraventricular axial flow left ventricular assist device,” Artif. Organs20(5), 534–540 (1996).
[CrossRef] [PubMed]

Outa, E.

J. P. Kerrigan, K. Yamazaki, R. K. Meyer, T. Mori, Y. Otake, E. Outa, M. Umezu, H. S. Borovetz, R. L. Kormos, B. P. Griffith, H. Koyanagi, and J. F. Antaki, “High-resolution fluorescent particle-tracking flow visualization within an intraventricular axial flow left ventricular assist device,” Artif. Organs20(5), 534–540 (1996).
[CrossRef] [PubMed]

Pan, B.

Patel, J. K.

T. A. Berfield, J. K. Patel, R. G. Shimmin, P. V. Braun, J. Lambros, and N. R. Sottos, “Fluorescent image correlation for nanoscale deformation measurements,” Small2(5), 631–635 (2006).
[CrossRef] [PubMed]

Peters, W.

P. Luo, Y. Chao, M. Sutton, and W. Peters, “Accurate measurement of three-dimensional deformations in deformable and rigid bodies using computer vision,” Exp. Mech.33(2), 123–132 (1993).
[CrossRef]

Peters, W. H.

H. A. Bruck, S. R. McNeill, M. A. Sutton, and W. H. Peters, “Digital image correlation using Newton-Raphson method of partial-differential correlation,” Exp. Mech.29(3), 261–267 (1989).
[CrossRef]

M. A. Sutton, W. J. Wolters, W. H. Peters, W. F. Ranson, and S. R. McNeill, “Determination of displacements using an improved digital correlation method,” Image Vis. Comput.1(3), 133–139 (1983).
[CrossRef]

W. H. Peters and W. F. Ranson, “Digital imaging techniques in experimental stress-analysis,” Opt. Eng.21(3), 427–432 (1982).
[CrossRef]

Pezzoli, D.

M. T. Raimondi, E. Bonacina, G. Candiani, M. Laganà, E. Rolando, G. Talò, D. Pezzoli, R. D’Anchise, R. Pietrabissa, and M. Moretti, “Comparative chondrogenesis of human cells in a 3D integrated experimental-computational mechanobiology model,” Biomech. Model. Mechanobiol.10(2), 259–268 (2011).
[CrossRef] [PubMed]

Pietrabissa, R.

M. T. Raimondi, E. Bonacina, G. Candiani, M. Laganà, E. Rolando, G. Talò, D. Pezzoli, R. D’Anchise, R. Pietrabissa, and M. Moretti, “Comparative chondrogenesis of human cells in a 3D integrated experimental-computational mechanobiology model,” Biomech. Model. Mechanobiol.10(2), 259–268 (2011).
[CrossRef] [PubMed]

Pohl, D. W.

U. Dürig, D. W. Pohl, and F. Rohner, “Near-field optical scanning microscopy,” J. Appl. Phys.59(10), 3318–3327 (1986).
[CrossRef]

Prasad, V.

Raimondi, M. T.

M. T. Raimondi, E. Bonacina, G. Candiani, M. Laganà, E. Rolando, G. Talò, D. Pezzoli, R. D’Anchise, R. Pietrabissa, and M. Moretti, “Comparative chondrogenesis of human cells in a 3D integrated experimental-computational mechanobiology model,” Biomech. Model. Mechanobiol.10(2), 259–268 (2011).
[CrossRef] [PubMed]

Ranson, W. F.

M. A. Sutton, W. J. Wolters, W. H. Peters, W. F. Ranson, and S. R. McNeill, “Determination of displacements using an improved digital correlation method,” Image Vis. Comput.1(3), 133–139 (1983).
[CrossRef]

W. H. Peters and W. F. Ranson, “Digital imaging techniques in experimental stress-analysis,” Opt. Eng.21(3), 427–432 (1982).
[CrossRef]

Ravichandran, G.

S. A. Maskarinec, C. Franck, D. A. Tirrell, and G. Ravichandran, “Quantifying cellular traction forces in three dimensions,” Proc. Natl. Acad. Sci. U.S.A.106(52), 22108–22113 (2009).
[CrossRef] [PubMed]

C. Franck, S. Hong, S. A. Maskarinec, D. A. Tirrell, and G. Ravichandran, “Three-dimensional full-field measurements of large deformations in soft materials using confocal microscopy and digital volume correlation,” Exp. Mech.47(3), 427–438 (2007).
[CrossRef]

Reading, I.

Reu, P.

Y. Q. Wang, M. Sutton, X. D. Ke, H. Schreier, P. Reu, and T. Miller, “On error assessment in stereo-based deformation measurements,” Exp. Mech.51(4), 405–422 (2011).
[CrossRef]

Roberts, J. W.

M. Wu, J. W. Roberts, and M. Buckley, “Three-dimensional fluorescent particle tracking at micron-scale using a single camera,” Exp. Fluids38(4), 461–465 (2005).
[CrossRef]

Robinson, A. B.

M. Asally, M. Kittisopikul, P. Rué, Y. Du, Z. Hu, T. Çağatay, A. B. Robinson, H. Lu, J. Garcia-Ojalvo, and G. M. Süel, “Localized cell death focuses mechanical forces during 3D patterning in a biofilm,” Proc. Natl. Acad. Sci. U.S.A.109(46), 18891–18896 (2012).
[CrossRef] [PubMed]

Rohner, F.

U. Dürig, D. W. Pohl, and F. Rohner, “Near-field optical scanning microscopy,” J. Appl. Phys.59(10), 3318–3327 (1986).
[CrossRef]

Rolando, E.

M. T. Raimondi, E. Bonacina, G. Candiani, M. Laganà, E. Rolando, G. Talò, D. Pezzoli, R. D’Anchise, R. Pietrabissa, and M. Moretti, “Comparative chondrogenesis of human cells in a 3D integrated experimental-computational mechanobiology model,” Biomech. Model. Mechanobiol.10(2), 259–268 (2011).
[CrossRef] [PubMed]

Rué, P.

M. Asally, M. Kittisopikul, P. Rué, Y. Du, Z. Hu, T. Çağatay, A. B. Robinson, H. Lu, J. Garcia-Ojalvo, and G. M. Süel, “Localized cell death focuses mechanical forces during 3D patterning in a biofilm,” Proc. Natl. Acad. Sci. U.S.A.109(46), 18891–18896 (2012).
[CrossRef] [PubMed]

Saad, M.

B. K. Bay, T. S. Smith, D. P. Fyhrie, and M. Saad, “Digital volume correlation: three-dimensional strain mapping using X-ray tomography,” Exp. Mech.39(3), 217–226 (1999).
[CrossRef]

Sakakibara, J.

J. Sakakibara, K. Hishida, and M. Maeda, “Vortex structure and heat transfer in the stagnation region of an impinging plane jet (simultaneous measurements of velocity and temperature fields by digital particle image velocimetry and laser-induced fluorescence),” Int. J. Heat Mass Tran.40(13), 3163–3176 (1997).
[CrossRef]

Samuel, B. A.

B. A. Samuel, M. C. Demirel, and A. Haque, “High resolution deformation and damage detection using fluorescent dyes,” J. Micromech. Microeng.17(11), 2324–2327 (2007).
[CrossRef]

Schreier, H.

X. D. Ke, H. Schreier, M. Sutton, and Y. Wang, “Error Assessment in Stereo-based Deformation Measurements,” Exp. Mech.51(4), 423–441 (2011).
[CrossRef]

Y. Q. Wang, M. Sutton, X. D. Ke, H. Schreier, P. Reu, and T. Miller, “On error assessment in stereo-based deformation measurements,” Exp. Mech.51(4), 405–422 (2011).
[CrossRef]

H. Schreier, D. Garcia, and M. Sutton, “Advances in light microscope stereo vision,” Exp. Mech.44(3), 278–288 (2004).
[CrossRef]

Schreier, H. W.

M. A. Sutton, X. Ke, S. M. Lessner, M. Goldbach, M. Yost, F. Zhao, and H. W. Schreier, “Strain field measurements on mouse carotid arteries using microscopic three-dimensional digital image correlation,” J. Biomed. Mater. Res. A84A(1), 178–190 (2008).
[CrossRef] [PubMed]

Shimmin, R. G.

T. A. Berfield, J. K. Patel, R. G. Shimmin, P. V. Braun, J. Lambros, and N. R. Sottos, “Fluorescent image correlation for nanoscale deformation measurements,” Small2(5), 631–635 (2006).
[CrossRef] [PubMed]

Shivashankar, G. V.

G. V. Soni, B. M. Jaffar Ali, Y. Hatwalne, and G. V. Shivashankar, “Single particle tracking of correlated bacterial dynamics,” Biophys. J.84(4), 2634–2637 (2003).
[CrossRef] [PubMed]

Smith, T. S.

B. K. Bay, T. S. Smith, D. P. Fyhrie, and M. Saad, “Digital volume correlation: three-dimensional strain mapping using X-ray tomography,” Exp. Mech.39(3), 217–226 (1999).
[CrossRef]

Soni, G. V.

G. V. Soni, B. M. Jaffar Ali, Y. Hatwalne, and G. V. Shivashankar, “Single particle tracking of correlated bacterial dynamics,” Biophys. J.84(4), 2634–2637 (2003).
[CrossRef] [PubMed]

Sottos, N.

A. Hamilton, N. Sottos, and S. White, “Local strain concentrations in a microvascular network,” Exp. Mech.50(2), 255–263 (2010).
[CrossRef]

Sottos, N. R.

T. A. Berfield, J. K. Patel, R. G. Shimmin, P. V. Braun, J. Lambros, and N. R. Sottos, “Fluorescent image correlation for nanoscale deformation measurements,” Small2(5), 631–635 (2006).
[CrossRef] [PubMed]

Stoodley, P.

L. Hall-Stoodley, J. W. Costerton, and P. Stoodley, “Bacterial biofilms: from the natural environment to infectious diseases,” Nat. Rev. Microbiol.2(2), 95–108 (2004).
[CrossRef] [PubMed]

Süel, G. M.

M. Asally, M. Kittisopikul, P. Rué, Y. Du, Z. Hu, T. Çağatay, A. B. Robinson, H. Lu, J. Garcia-Ojalvo, and G. M. Süel, “Localized cell death focuses mechanical forces during 3D patterning in a biofilm,” Proc. Natl. Acad. Sci. U.S.A.109(46), 18891–18896 (2012).
[CrossRef] [PubMed]

Sutton, M.

X. D. Ke, H. Schreier, M. Sutton, and Y. Wang, “Error Assessment in Stereo-based Deformation Measurements,” Exp. Mech.51(4), 423–441 (2011).
[CrossRef]

Y. Q. Wang, M. Sutton, X. D. Ke, H. Schreier, P. Reu, and T. Miller, “On error assessment in stereo-based deformation measurements,” Exp. Mech.51(4), 405–422 (2011).
[CrossRef]

H. Schreier, D. Garcia, and M. Sutton, “Advances in light microscope stereo vision,” Exp. Mech.44(3), 278–288 (2004).
[CrossRef]

P. Luo, Y. Chao, M. Sutton, and W. Peters, “Accurate measurement of three-dimensional deformations in deformable and rigid bodies using computer vision,” Exp. Mech.33(2), 123–132 (1993).
[CrossRef]

Sutton, M. A.

M. A. Sutton, X. Ke, S. M. Lessner, M. Goldbach, M. Yost, F. Zhao, and H. W. Schreier, “Strain field measurements on mouse carotid arteries using microscopic three-dimensional digital image correlation,” J. Biomed. Mater. Res. A84A(1), 178–190 (2008).
[CrossRef] [PubMed]

M. A. Sutton, T. L. Chae, J. L. Turner, and H. A. Bruck, “Development of a computer vision methodology for the analysis of surface deformations in magnified images,” MiCon 90: Adv. in Video Tech. for Microstruc.Con.l, 109–131 (1990).

H. A. Bruck, S. R. McNeill, M. A. Sutton, and W. H. Peters, “Digital image correlation using Newton-Raphson method of partial-differential correlation,” Exp. Mech.29(3), 261–267 (1989).
[CrossRef]

M. A. Sutton, W. J. Wolters, W. H. Peters, W. F. Ranson, and S. R. McNeill, “Determination of displacements using an improved digital correlation method,” Image Vis. Comput.1(3), 133–139 (1983).
[CrossRef]

Talò, G.

M. T. Raimondi, E. Bonacina, G. Candiani, M. Laganà, E. Rolando, G. Talò, D. Pezzoli, R. D’Anchise, R. Pietrabissa, and M. Moretti, “Comparative chondrogenesis of human cells in a 3D integrated experimental-computational mechanobiology model,” Biomech. Model. Mechanobiol.10(2), 259–268 (2011).
[CrossRef] [PubMed]

Tirrell, D. A.

S. A. Maskarinec, C. Franck, D. A. Tirrell, and G. Ravichandran, “Quantifying cellular traction forces in three dimensions,” Proc. Natl. Acad. Sci. U.S.A.106(52), 22108–22113 (2009).
[CrossRef] [PubMed]

C. Franck, S. Hong, S. A. Maskarinec, D. A. Tirrell, and G. Ravichandran, “Three-dimensional full-field measurements of large deformations in soft materials using confocal microscopy and digital volume correlation,” Exp. Mech.47(3), 427–438 (2007).
[CrossRef]

Turner, J. L.

M. A. Sutton, T. L. Chae, J. L. Turner, and H. A. Bruck, “Development of a computer vision methodology for the analysis of surface deformations in magnified images,” MiCon 90: Adv. in Video Tech. for Microstruc.Con.l, 109–131 (1990).

Umezu, M.

J. P. Kerrigan, K. Yamazaki, R. K. Meyer, T. Mori, Y. Otake, E. Outa, M. Umezu, H. S. Borovetz, R. L. Kormos, B. P. Griffith, H. Koyanagi, and J. F. Antaki, “High-resolution fluorescent particle-tracking flow visualization within an intraventricular axial flow left ventricular assist device,” Artif. Organs20(5), 534–540 (1996).
[CrossRef] [PubMed]

Vendroux, G.

H. Lu, G. Vendroux, and W. Knauss, “Surface deformation measurements of a cylindrical specimen by digital image correlation,” Exp. Mech.37(4), 433–439 (1997).
[CrossRef]

Wang, H.

Wang, S.

T. Hua, H. Xie, S. Wang, Z. Hu, P. Chen, and Q. Zhang, “Evaluation of the quality of a speckle pattern in the digital image correlation method by mean subset fluctuation,” Opt. Laser Technol.43(1), 9–13 (2011).
[CrossRef]

Wang, Y.

X. D. Ke, H. Schreier, M. Sutton, and Y. Wang, “Error Assessment in Stereo-based Deformation Measurements,” Exp. Mech.51(4), 423–441 (2011).
[CrossRef]

Wang, Y. Q.

Y. Q. Wang, M. Sutton, X. D. Ke, H. Schreier, P. Reu, and T. Miller, “On error assessment in stereo-based deformation measurements,” Exp. Mech.51(4), 405–422 (2011).
[CrossRef]

Weeks, E. R.

Weitz, D. A.

White, S.

A. Hamilton, N. Sottos, and S. White, “Local strain concentrations in a microvascular network,” Exp. Mech.50(2), 255–263 (2010).
[CrossRef]

Wolters, W. J.

M. A. Sutton, W. J. Wolters, W. H. Peters, W. F. Ranson, and S. R. McNeill, “Determination of displacements using an improved digital correlation method,” Image Vis. Comput.1(3), 133–139 (1983).
[CrossRef]

Wu, M.

M. Wu, J. W. Roberts, and M. Buckley, “Three-dimensional fluorescent particle tracking at micron-scale using a single camera,” Exp. Fluids38(4), 461–465 (2005).
[CrossRef]

Xie, H.

T. Hua, H. Xie, S. Wang, Z. Hu, P. Chen, and Q. Zhang, “Evaluation of the quality of a speckle pattern in the digital image correlation method by mean subset fluctuation,” Opt. Laser Technol.43(1), 9–13 (2011).
[CrossRef]

Z. Hu, H. Xie, J. Lu, H. Wang, and J. Zhu, “Error evaluation technique for three-dimensional digital image correlation,” Appl. Opt.50(33), 6239–6247 (2011).
[CrossRef] [PubMed]

Xu, Z.

Yamazaki, K.

J. P. Kerrigan, K. Yamazaki, R. K. Meyer, T. Mori, Y. Otake, E. Outa, M. Umezu, H. S. Borovetz, R. L. Kormos, B. P. Griffith, H. Koyanagi, and J. F. Antaki, “High-resolution fluorescent particle-tracking flow visualization within an intraventricular axial flow left ventricular assist device,” Artif. Organs20(5), 534–540 (1996).
[CrossRef] [PubMed]

Yoon, S. F.

Yost, M.

M. A. Sutton, X. Ke, S. M. Lessner, M. Goldbach, M. Yost, F. Zhao, and H. W. Schreier, “Strain field measurements on mouse carotid arteries using microscopic three-dimensional digital image correlation,” J. Biomed. Mater. Res. A84A(1), 178–190 (2008).
[CrossRef] [PubMed]

You, Y. L.

Y. L. You and M. Kaveh, “Fourth-order partial differential equations for noise removal,” IEEE Trans. Image Process.9(10), 1723–1730 (2000).
[CrossRef] [PubMed]

Zhang, J. Z.

W. Chen, J. Z. Zhang, and A. G. Joly, “Optical properties and potential applications of doped semiconductor nanoparticles,” J. Nanosci. Nanotechnol.4(8), 919–947 (2004).
[CrossRef] [PubMed]

Zhang, Q.

T. Hua, H. Xie, S. Wang, Z. Hu, P. Chen, and Q. Zhang, “Evaluation of the quality of a speckle pattern in the digital image correlation method by mean subset fluctuation,” Opt. Laser Technol.43(1), 9–13 (2011).
[CrossRef]

Zhang, Z. Y.

Z. Y. Zhang, “A flexible new technique for camera calibration,” IEEE T. Pattern Anal.22(11), 1330–1334 (2000).
[CrossRef]

Zhao, F.

M. A. Sutton, X. Ke, S. M. Lessner, M. Goldbach, M. Yost, F. Zhao, and H. W. Schreier, “Strain field measurements on mouse carotid arteries using microscopic three-dimensional digital image correlation,” J. Biomed. Mater. Res. A84A(1), 178–190 (2008).
[CrossRef] [PubMed]

Zhao, J.

Zhu, J.

Adv. Water Resour. (1)

V. Clausnitzer and J. W. Hopmans, “Determination of phase-volume fractions from tomographic measurements in two-phase systems,” Adv. Water Resour.22(6), 577–584 (1999).
[CrossRef]

Appl. Opt. (4)

Artif. Organs (1)

J. P. Kerrigan, K. Yamazaki, R. K. Meyer, T. Mori, Y. Otake, E. Outa, M. Umezu, H. S. Borovetz, R. L. Kormos, B. P. Griffith, H. Koyanagi, and J. F. Antaki, “High-resolution fluorescent particle-tracking flow visualization within an intraventricular axial flow left ventricular assist device,” Artif. Organs20(5), 534–540 (1996).
[CrossRef] [PubMed]

Biomech. Model. Mechanobiol. (1)

M. T. Raimondi, E. Bonacina, G. Candiani, M. Laganà, E. Rolando, G. Talò, D. Pezzoli, R. D’Anchise, R. Pietrabissa, and M. Moretti, “Comparative chondrogenesis of human cells in a 3D integrated experimental-computational mechanobiology model,” Biomech. Model. Mechanobiol.10(2), 259–268 (2011).
[CrossRef] [PubMed]

Biophys. J. (1)

G. V. Soni, B. M. Jaffar Ali, Y. Hatwalne, and G. V. Shivashankar, “Single particle tracking of correlated bacterial dynamics,” Biophys. J.84(4), 2634–2637 (2003).
[CrossRef] [PubMed]

Exp. Fluids (1)

M. Wu, J. W. Roberts, and M. Buckley, “Three-dimensional fluorescent particle tracking at micron-scale using a single camera,” Exp. Fluids38(4), 461–465 (2005).
[CrossRef]

Exp. Mech. (10)

A. Hamilton, N. Sottos, and S. White, “Local strain concentrations in a microvascular network,” Exp. Mech.50(2), 255–263 (2010).
[CrossRef]

C. Franck, S. Hong, S. A. Maskarinec, D. A. Tirrell, and G. Ravichandran, “Three-dimensional full-field measurements of large deformations in soft materials using confocal microscopy and digital volume correlation,” Exp. Mech.47(3), 427–438 (2007).
[CrossRef]

B. K. Bay, T. S. Smith, D. P. Fyhrie, and M. Saad, “Digital volume correlation: three-dimensional strain mapping using X-ray tomography,” Exp. Mech.39(3), 217–226 (1999).
[CrossRef]

H. Lu, G. Vendroux, and W. Knauss, “Surface deformation measurements of a cylindrical specimen by digital image correlation,” Exp. Mech.37(4), 433–439 (1997).
[CrossRef]

H. Lu and P. Cary, “Deformation measurements by digital image correlation: Implementation of a second-order displacement gradient,” Exp. Mech.40(4), 393–400 (2000).
[CrossRef]

P. Luo, Y. Chao, M. Sutton, and W. Peters, “Accurate measurement of three-dimensional deformations in deformable and rigid bodies using computer vision,” Exp. Mech.33(2), 123–132 (1993).
[CrossRef]

X. D. Ke, H. Schreier, M. Sutton, and Y. Wang, “Error Assessment in Stereo-based Deformation Measurements,” Exp. Mech.51(4), 423–441 (2011).
[CrossRef]

Y. Q. Wang, M. Sutton, X. D. Ke, H. Schreier, P. Reu, and T. Miller, “On error assessment in stereo-based deformation measurements,” Exp. Mech.51(4), 405–422 (2011).
[CrossRef]

H. Schreier, D. Garcia, and M. Sutton, “Advances in light microscope stereo vision,” Exp. Mech.44(3), 278–288 (2004).
[CrossRef]

H. A. Bruck, S. R. McNeill, M. A. Sutton, and W. H. Peters, “Digital image correlation using Newton-Raphson method of partial-differential correlation,” Exp. Mech.29(3), 261–267 (1989).
[CrossRef]

IEEE T. Pattern Anal. (1)

Z. Y. Zhang, “A flexible new technique for camera calibration,” IEEE T. Pattern Anal.22(11), 1330–1334 (2000).
[CrossRef]

IEEE Trans. Image Process. (1)

Y. L. You and M. Kaveh, “Fourth-order partial differential equations for noise removal,” IEEE Trans. Image Process.9(10), 1723–1730 (2000).
[CrossRef] [PubMed]

Image Vis. Comput. (1)

M. A. Sutton, W. J. Wolters, W. H. Peters, W. F. Ranson, and S. R. McNeill, “Determination of displacements using an improved digital correlation method,” Image Vis. Comput.1(3), 133–139 (1983).
[CrossRef]

Int. J. Exp. Comp. Biomech. (1)

H. Luo, H. Lu, C. Dai, and R. Z. Gan, “A comparison of Young’s modulus for normal and diseased human eardrums at high strain rates,” Int. J. Exp. Comp. Biomech.1(1), 1–22 (2009).
[CrossRef]

Int. J. Heat Mass Tran. (1)

J. Sakakibara, K. Hishida, and M. Maeda, “Vortex structure and heat transfer in the stagnation region of an impinging plane jet (simultaneous measurements of velocity and temperature fields by digital particle image velocimetry and laser-induced fluorescence),” Int. J. Heat Mass Tran.40(13), 3163–3176 (1997).
[CrossRef]

J. Appl. Phys. (1)

U. Dürig, D. W. Pohl, and F. Rohner, “Near-field optical scanning microscopy,” J. Appl. Phys.59(10), 3318–3327 (1986).
[CrossRef]

J. Biomech. Eng. (1)

H. Luo, C. Dai, R. Z. Gan, and H. Lu, “Measurement of young’s modulus of human tympanic membrane at high strain rates,” J. Biomech. Eng.131(6), 064501 (2009).
[CrossRef] [PubMed]

J. Biomed. Mater. Res. A (1)

M. A. Sutton, X. Ke, S. M. Lessner, M. Goldbach, M. Yost, F. Zhao, and H. W. Schreier, “Strain field measurements on mouse carotid arteries using microscopic three-dimensional digital image correlation,” J. Biomed. Mater. Res. A84A(1), 178–190 (2008).
[CrossRef] [PubMed]

J. Micromech. Microeng. (1)

B. A. Samuel, M. C. Demirel, and A. Haque, “High resolution deformation and damage detection using fluorescent dyes,” J. Micromech. Microeng.17(11), 2324–2327 (2007).
[CrossRef]

J. Nanosci. Nanotechnol. (1)

W. Chen, J. Z. Zhang, and A. G. Joly, “Optical properties and potential applications of doped semiconductor nanoparticles,” J. Nanosci. Nanotechnol.4(8), 919–947 (2004).
[CrossRef] [PubMed]

MiCon 90: Adv. in Video Tech. for Microstruc. (1)

M. A. Sutton, T. L. Chae, J. L. Turner, and H. A. Bruck, “Development of a computer vision methodology for the analysis of surface deformations in magnified images,” MiCon 90: Adv. in Video Tech. for Microstruc.Con.l, 109–131 (1990).

Nat. Rev. Microbiol. (1)

L. Hall-Stoodley, J. W. Costerton, and P. Stoodley, “Bacterial biofilms: from the natural environment to infectious diseases,” Nat. Rev. Microbiol.2(2), 95–108 (2004).
[CrossRef] [PubMed]

Opt. Eng. (1)

W. H. Peters and W. F. Ranson, “Digital imaging techniques in experimental stress-analysis,” Opt. Eng.21(3), 427–432 (1982).
[CrossRef]

Opt. Express (1)

Opt. Laser Technol. (1)

T. Hua, H. Xie, S. Wang, Z. Hu, P. Chen, and Q. Zhang, “Evaluation of the quality of a speckle pattern in the digital image correlation method by mean subset fluctuation,” Opt. Laser Technol.43(1), 9–13 (2011).
[CrossRef]

Opt. Lasers Eng. (1)

J.-J. Orteu, “3-D computer vision in experimental mechanics,” Opt. Lasers Eng.47(3-4), 282–291 (2009).
[CrossRef]

Proc. Natl. Acad. Sci. U.S.A. (2)

M. Asally, M. Kittisopikul, P. Rué, Y. Du, Z. Hu, T. Çağatay, A. B. Robinson, H. Lu, J. Garcia-Ojalvo, and G. M. Süel, “Localized cell death focuses mechanical forces during 3D patterning in a biofilm,” Proc. Natl. Acad. Sci. U.S.A.109(46), 18891–18896 (2012).
[CrossRef] [PubMed]

S. A. Maskarinec, C. Franck, D. A. Tirrell, and G. Ravichandran, “Quantifying cellular traction forces in three dimensions,” Proc. Natl. Acad. Sci. U.S.A.106(52), 22108–22113 (2009).
[CrossRef] [PubMed]

Scanning (1)

A. Boyde, “Combining confocal and conventional modes in tandem scanning reflected light-microscopy,” Scanning11(3), 147–152 (1989).
[CrossRef]

Sci. Technol. Adv. Mater. (1)

Y. Oshikane, T. Kataoka, M. Okuda, S. Hara, H. Inoue, and M. Nakano, “Observation of nanostructure by scanning near-field optical microscope with small sphere probe,” Sci. Technol. Adv. Mater.8(3), 181–185 (2007).
[CrossRef]

Small (2)

O. Loh, R. Lam, M. Chen, N. Moldovan, H. Huang, D. Ho, and H. D. Espinosa, “Nanofountain-probe-based high-resolution patterning and single-cell injection of functionalized nanodiamonds,” Small5(14), 1667–1674 (2009).
[CrossRef] [PubMed]

T. A. Berfield, J. K. Patel, R. G. Shimmin, P. V. Braun, J. Lambros, and N. R. Sottos, “Fluorescent image correlation for nanoscale deformation measurements,” Small2(5), 631–635 (2006).
[CrossRef] [PubMed]

Other (8)

Z. Hu, H. Luo, W. Young, and H. Lu, “Three-dimensional internal large deformation measurement of PMI foam using incremental digital volume correlation,” presented in International Mechanical Engineering Congress and Exposition, Houston, USA, 9–15 Nov. 2012.

C. M. Wells and M. Parsons, Cell Migration: Developmental Methods and Protocols (Humana, 2011).

J.-Y. Bougue, “Camera calibration toolbox for Matlab” (2010). http://www.vision.caltech.edu/bouguetj/calib_doc .

R. Gräf, J. Rietdorf, and T. Zimmermann, “Live Cell Spinning Disk Microscopy,” in Microscopy Techniques, J. Rietdorf, ed. (Springer Berlin Heidelberg, 2005), pp. 57–75.

M. Sutton, J. Orteu, and H. Schreier, Image Correlation for Shape, Motion and Deformation Measurements: Basic Concepts, Theory and Applications (Springer-Verlag, 2009).

Y. Wang, Error Assessment in 3D Computer Vision Ph.D Dissertations, (University of South Carolina, 2010).

G. Lear and G. D. Lewis, Microbial Biofilms: Current Research and Applications (Caister Academic, 2012).

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes 3rd Edition: The Art Of Scientific Computing (Cambridge University, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

A schematic diagram of a stereo-imaging measurement system. P1 and P2 are points on the sample surface in the (XW, YW, ZW) world coordinate, (XL, YL, ZL) and (XR, YR, ZR) are the coordinates of the left image and right image acquired by two cameras, respectively.

Fig. 2
Fig. 2

Optical properties of the excitation and emission filters, and fluorescent particles.

Fig. 3
Fig. 3

(a) A schematic diagram of the optical paths in the FSM. Pairs of stereo images are acquired from two viewing directions of a single primary lens on a stereo observational tube; (b) FSM setup as well as the 3-axis nano-position stage.

Fig. 4
Fig. 4

(a) Fluorescent images and surface profile of a steel ball. (a) Left image; (b) Right image; (c) Horizontal matching field; (d) Vertical matching field; and, (e) Reconstructed surface topography of the steel ball.

Fig. 5
Fig. 5

Topography measurement of a biofilm with fluorescence particles spayed on its surface. (a) Left image; (b) Right image; and (c) Reconstructed surface topography.

Fig. 6
Fig. 6

The radial distribution of the fluorescent particles on the fluorescent random texture image.

Fig. 7
Fig. 7

3D deformation measurement of a biofilm: (a) left image of the biofilm in the reference state; (b) 3D surface of the biofilm in the reference state; (c) left image of the biofilm in the deformed state; (d) surface topography of the biofilm in the deformed state; (e) 3D displacement field between the deformed state and the reference state as observed from the top of the biofilm.

Tables (1)

Tables Icon

Table 1 Comparison of measurement results with prescribed rigid translations along 3-axis directions imposed by a nano-position stage

Metrics