Abstract

This paper presents an all-fiber, fully-optically controlled, optical-path length modulator based on highly absorbing optical fiber. The modulator utilizes a high-power 980 nm pump diode and a short section of vanadium-co-doped single mode fiber that is heated through absorption and a non-radiative relaxation process. The achievable path length modulation range primarily depends on the pump’s power and the convective heat-transfer coefficient of the surrounding gas, while the time response primarily depends on the heated fiber’s diameter. An absolute optical length change in excess of 500 µm and a time-constant as short as 11 ms, were demonstrated experimentally. The all-fiber design allows for an electrically-passive and remote operation of the modulator. The presented modulator could find use within various fiber-optics systems that require optical (remote) path length control or modulation.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Beheim, “Remote displacement measurement using a passive interferometer with a fiber-optic link,” Appl. Opt.24(15), 2335–2340 (1985).
    [CrossRef] [PubMed]
  2. Y. J. Rao and D. A. Jackson, “Recent progress in fibre optic low-coherence interferometry,” Meas. Sci. Technol.7(7), 981–999 (1996).
    [CrossRef]
  3. L. B. Yuan, Q. B. Li, Y. J. Liang, J. Yang, and Z. H. Liu, “Fiber optic 2-D sensor for measuring the strain inside the concrete specimen,” Sens. Actuators A Phys.94(1-2), 25–31 (2001).
    [CrossRef]
  4. X. M. Zhang, Y. X. Liu, H. Bae, C. Pang, and M. Yu, “Phase modulation with micromachined resonant mirrors for low-coherence fiber-tip pressure sensors,” Opt. Express17(26), 23965–23974 (2009).
    [CrossRef] [PubMed]
  5. H. S. Choi, H. F. Taylor, and C. E. Lee, “High-performance fiber-optic temperature sensor using low-coherence interferometry,” Opt. Lett.22(23), 1814–1816 (1997).
    [CrossRef] [PubMed]
  6. B. T. Meggitt, C. J. Hall, and K. Weir, “An all fibre white light interferometric strain measurement system,” Sens. Actuators A Phys.79(1), 1–7 (2000).
    [CrossRef]
  7. D. Donlagic and E. Cibula, “An all-fiber scanning interferometer with a large optical path length difference,” Opt. Lasers Eng.43(6), 619–623 (2005).
    [CrossRef]
  8. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
    [CrossRef] [PubMed]
  9. A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography - principles and applications,” Rep. Prog. Phys.66(2), 239–303 (2003).
    [CrossRef]
  10. Y. Nakamura, S. Makita, M. Yamanari, M. Itoh, T. Yatagai, and Y. Yasuno, “High-speed three-dimensional human retinal imaging by line-field spectral domain optical coherence tomography,” Opt. Express15(12), 7103–7116 (2007).
    [CrossRef] [PubMed]
  11. W. Y. Oh, B. E. Bouma, N. Iftimia, R. Yelin, and G. J. Tearney, “Spectrally-modulated full-field optical coherence microscopy for ultrahigh-resolution endoscopic imaging,” Opt. Express14(19), 8675–8684 (2006).
    [CrossRef] [PubMed]
  12. J. Tratnik, L. Pavlovic, B. Batagelj, P. Lemut, P. Ritosa, M. Ferianis, and M. Vidmar, “Fiber length compensated transmission of 2998.01 MHz RF signal with femtosecond precision,” Microw. Opt. Technol. Lett.53(7), 1553–1555 (2011).
    [CrossRef]
  13. W. Z. Li and J. P. Yao, “Investigation of photonically assisted microwave frequency multiplication based on external modulation,” IEEE Trans. Microw. Theory Tech.58(11), 3259–3268 (2010).
    [CrossRef]
  14. B. J. White, J. P. Davis, L. C. Bobb, H. D. Krumboltz, and D. C. Larson, “Optical-fiber thermal modulator,” J. Lightwave Technol.5(9), 1169–1175 (1987).
    [CrossRef]
  15. S. Gao, A. P. Zhang, H. Y. Tam, L. H. Cho, and C. Lu, “All-optical fiber anemometer based on laser heated fiber Bragg gratings,” Opt. Express19(11), 10124–10130 (2011).
    [CrossRef] [PubMed]
  16. C. J. Koester and E. Snitzer, “Amplification in a fiber laser,” Appl. Opt.3(10), 1182–1186 (1964).
    [CrossRef]
  17. D. C. Hanna, M. J. McCarthy, and P. J. Suni, “Thermal considerations in longitudinally pumped fiber and miniature bulk lasers,” Proc. SPIE1171, 160–167 (1990).
    [CrossRef]
  18. M. K. Davis, M. J. F. Digonnet, and R. H. Pantell, “Thermal effects in doped fibers,” J. Lightwave Technol.16(6), 1013–1023 (1998).
    [CrossRef]
  19. D. C. Brown and H. J. Hoffman, “Thermal, stress, and thermo-optic effects in high average power double-clad silica fiber lasers,” IEEE J. Quantum Electron.37(2), 207–217 (2001).
    [CrossRef]
  20. N. A. Brilliant and K. Lagonik, “Thermal effects in a dual-clad ytterbium fiber laser,” Opt. Lett.26(21), 1669–1671 (2001).
    [CrossRef] [PubMed]
  21. M. Gorjan, M. Marincek, and M. Copic, “Pump absorption and temperature distribution in erbium-doped double-clad fluoride-glass fibers,” Opt. Express17(22), 19814–19822 (2009).
    [CrossRef] [PubMed]
  22. F. P. Incropera, D. P. Dewitt, T. L. Bergman, and A. S. Lavine, “Introduction to convection,” in Fundamentals of heat and mass transfere, J. Hayton, ed. (John Wiley & Sons, 2007).
  23. A. H. Rose, “Devitrification in annealed optical fiber,” J. Lightwave Technol.15(5), 808–814 (1997).
    [CrossRef]
  24. P. C. Schultz, “Optical absorption of the transition elements in vitreous silica,” J. Am. Ceram. Soc.57(7), 309–313 (1974).
    [CrossRef]
  25. M. K. Davis and M. J. F. Digonnet, “Measurements of thermal effects in fibers doped with cobalt and vanadium,” J. Lightwave Technol.18(2), 161–165 (2000).
    [CrossRef]
  26. B. Lenardic, M. Kveder, H. Guillon, and S. Bonnafous, “Fabrication of specialty optical fibers using flash vaporization method,” Proc. SPIE7134, 71341K, 71341K-11 (2008).
    [CrossRef]

2011

J. Tratnik, L. Pavlovic, B. Batagelj, P. Lemut, P. Ritosa, M. Ferianis, and M. Vidmar, “Fiber length compensated transmission of 2998.01 MHz RF signal with femtosecond precision,” Microw. Opt. Technol. Lett.53(7), 1553–1555 (2011).
[CrossRef]

S. Gao, A. P. Zhang, H. Y. Tam, L. H. Cho, and C. Lu, “All-optical fiber anemometer based on laser heated fiber Bragg gratings,” Opt. Express19(11), 10124–10130 (2011).
[CrossRef] [PubMed]

2010

W. Z. Li and J. P. Yao, “Investigation of photonically assisted microwave frequency multiplication based on external modulation,” IEEE Trans. Microw. Theory Tech.58(11), 3259–3268 (2010).
[CrossRef]

2009

2008

B. Lenardic, M. Kveder, H. Guillon, and S. Bonnafous, “Fabrication of specialty optical fibers using flash vaporization method,” Proc. SPIE7134, 71341K, 71341K-11 (2008).
[CrossRef]

2007

2006

2005

D. Donlagic and E. Cibula, “An all-fiber scanning interferometer with a large optical path length difference,” Opt. Lasers Eng.43(6), 619–623 (2005).
[CrossRef]

2003

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography - principles and applications,” Rep. Prog. Phys.66(2), 239–303 (2003).
[CrossRef]

2001

L. B. Yuan, Q. B. Li, Y. J. Liang, J. Yang, and Z. H. Liu, “Fiber optic 2-D sensor for measuring the strain inside the concrete specimen,” Sens. Actuators A Phys.94(1-2), 25–31 (2001).
[CrossRef]

D. C. Brown and H. J. Hoffman, “Thermal, stress, and thermo-optic effects in high average power double-clad silica fiber lasers,” IEEE J. Quantum Electron.37(2), 207–217 (2001).
[CrossRef]

N. A. Brilliant and K. Lagonik, “Thermal effects in a dual-clad ytterbium fiber laser,” Opt. Lett.26(21), 1669–1671 (2001).
[CrossRef] [PubMed]

2000

M. K. Davis and M. J. F. Digonnet, “Measurements of thermal effects in fibers doped with cobalt and vanadium,” J. Lightwave Technol.18(2), 161–165 (2000).
[CrossRef]

B. T. Meggitt, C. J. Hall, and K. Weir, “An all fibre white light interferometric strain measurement system,” Sens. Actuators A Phys.79(1), 1–7 (2000).
[CrossRef]

1998

1997

1996

Y. J. Rao and D. A. Jackson, “Recent progress in fibre optic low-coherence interferometry,” Meas. Sci. Technol.7(7), 981–999 (1996).
[CrossRef]

1991

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

1990

D. C. Hanna, M. J. McCarthy, and P. J. Suni, “Thermal considerations in longitudinally pumped fiber and miniature bulk lasers,” Proc. SPIE1171, 160–167 (1990).
[CrossRef]

1987

B. J. White, J. P. Davis, L. C. Bobb, H. D. Krumboltz, and D. C. Larson, “Optical-fiber thermal modulator,” J. Lightwave Technol.5(9), 1169–1175 (1987).
[CrossRef]

1985

1974

P. C. Schultz, “Optical absorption of the transition elements in vitreous silica,” J. Am. Ceram. Soc.57(7), 309–313 (1974).
[CrossRef]

1964

Bae, H.

Batagelj, B.

J. Tratnik, L. Pavlovic, B. Batagelj, P. Lemut, P. Ritosa, M. Ferianis, and M. Vidmar, “Fiber length compensated transmission of 2998.01 MHz RF signal with femtosecond precision,” Microw. Opt. Technol. Lett.53(7), 1553–1555 (2011).
[CrossRef]

Beheim, G.

Bobb, L. C.

B. J. White, J. P. Davis, L. C. Bobb, H. D. Krumboltz, and D. C. Larson, “Optical-fiber thermal modulator,” J. Lightwave Technol.5(9), 1169–1175 (1987).
[CrossRef]

Bonnafous, S.

B. Lenardic, M. Kveder, H. Guillon, and S. Bonnafous, “Fabrication of specialty optical fibers using flash vaporization method,” Proc. SPIE7134, 71341K, 71341K-11 (2008).
[CrossRef]

Bouma, B. E.

Brilliant, N. A.

Brown, D. C.

D. C. Brown and H. J. Hoffman, “Thermal, stress, and thermo-optic effects in high average power double-clad silica fiber lasers,” IEEE J. Quantum Electron.37(2), 207–217 (2001).
[CrossRef]

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Cho, L. H.

Choi, H. S.

Cibula, E.

D. Donlagic and E. Cibula, “An all-fiber scanning interferometer with a large optical path length difference,” Opt. Lasers Eng.43(6), 619–623 (2005).
[CrossRef]

Copic, M.

Davis, J. P.

B. J. White, J. P. Davis, L. C. Bobb, H. D. Krumboltz, and D. C. Larson, “Optical-fiber thermal modulator,” J. Lightwave Technol.5(9), 1169–1175 (1987).
[CrossRef]

Davis, M. K.

Digonnet, M. J. F.

Donlagic, D.

D. Donlagic and E. Cibula, “An all-fiber scanning interferometer with a large optical path length difference,” Opt. Lasers Eng.43(6), 619–623 (2005).
[CrossRef]

Drexler, W.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography - principles and applications,” Rep. Prog. Phys.66(2), 239–303 (2003).
[CrossRef]

Fercher, A. F.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography - principles and applications,” Rep. Prog. Phys.66(2), 239–303 (2003).
[CrossRef]

Ferianis, M.

J. Tratnik, L. Pavlovic, B. Batagelj, P. Lemut, P. Ritosa, M. Ferianis, and M. Vidmar, “Fiber length compensated transmission of 2998.01 MHz RF signal with femtosecond precision,” Microw. Opt. Technol. Lett.53(7), 1553–1555 (2011).
[CrossRef]

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Fujimoto, J. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Gao, S.

Gorjan, M.

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Guillon, H.

B. Lenardic, M. Kveder, H. Guillon, and S. Bonnafous, “Fabrication of specialty optical fibers using flash vaporization method,” Proc. SPIE7134, 71341K, 71341K-11 (2008).
[CrossRef]

Hall, C. J.

B. T. Meggitt, C. J. Hall, and K. Weir, “An all fibre white light interferometric strain measurement system,” Sens. Actuators A Phys.79(1), 1–7 (2000).
[CrossRef]

Hanna, D. C.

D. C. Hanna, M. J. McCarthy, and P. J. Suni, “Thermal considerations in longitudinally pumped fiber and miniature bulk lasers,” Proc. SPIE1171, 160–167 (1990).
[CrossRef]

Hee, M. R.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Hitzenberger, C. K.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography - principles and applications,” Rep. Prog. Phys.66(2), 239–303 (2003).
[CrossRef]

Hoffman, H. J.

D. C. Brown and H. J. Hoffman, “Thermal, stress, and thermo-optic effects in high average power double-clad silica fiber lasers,” IEEE J. Quantum Electron.37(2), 207–217 (2001).
[CrossRef]

Huang, D.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Iftimia, N.

Itoh, M.

Jackson, D. A.

Y. J. Rao and D. A. Jackson, “Recent progress in fibre optic low-coherence interferometry,” Meas. Sci. Technol.7(7), 981–999 (1996).
[CrossRef]

Koester, C. J.

Krumboltz, H. D.

B. J. White, J. P. Davis, L. C. Bobb, H. D. Krumboltz, and D. C. Larson, “Optical-fiber thermal modulator,” J. Lightwave Technol.5(9), 1169–1175 (1987).
[CrossRef]

Kveder, M.

B. Lenardic, M. Kveder, H. Guillon, and S. Bonnafous, “Fabrication of specialty optical fibers using flash vaporization method,” Proc. SPIE7134, 71341K, 71341K-11 (2008).
[CrossRef]

Lagonik, K.

Larson, D. C.

B. J. White, J. P. Davis, L. C. Bobb, H. D. Krumboltz, and D. C. Larson, “Optical-fiber thermal modulator,” J. Lightwave Technol.5(9), 1169–1175 (1987).
[CrossRef]

Lasser, T.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography - principles and applications,” Rep. Prog. Phys.66(2), 239–303 (2003).
[CrossRef]

Lee, C. E.

Lemut, P.

J. Tratnik, L. Pavlovic, B. Batagelj, P. Lemut, P. Ritosa, M. Ferianis, and M. Vidmar, “Fiber length compensated transmission of 2998.01 MHz RF signal with femtosecond precision,” Microw. Opt. Technol. Lett.53(7), 1553–1555 (2011).
[CrossRef]

Lenardic, B.

B. Lenardic, M. Kveder, H. Guillon, and S. Bonnafous, “Fabrication of specialty optical fibers using flash vaporization method,” Proc. SPIE7134, 71341K, 71341K-11 (2008).
[CrossRef]

Li, Q. B.

L. B. Yuan, Q. B. Li, Y. J. Liang, J. Yang, and Z. H. Liu, “Fiber optic 2-D sensor for measuring the strain inside the concrete specimen,” Sens. Actuators A Phys.94(1-2), 25–31 (2001).
[CrossRef]

Li, W. Z.

W. Z. Li and J. P. Yao, “Investigation of photonically assisted microwave frequency multiplication based on external modulation,” IEEE Trans. Microw. Theory Tech.58(11), 3259–3268 (2010).
[CrossRef]

Liang, Y. J.

L. B. Yuan, Q. B. Li, Y. J. Liang, J. Yang, and Z. H. Liu, “Fiber optic 2-D sensor for measuring the strain inside the concrete specimen,” Sens. Actuators A Phys.94(1-2), 25–31 (2001).
[CrossRef]

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Liu, Y. X.

Liu, Z. H.

L. B. Yuan, Q. B. Li, Y. J. Liang, J. Yang, and Z. H. Liu, “Fiber optic 2-D sensor for measuring the strain inside the concrete specimen,” Sens. Actuators A Phys.94(1-2), 25–31 (2001).
[CrossRef]

Lu, C.

Makita, S.

Marincek, M.

McCarthy, M. J.

D. C. Hanna, M. J. McCarthy, and P. J. Suni, “Thermal considerations in longitudinally pumped fiber and miniature bulk lasers,” Proc. SPIE1171, 160–167 (1990).
[CrossRef]

Meggitt, B. T.

B. T. Meggitt, C. J. Hall, and K. Weir, “An all fibre white light interferometric strain measurement system,” Sens. Actuators A Phys.79(1), 1–7 (2000).
[CrossRef]

Nakamura, Y.

Oh, W. Y.

Pang, C.

Pantell, R. H.

Pavlovic, L.

J. Tratnik, L. Pavlovic, B. Batagelj, P. Lemut, P. Ritosa, M. Ferianis, and M. Vidmar, “Fiber length compensated transmission of 2998.01 MHz RF signal with femtosecond precision,” Microw. Opt. Technol. Lett.53(7), 1553–1555 (2011).
[CrossRef]

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Rao, Y. J.

Y. J. Rao and D. A. Jackson, “Recent progress in fibre optic low-coherence interferometry,” Meas. Sci. Technol.7(7), 981–999 (1996).
[CrossRef]

Ritosa, P.

J. Tratnik, L. Pavlovic, B. Batagelj, P. Lemut, P. Ritosa, M. Ferianis, and M. Vidmar, “Fiber length compensated transmission of 2998.01 MHz RF signal with femtosecond precision,” Microw. Opt. Technol. Lett.53(7), 1553–1555 (2011).
[CrossRef]

Rose, A. H.

A. H. Rose, “Devitrification in annealed optical fiber,” J. Lightwave Technol.15(5), 808–814 (1997).
[CrossRef]

Schultz, P. C.

P. C. Schultz, “Optical absorption of the transition elements in vitreous silica,” J. Am. Ceram. Soc.57(7), 309–313 (1974).
[CrossRef]

Schuman, J. S.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Snitzer, E.

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Suni, P. J.

D. C. Hanna, M. J. McCarthy, and P. J. Suni, “Thermal considerations in longitudinally pumped fiber and miniature bulk lasers,” Proc. SPIE1171, 160–167 (1990).
[CrossRef]

Swanson, E. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Tam, H. Y.

Taylor, H. F.

Tearney, G. J.

Tratnik, J.

J. Tratnik, L. Pavlovic, B. Batagelj, P. Lemut, P. Ritosa, M. Ferianis, and M. Vidmar, “Fiber length compensated transmission of 2998.01 MHz RF signal with femtosecond precision,” Microw. Opt. Technol. Lett.53(7), 1553–1555 (2011).
[CrossRef]

Vidmar, M.

J. Tratnik, L. Pavlovic, B. Batagelj, P. Lemut, P. Ritosa, M. Ferianis, and M. Vidmar, “Fiber length compensated transmission of 2998.01 MHz RF signal with femtosecond precision,” Microw. Opt. Technol. Lett.53(7), 1553–1555 (2011).
[CrossRef]

Weir, K.

B. T. Meggitt, C. J. Hall, and K. Weir, “An all fibre white light interferometric strain measurement system,” Sens. Actuators A Phys.79(1), 1–7 (2000).
[CrossRef]

White, B. J.

B. J. White, J. P. Davis, L. C. Bobb, H. D. Krumboltz, and D. C. Larson, “Optical-fiber thermal modulator,” J. Lightwave Technol.5(9), 1169–1175 (1987).
[CrossRef]

Yamanari, M.

Yang, J.

L. B. Yuan, Q. B. Li, Y. J. Liang, J. Yang, and Z. H. Liu, “Fiber optic 2-D sensor for measuring the strain inside the concrete specimen,” Sens. Actuators A Phys.94(1-2), 25–31 (2001).
[CrossRef]

Yao, J. P.

W. Z. Li and J. P. Yao, “Investigation of photonically assisted microwave frequency multiplication based on external modulation,” IEEE Trans. Microw. Theory Tech.58(11), 3259–3268 (2010).
[CrossRef]

Yasuno, Y.

Yatagai, T.

Yelin, R.

Yu, M.

Yuan, L. B.

L. B. Yuan, Q. B. Li, Y. J. Liang, J. Yang, and Z. H. Liu, “Fiber optic 2-D sensor for measuring the strain inside the concrete specimen,” Sens. Actuators A Phys.94(1-2), 25–31 (2001).
[CrossRef]

Zhang, A. P.

Zhang, X. M.

Appl. Opt.

IEEE J. Quantum Electron.

D. C. Brown and H. J. Hoffman, “Thermal, stress, and thermo-optic effects in high average power double-clad silica fiber lasers,” IEEE J. Quantum Electron.37(2), 207–217 (2001).
[CrossRef]

IEEE Trans. Microw. Theory Tech.

W. Z. Li and J. P. Yao, “Investigation of photonically assisted microwave frequency multiplication based on external modulation,” IEEE Trans. Microw. Theory Tech.58(11), 3259–3268 (2010).
[CrossRef]

J. Am. Ceram. Soc.

P. C. Schultz, “Optical absorption of the transition elements in vitreous silica,” J. Am. Ceram. Soc.57(7), 309–313 (1974).
[CrossRef]

J. Lightwave Technol.

A. H. Rose, “Devitrification in annealed optical fiber,” J. Lightwave Technol.15(5), 808–814 (1997).
[CrossRef]

B. J. White, J. P. Davis, L. C. Bobb, H. D. Krumboltz, and D. C. Larson, “Optical-fiber thermal modulator,” J. Lightwave Technol.5(9), 1169–1175 (1987).
[CrossRef]

M. K. Davis and M. J. F. Digonnet, “Measurements of thermal effects in fibers doped with cobalt and vanadium,” J. Lightwave Technol.18(2), 161–165 (2000).
[CrossRef]

M. K. Davis, M. J. F. Digonnet, and R. H. Pantell, “Thermal effects in doped fibers,” J. Lightwave Technol.16(6), 1013–1023 (1998).
[CrossRef]

Meas. Sci. Technol.

Y. J. Rao and D. A. Jackson, “Recent progress in fibre optic low-coherence interferometry,” Meas. Sci. Technol.7(7), 981–999 (1996).
[CrossRef]

Microw. Opt. Technol. Lett.

J. Tratnik, L. Pavlovic, B. Batagelj, P. Lemut, P. Ritosa, M. Ferianis, and M. Vidmar, “Fiber length compensated transmission of 2998.01 MHz RF signal with femtosecond precision,” Microw. Opt. Technol. Lett.53(7), 1553–1555 (2011).
[CrossRef]

Opt. Express

Opt. Lasers Eng.

D. Donlagic and E. Cibula, “An all-fiber scanning interferometer with a large optical path length difference,” Opt. Lasers Eng.43(6), 619–623 (2005).
[CrossRef]

Opt. Lett.

Proc. SPIE

D. C. Hanna, M. J. McCarthy, and P. J. Suni, “Thermal considerations in longitudinally pumped fiber and miniature bulk lasers,” Proc. SPIE1171, 160–167 (1990).
[CrossRef]

B. Lenardic, M. Kveder, H. Guillon, and S. Bonnafous, “Fabrication of specialty optical fibers using flash vaporization method,” Proc. SPIE7134, 71341K, 71341K-11 (2008).
[CrossRef]

Rep. Prog. Phys.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography - principles and applications,” Rep. Prog. Phys.66(2), 239–303 (2003).
[CrossRef]

Science

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Sens. Actuators A Phys.

L. B. Yuan, Q. B. Li, Y. J. Liang, J. Yang, and Z. H. Liu, “Fiber optic 2-D sensor for measuring the strain inside the concrete specimen,” Sens. Actuators A Phys.94(1-2), 25–31 (2001).
[CrossRef]

B. T. Meggitt, C. J. Hall, and K. Weir, “An all fibre white light interferometric strain measurement system,” Sens. Actuators A Phys.79(1), 1–7 (2000).
[CrossRef]

Other

F. P. Incropera, D. P. Dewitt, T. L. Bergman, and A. S. Lavine, “Introduction to convection,” in Fundamentals of heat and mass transfere, J. Hayton, ed. (John Wiley & Sons, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

(a) Nusselt numbers depending on the fiber diameter and temperature differences between the fiber surface and surrounding gas, for air and xenon. (b) Nusselt numbers as a function of the temperature difference between fiber surface temperature and surrounding gas temperature for 125 µm fiber in air (an increase in temperature difference from 25°C to 200°C causes less than 10% change in Nusselt number).

Fig. 2
Fig. 2

Spectral attenuation for 10 cm long section of Fiber 2 from Table 2.

Fig. 3
Fig. 3

Measure set-up, based on a Michelson interferometer for OPL variation determination.

Fig. 4
Fig. 4

OPL change versus time for various doped fibers from Table 2 (125 µm).

Fig. 5
Fig. 5

Linear dependence of modulated optical path and pump-laser optical power for a 125 µm, 10 cm-long Fiber 2 from Table 2.

Fig. 6
Fig. 6

OPL change versus time for 125 µm, 10 cm-long section of Fiber 2 from Table 2 in different fiber atmospheres.

Fig. 7
Fig. 7

OPL change versus time for 20 µm, 10 cm-long section of Fiber 2 from Table 2 in different fiber gasses.

Fig. 8
Fig. 8

Continuous modulation of OPL using 20 µm outer diameter, 10 cm-long section of Fiber 2 from Table 2, with 0.5 W of pump-laser optical power; (a) in air (b) in xenon.

Fig. 9
Fig. 9

A complete low-coherence fiber-optic measurement system based on thermo-optic scanning: optical part of the system operating at 1550 nm acts as low coherent interferometer, whilst part of the system operating at 1310 nm provides reference path length measures.

Fig. 10
Fig. 10

Low-coherence interferogram obtained at detector 1 and reference trace at detector 2: (a) Interrogated sensor OPL difference was set to 832 µm, scanning rate was 2 scans/s. (b) Interrogated sensor OPL difference was set to 492 µm, scanning rate was 2 scans/s. (c) Interrogated sensor OPL difference was set to 308 µm, scanning rate was 2 scans/s. (d) Interrogated sensor OPL difference was set to 158 µm, scanning rate was 20 scans/s (high-speed scanning).

Tables (4)

Tables Icon

Table 1 Predicted OPL and time constants for fibers with diameters of 125 µm and 20 µm in air and xenon, with pump optical power of P(0) = 0.5 W.

Tables Icon

Table 2 Experimentally-produced vanadium fibers.

Tables Icon

Table 3 Time constants and achieved OPL modulation ranges for 10 cm-long section of Fiber 2 from Table 2.

Tables Icon

Table 4 Dynamic response and OPL modulation range as a function of fiber diameter for 1 cm-long Fiber 3 from Table 2 at atmospheric pressure.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

T 0 = T s + Q 0 a 2 4 k s [ 1+ 2ln( b a ) u + 2 k s bh w ],
h< k s bln b a .
h= k f ×Nu 2b ,
Δ T fc T 0 T s Q 0 a 2 k f Nu .
Q(x)= α P O (x) S = α P O (0) e αx S ,
d(OPL)=( n dn dT )Δ T fc dx.
ΔOPL= 0 L ( n dn dT ) a 2 k f Nu α P O (0) S e αx dx= P O (0) π k f Nu ( n dn dT )( 1 e αL ).
ΔOPL= P O ( 0 ) k f 1 πNu ( n dn dT ).
P OMAX (0) ( T MAX T s )π k f Nu α .

Metrics