Abstract

The enhanced generation of a spontaneous Raman signal by way of elastic scattering is demonstrated. Using Monte Carlo simulations, we show that elastic scattering, by increasing the path length of light through the medium, enhances the generation of a Raman signal. This is investigated over a large parameter space, demonstrating that this effect is robust, and providing additional physical insight into the dynamics of light propagation in a turbid medium. Both the temporal and spatial profiles of the Raman signal are shown to depend heavily on the amount of scattering present.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. S. Haka, K. E. Shafer-Peltier, M. Fitzmaurice, J. Crowe, R. R. Dasari, and M. S. Feld, “Diagnosing breast cancer by using Raman spectroscopy,” Proc. Natl. Acad. Sci. U.S.A.125, 12371–12376 (2005).
    [CrossRef]
  2. A. Nijssen, K. Maquelin, L. F. Santos, P. J. Caspers, T. C. Bakker Schut, J. C. den Hollander, M. H. A. Neumann, and G. J. Puppels, “Discriminating basal cell carcinoma from perilesional skin using high wave-number Raman spectroscopy,” J. Biomed. Opt.12, 034004 (2007).
    [CrossRef] [PubMed]
  3. R. Arora, G. I. Petrov, V. V. Yakovlev, and M. O. Scully, “Detecting anthrax in the mail via coherent Raman microspectroscopy,” Proc. Natl. Acad. Sci. U.S.A.109, 1151–1153 (2012).
    [CrossRef]
  4. B. Cletus, W. Olds, E. L. Izake, S. Sundarajoo, P. M. Fredericks, and E. Jaatinen, “Combined time- and space-resolved Raman spectrometer for the non-invasive depth profiling of chemical hazards,” Anal. Bioanal. Chem.403, 255–263 (2012).
    [CrossRef] [PubMed]
  5. F. Ariese, H. Meuzelaar, M. M. Kerssens, J. B. Buijs, and C. Gooijer, “Picosecond Raman spectroscopy with a fast intensified CCD camera for depth analysis of diffusely scattering media,” Analyst134, 1192–1197 (2009).
    [CrossRef] [PubMed]
  6. A. Alù and N. Engheta, “Tuning the scattering response of optical nanoantennas with nanocircuit loads,” Nat. Photonics2, 307–310 (2008).
    [CrossRef]
  7. N. Everall, T. Hahn, P. Matousek, A. W. Parker, and M. Towrie, “Photon migration in Raman spectroscopy,” Appl. Spectrosc.58, 591–597 (2004).
    [CrossRef] [PubMed]
  8. M. D. Keller, R. H. Wilson, M.-A. Mycek, and A. Mahadevan-Jansen, “Monte Carlo model of spatially offset Raman spectroscopy for breast tumor margin analysis,” Appl. Spectrosc.64, 607–614 (2010).
    [CrossRef] [PubMed]
  9. P. Matousek, “Raman signal enhancement in deep spectroscopy of turbid media,” Appl. Spectrosc.61, 845–854 (2007).
    [CrossRef] [PubMed]
  10. W. C. Shih, K. L. Bechtel, and M. S. Feld, “Intrinsic Raman spectroscopy for quantitative biological spectroscopy part 1: theory and simulations,” Opt. Express16, 12726–12736 (2008).
    [CrossRef] [PubMed]
  11. J. C. Ramella-Roman, S. A. Prahl, and S. L. Jacques, “Three Monte Carlo programs of polarized light transport into scattering media: part I,” Opt. Express13, 4420–4438 (2005).
    [CrossRef] [PubMed]
  12. T. J. Pfefer, Q. Wang, and R. A. Drezek, “Monte Carlo modeling of time-resolved fluorescence for depth-selective interrogation of layered tissue,” Comput. Meth. Prog. Bio.104, 161–167 (2011).
    [CrossRef]
  13. A. Leray, C. Odin, E. Huguet, F. Amblard, and Y. Le Grand, “Spatially distributed two-photon excitation fluorescence in scattering media: experiments and time-resolved Monte Carlo simulations,” Opt. Commun.272, 269–278 (2007).
    [CrossRef]
  14. Y. Zhao, X. Li, and L. Ma, “Multidimensional Monte Carlo model for two-photon laser-induced fluorescence and amplified spontaneous emission,” Comput. Phys. Commun.183, 1588–1595 (2012).
    [CrossRef]
  15. A. Doronin and I. Meglinski, “Online object oriented Monte Carlo computational tool for the needs of biomedical optics,” Biomed. Opt. Express2, 2461–2469 (2011).
    [CrossRef] [PubMed]
  16. L. Wang, S. L. Jacques, and L. Zheng, “MCML - Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Meth. Prog. Bio.47, 131–146 (1995).
    [CrossRef]
  17. L. G. Henyey and J. L. Greenstein, “Diffuse radiation in the galaxy,” Astrophysics93, 70–83 (1941).
    [CrossRef]
  18. R. W. Boyd, Nonlinear Optics (Academic Press, 2003), 2nd ed.
  19. O. Mengual, G. Meunier, I. Cayré, K. Puech, and P. Snabre, “TURBISCAN MA 2000: multiple light scattering measurement for concentrated emulsion and suspension instability analysis,” Talanta50, 445–456 (1999).
    [CrossRef]
  20. B. B. Das, F. Liu, and R. R. Alfano, “Time-resolved fluourescence and photon migration studies in biomedical and model random media,” Rep. Prog. Phys.60, 227–292 (1997).
    [CrossRef]
  21. P. Matousek, I. P. Clark, E. R. C. Draper, M. D. Morris, A. E. Goodship, N. Everall, M. Towrie, W. F. Finney, and A. W. Parker, “Subsurface probing in diffusely scattering media using spatially offset Raman spectroscopy,” Appl. Spectrosc.59, 393–400 (2005).
    [CrossRef] [PubMed]
  22. M. D. Morris, P. Matousek, M. Towrie, A. W. Parker, A. E. Goodship, and E. R. C. Draper, “Kerr-gated time-resolved Raman spectroscopy of equine cortical bone tissue,” J. Biomed. Opt.10, 014014 (2005).
    [CrossRef]

2012

R. Arora, G. I. Petrov, V. V. Yakovlev, and M. O. Scully, “Detecting anthrax in the mail via coherent Raman microspectroscopy,” Proc. Natl. Acad. Sci. U.S.A.109, 1151–1153 (2012).
[CrossRef]

B. Cletus, W. Olds, E. L. Izake, S. Sundarajoo, P. M. Fredericks, and E. Jaatinen, “Combined time- and space-resolved Raman spectrometer for the non-invasive depth profiling of chemical hazards,” Anal. Bioanal. Chem.403, 255–263 (2012).
[CrossRef] [PubMed]

Y. Zhao, X. Li, and L. Ma, “Multidimensional Monte Carlo model for two-photon laser-induced fluorescence and amplified spontaneous emission,” Comput. Phys. Commun.183, 1588–1595 (2012).
[CrossRef]

2011

T. J. Pfefer, Q. Wang, and R. A. Drezek, “Monte Carlo modeling of time-resolved fluorescence for depth-selective interrogation of layered tissue,” Comput. Meth. Prog. Bio.104, 161–167 (2011).
[CrossRef]

A. Doronin and I. Meglinski, “Online object oriented Monte Carlo computational tool for the needs of biomedical optics,” Biomed. Opt. Express2, 2461–2469 (2011).
[CrossRef] [PubMed]

2010

2009

F. Ariese, H. Meuzelaar, M. M. Kerssens, J. B. Buijs, and C. Gooijer, “Picosecond Raman spectroscopy with a fast intensified CCD camera for depth analysis of diffusely scattering media,” Analyst134, 1192–1197 (2009).
[CrossRef] [PubMed]

2008

A. Alù and N. Engheta, “Tuning the scattering response of optical nanoantennas with nanocircuit loads,” Nat. Photonics2, 307–310 (2008).
[CrossRef]

W. C. Shih, K. L. Bechtel, and M. S. Feld, “Intrinsic Raman spectroscopy for quantitative biological spectroscopy part 1: theory and simulations,” Opt. Express16, 12726–12736 (2008).
[CrossRef] [PubMed]

2007

P. Matousek, “Raman signal enhancement in deep spectroscopy of turbid media,” Appl. Spectrosc.61, 845–854 (2007).
[CrossRef] [PubMed]

A. Leray, C. Odin, E. Huguet, F. Amblard, and Y. Le Grand, “Spatially distributed two-photon excitation fluorescence in scattering media: experiments and time-resolved Monte Carlo simulations,” Opt. Commun.272, 269–278 (2007).
[CrossRef]

A. Nijssen, K. Maquelin, L. F. Santos, P. J. Caspers, T. C. Bakker Schut, J. C. den Hollander, M. H. A. Neumann, and G. J. Puppels, “Discriminating basal cell carcinoma from perilesional skin using high wave-number Raman spectroscopy,” J. Biomed. Opt.12, 034004 (2007).
[CrossRef] [PubMed]

2005

A. S. Haka, K. E. Shafer-Peltier, M. Fitzmaurice, J. Crowe, R. R. Dasari, and M. S. Feld, “Diagnosing breast cancer by using Raman spectroscopy,” Proc. Natl. Acad. Sci. U.S.A.125, 12371–12376 (2005).
[CrossRef]

M. D. Morris, P. Matousek, M. Towrie, A. W. Parker, A. E. Goodship, and E. R. C. Draper, “Kerr-gated time-resolved Raman spectroscopy of equine cortical bone tissue,” J. Biomed. Opt.10, 014014 (2005).
[CrossRef]

J. C. Ramella-Roman, S. A. Prahl, and S. L. Jacques, “Three Monte Carlo programs of polarized light transport into scattering media: part I,” Opt. Express13, 4420–4438 (2005).
[CrossRef] [PubMed]

P. Matousek, I. P. Clark, E. R. C. Draper, M. D. Morris, A. E. Goodship, N. Everall, M. Towrie, W. F. Finney, and A. W. Parker, “Subsurface probing in diffusely scattering media using spatially offset Raman spectroscopy,” Appl. Spectrosc.59, 393–400 (2005).
[CrossRef] [PubMed]

2004

1999

O. Mengual, G. Meunier, I. Cayré, K. Puech, and P. Snabre, “TURBISCAN MA 2000: multiple light scattering measurement for concentrated emulsion and suspension instability analysis,” Talanta50, 445–456 (1999).
[CrossRef]

1997

B. B. Das, F. Liu, and R. R. Alfano, “Time-resolved fluourescence and photon migration studies in biomedical and model random media,” Rep. Prog. Phys.60, 227–292 (1997).
[CrossRef]

1995

L. Wang, S. L. Jacques, and L. Zheng, “MCML - Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Meth. Prog. Bio.47, 131–146 (1995).
[CrossRef]

1941

L. G. Henyey and J. L. Greenstein, “Diffuse radiation in the galaxy,” Astrophysics93, 70–83 (1941).
[CrossRef]

Alfano, R. R.

B. B. Das, F. Liu, and R. R. Alfano, “Time-resolved fluourescence and photon migration studies in biomedical and model random media,” Rep. Prog. Phys.60, 227–292 (1997).
[CrossRef]

Alù, A.

A. Alù and N. Engheta, “Tuning the scattering response of optical nanoantennas with nanocircuit loads,” Nat. Photonics2, 307–310 (2008).
[CrossRef]

Amblard, F.

A. Leray, C. Odin, E. Huguet, F. Amblard, and Y. Le Grand, “Spatially distributed two-photon excitation fluorescence in scattering media: experiments and time-resolved Monte Carlo simulations,” Opt. Commun.272, 269–278 (2007).
[CrossRef]

Ariese, F.

F. Ariese, H. Meuzelaar, M. M. Kerssens, J. B. Buijs, and C. Gooijer, “Picosecond Raman spectroscopy with a fast intensified CCD camera for depth analysis of diffusely scattering media,” Analyst134, 1192–1197 (2009).
[CrossRef] [PubMed]

Arora, R.

R. Arora, G. I. Petrov, V. V. Yakovlev, and M. O. Scully, “Detecting anthrax in the mail via coherent Raman microspectroscopy,” Proc. Natl. Acad. Sci. U.S.A.109, 1151–1153 (2012).
[CrossRef]

Bakker Schut, T. C.

A. Nijssen, K. Maquelin, L. F. Santos, P. J. Caspers, T. C. Bakker Schut, J. C. den Hollander, M. H. A. Neumann, and G. J. Puppels, “Discriminating basal cell carcinoma from perilesional skin using high wave-number Raman spectroscopy,” J. Biomed. Opt.12, 034004 (2007).
[CrossRef] [PubMed]

Bechtel, K. L.

Boyd, R. W.

R. W. Boyd, Nonlinear Optics (Academic Press, 2003), 2nd ed.

Buijs, J. B.

F. Ariese, H. Meuzelaar, M. M. Kerssens, J. B. Buijs, and C. Gooijer, “Picosecond Raman spectroscopy with a fast intensified CCD camera for depth analysis of diffusely scattering media,” Analyst134, 1192–1197 (2009).
[CrossRef] [PubMed]

Caspers, P. J.

A. Nijssen, K. Maquelin, L. F. Santos, P. J. Caspers, T. C. Bakker Schut, J. C. den Hollander, M. H. A. Neumann, and G. J. Puppels, “Discriminating basal cell carcinoma from perilesional skin using high wave-number Raman spectroscopy,” J. Biomed. Opt.12, 034004 (2007).
[CrossRef] [PubMed]

Cayré, I.

O. Mengual, G. Meunier, I. Cayré, K. Puech, and P. Snabre, “TURBISCAN MA 2000: multiple light scattering measurement for concentrated emulsion and suspension instability analysis,” Talanta50, 445–456 (1999).
[CrossRef]

Clark, I. P.

Cletus, B.

B. Cletus, W. Olds, E. L. Izake, S. Sundarajoo, P. M. Fredericks, and E. Jaatinen, “Combined time- and space-resolved Raman spectrometer for the non-invasive depth profiling of chemical hazards,” Anal. Bioanal. Chem.403, 255–263 (2012).
[CrossRef] [PubMed]

Crowe, J.

A. S. Haka, K. E. Shafer-Peltier, M. Fitzmaurice, J. Crowe, R. R. Dasari, and M. S. Feld, “Diagnosing breast cancer by using Raman spectroscopy,” Proc. Natl. Acad. Sci. U.S.A.125, 12371–12376 (2005).
[CrossRef]

Das, B. B.

B. B. Das, F. Liu, and R. R. Alfano, “Time-resolved fluourescence and photon migration studies in biomedical and model random media,” Rep. Prog. Phys.60, 227–292 (1997).
[CrossRef]

Dasari, R. R.

A. S. Haka, K. E. Shafer-Peltier, M. Fitzmaurice, J. Crowe, R. R. Dasari, and M. S. Feld, “Diagnosing breast cancer by using Raman spectroscopy,” Proc. Natl. Acad. Sci. U.S.A.125, 12371–12376 (2005).
[CrossRef]

den Hollander, J. C.

A. Nijssen, K. Maquelin, L. F. Santos, P. J. Caspers, T. C. Bakker Schut, J. C. den Hollander, M. H. A. Neumann, and G. J. Puppels, “Discriminating basal cell carcinoma from perilesional skin using high wave-number Raman spectroscopy,” J. Biomed. Opt.12, 034004 (2007).
[CrossRef] [PubMed]

Doronin, A.

Draper, E. R. C.

P. Matousek, I. P. Clark, E. R. C. Draper, M. D. Morris, A. E. Goodship, N. Everall, M. Towrie, W. F. Finney, and A. W. Parker, “Subsurface probing in diffusely scattering media using spatially offset Raman spectroscopy,” Appl. Spectrosc.59, 393–400 (2005).
[CrossRef] [PubMed]

M. D. Morris, P. Matousek, M. Towrie, A. W. Parker, A. E. Goodship, and E. R. C. Draper, “Kerr-gated time-resolved Raman spectroscopy of equine cortical bone tissue,” J. Biomed. Opt.10, 014014 (2005).
[CrossRef]

Drezek, R. A.

T. J. Pfefer, Q. Wang, and R. A. Drezek, “Monte Carlo modeling of time-resolved fluorescence for depth-selective interrogation of layered tissue,” Comput. Meth. Prog. Bio.104, 161–167 (2011).
[CrossRef]

Engheta, N.

A. Alù and N. Engheta, “Tuning the scattering response of optical nanoantennas with nanocircuit loads,” Nat. Photonics2, 307–310 (2008).
[CrossRef]

Everall, N.

Feld, M. S.

W. C. Shih, K. L. Bechtel, and M. S. Feld, “Intrinsic Raman spectroscopy for quantitative biological spectroscopy part 1: theory and simulations,” Opt. Express16, 12726–12736 (2008).
[CrossRef] [PubMed]

A. S. Haka, K. E. Shafer-Peltier, M. Fitzmaurice, J. Crowe, R. R. Dasari, and M. S. Feld, “Diagnosing breast cancer by using Raman spectroscopy,” Proc. Natl. Acad. Sci. U.S.A.125, 12371–12376 (2005).
[CrossRef]

Finney, W. F.

Fitzmaurice, M.

A. S. Haka, K. E. Shafer-Peltier, M. Fitzmaurice, J. Crowe, R. R. Dasari, and M. S. Feld, “Diagnosing breast cancer by using Raman spectroscopy,” Proc. Natl. Acad. Sci. U.S.A.125, 12371–12376 (2005).
[CrossRef]

Fredericks, P. M.

B. Cletus, W. Olds, E. L. Izake, S. Sundarajoo, P. M. Fredericks, and E. Jaatinen, “Combined time- and space-resolved Raman spectrometer for the non-invasive depth profiling of chemical hazards,” Anal. Bioanal. Chem.403, 255–263 (2012).
[CrossRef] [PubMed]

Goodship, A. E.

P. Matousek, I. P. Clark, E. R. C. Draper, M. D. Morris, A. E. Goodship, N. Everall, M. Towrie, W. F. Finney, and A. W. Parker, “Subsurface probing in diffusely scattering media using spatially offset Raman spectroscopy,” Appl. Spectrosc.59, 393–400 (2005).
[CrossRef] [PubMed]

M. D. Morris, P. Matousek, M. Towrie, A. W. Parker, A. E. Goodship, and E. R. C. Draper, “Kerr-gated time-resolved Raman spectroscopy of equine cortical bone tissue,” J. Biomed. Opt.10, 014014 (2005).
[CrossRef]

Gooijer, C.

F. Ariese, H. Meuzelaar, M. M. Kerssens, J. B. Buijs, and C. Gooijer, “Picosecond Raman spectroscopy with a fast intensified CCD camera for depth analysis of diffusely scattering media,” Analyst134, 1192–1197 (2009).
[CrossRef] [PubMed]

Greenstein, J. L.

L. G. Henyey and J. L. Greenstein, “Diffuse radiation in the galaxy,” Astrophysics93, 70–83 (1941).
[CrossRef]

Hahn, T.

Haka, A. S.

A. S. Haka, K. E. Shafer-Peltier, M. Fitzmaurice, J. Crowe, R. R. Dasari, and M. S. Feld, “Diagnosing breast cancer by using Raman spectroscopy,” Proc. Natl. Acad. Sci. U.S.A.125, 12371–12376 (2005).
[CrossRef]

Henyey, L. G.

L. G. Henyey and J. L. Greenstein, “Diffuse radiation in the galaxy,” Astrophysics93, 70–83 (1941).
[CrossRef]

Huguet, E.

A. Leray, C. Odin, E. Huguet, F. Amblard, and Y. Le Grand, “Spatially distributed two-photon excitation fluorescence in scattering media: experiments and time-resolved Monte Carlo simulations,” Opt. Commun.272, 269–278 (2007).
[CrossRef]

Izake, E. L.

B. Cletus, W. Olds, E. L. Izake, S. Sundarajoo, P. M. Fredericks, and E. Jaatinen, “Combined time- and space-resolved Raman spectrometer for the non-invasive depth profiling of chemical hazards,” Anal. Bioanal. Chem.403, 255–263 (2012).
[CrossRef] [PubMed]

Jaatinen, E.

B. Cletus, W. Olds, E. L. Izake, S. Sundarajoo, P. M. Fredericks, and E. Jaatinen, “Combined time- and space-resolved Raman spectrometer for the non-invasive depth profiling of chemical hazards,” Anal. Bioanal. Chem.403, 255–263 (2012).
[CrossRef] [PubMed]

Jacques, S. L.

J. C. Ramella-Roman, S. A. Prahl, and S. L. Jacques, “Three Monte Carlo programs of polarized light transport into scattering media: part I,” Opt. Express13, 4420–4438 (2005).
[CrossRef] [PubMed]

L. Wang, S. L. Jacques, and L. Zheng, “MCML - Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Meth. Prog. Bio.47, 131–146 (1995).
[CrossRef]

Keller, M. D.

Kerssens, M. M.

F. Ariese, H. Meuzelaar, M. M. Kerssens, J. B. Buijs, and C. Gooijer, “Picosecond Raman spectroscopy with a fast intensified CCD camera for depth analysis of diffusely scattering media,” Analyst134, 1192–1197 (2009).
[CrossRef] [PubMed]

Le Grand, Y.

A. Leray, C. Odin, E. Huguet, F. Amblard, and Y. Le Grand, “Spatially distributed two-photon excitation fluorescence in scattering media: experiments and time-resolved Monte Carlo simulations,” Opt. Commun.272, 269–278 (2007).
[CrossRef]

Leray, A.

A. Leray, C. Odin, E. Huguet, F. Amblard, and Y. Le Grand, “Spatially distributed two-photon excitation fluorescence in scattering media: experiments and time-resolved Monte Carlo simulations,” Opt. Commun.272, 269–278 (2007).
[CrossRef]

Li, X.

Y. Zhao, X. Li, and L. Ma, “Multidimensional Monte Carlo model for two-photon laser-induced fluorescence and amplified spontaneous emission,” Comput. Phys. Commun.183, 1588–1595 (2012).
[CrossRef]

Liu, F.

B. B. Das, F. Liu, and R. R. Alfano, “Time-resolved fluourescence and photon migration studies in biomedical and model random media,” Rep. Prog. Phys.60, 227–292 (1997).
[CrossRef]

Ma, L.

Y. Zhao, X. Li, and L. Ma, “Multidimensional Monte Carlo model for two-photon laser-induced fluorescence and amplified spontaneous emission,” Comput. Phys. Commun.183, 1588–1595 (2012).
[CrossRef]

Mahadevan-Jansen, A.

Maquelin, K.

A. Nijssen, K. Maquelin, L. F. Santos, P. J. Caspers, T. C. Bakker Schut, J. C. den Hollander, M. H. A. Neumann, and G. J. Puppels, “Discriminating basal cell carcinoma from perilesional skin using high wave-number Raman spectroscopy,” J. Biomed. Opt.12, 034004 (2007).
[CrossRef] [PubMed]

Matousek, P.

Meglinski, I.

Mengual, O.

O. Mengual, G. Meunier, I. Cayré, K. Puech, and P. Snabre, “TURBISCAN MA 2000: multiple light scattering measurement for concentrated emulsion and suspension instability analysis,” Talanta50, 445–456 (1999).
[CrossRef]

Meunier, G.

O. Mengual, G. Meunier, I. Cayré, K. Puech, and P. Snabre, “TURBISCAN MA 2000: multiple light scattering measurement for concentrated emulsion and suspension instability analysis,” Talanta50, 445–456 (1999).
[CrossRef]

Meuzelaar, H.

F. Ariese, H. Meuzelaar, M. M. Kerssens, J. B. Buijs, and C. Gooijer, “Picosecond Raman spectroscopy with a fast intensified CCD camera for depth analysis of diffusely scattering media,” Analyst134, 1192–1197 (2009).
[CrossRef] [PubMed]

Morris, M. D.

P. Matousek, I. P. Clark, E. R. C. Draper, M. D. Morris, A. E. Goodship, N. Everall, M. Towrie, W. F. Finney, and A. W. Parker, “Subsurface probing in diffusely scattering media using spatially offset Raman spectroscopy,” Appl. Spectrosc.59, 393–400 (2005).
[CrossRef] [PubMed]

M. D. Morris, P. Matousek, M. Towrie, A. W. Parker, A. E. Goodship, and E. R. C. Draper, “Kerr-gated time-resolved Raman spectroscopy of equine cortical bone tissue,” J. Biomed. Opt.10, 014014 (2005).
[CrossRef]

Mycek, M.-A.

Neumann, M. H. A.

A. Nijssen, K. Maquelin, L. F. Santos, P. J. Caspers, T. C. Bakker Schut, J. C. den Hollander, M. H. A. Neumann, and G. J. Puppels, “Discriminating basal cell carcinoma from perilesional skin using high wave-number Raman spectroscopy,” J. Biomed. Opt.12, 034004 (2007).
[CrossRef] [PubMed]

Nijssen, A.

A. Nijssen, K. Maquelin, L. F. Santos, P. J. Caspers, T. C. Bakker Schut, J. C. den Hollander, M. H. A. Neumann, and G. J. Puppels, “Discriminating basal cell carcinoma from perilesional skin using high wave-number Raman spectroscopy,” J. Biomed. Opt.12, 034004 (2007).
[CrossRef] [PubMed]

Odin, C.

A. Leray, C. Odin, E. Huguet, F. Amblard, and Y. Le Grand, “Spatially distributed two-photon excitation fluorescence in scattering media: experiments and time-resolved Monte Carlo simulations,” Opt. Commun.272, 269–278 (2007).
[CrossRef]

Olds, W.

B. Cletus, W. Olds, E. L. Izake, S. Sundarajoo, P. M. Fredericks, and E. Jaatinen, “Combined time- and space-resolved Raman spectrometer for the non-invasive depth profiling of chemical hazards,” Anal. Bioanal. Chem.403, 255–263 (2012).
[CrossRef] [PubMed]

Parker, A. W.

Petrov, G. I.

R. Arora, G. I. Petrov, V. V. Yakovlev, and M. O. Scully, “Detecting anthrax in the mail via coherent Raman microspectroscopy,” Proc. Natl. Acad. Sci. U.S.A.109, 1151–1153 (2012).
[CrossRef]

Pfefer, T. J.

T. J. Pfefer, Q. Wang, and R. A. Drezek, “Monte Carlo modeling of time-resolved fluorescence for depth-selective interrogation of layered tissue,” Comput. Meth. Prog. Bio.104, 161–167 (2011).
[CrossRef]

Prahl, S. A.

Puech, K.

O. Mengual, G. Meunier, I. Cayré, K. Puech, and P. Snabre, “TURBISCAN MA 2000: multiple light scattering measurement for concentrated emulsion and suspension instability analysis,” Talanta50, 445–456 (1999).
[CrossRef]

Puppels, G. J.

A. Nijssen, K. Maquelin, L. F. Santos, P. J. Caspers, T. C. Bakker Schut, J. C. den Hollander, M. H. A. Neumann, and G. J. Puppels, “Discriminating basal cell carcinoma from perilesional skin using high wave-number Raman spectroscopy,” J. Biomed. Opt.12, 034004 (2007).
[CrossRef] [PubMed]

Ramella-Roman, J. C.

Santos, L. F.

A. Nijssen, K. Maquelin, L. F. Santos, P. J. Caspers, T. C. Bakker Schut, J. C. den Hollander, M. H. A. Neumann, and G. J. Puppels, “Discriminating basal cell carcinoma from perilesional skin using high wave-number Raman spectroscopy,” J. Biomed. Opt.12, 034004 (2007).
[CrossRef] [PubMed]

Scully, M. O.

R. Arora, G. I. Petrov, V. V. Yakovlev, and M. O. Scully, “Detecting anthrax in the mail via coherent Raman microspectroscopy,” Proc. Natl. Acad. Sci. U.S.A.109, 1151–1153 (2012).
[CrossRef]

Shafer-Peltier, K. E.

A. S. Haka, K. E. Shafer-Peltier, M. Fitzmaurice, J. Crowe, R. R. Dasari, and M. S. Feld, “Diagnosing breast cancer by using Raman spectroscopy,” Proc. Natl. Acad. Sci. U.S.A.125, 12371–12376 (2005).
[CrossRef]

Shih, W. C.

Snabre, P.

O. Mengual, G. Meunier, I. Cayré, K. Puech, and P. Snabre, “TURBISCAN MA 2000: multiple light scattering measurement for concentrated emulsion and suspension instability analysis,” Talanta50, 445–456 (1999).
[CrossRef]

Sundarajoo, S.

B. Cletus, W. Olds, E. L. Izake, S. Sundarajoo, P. M. Fredericks, and E. Jaatinen, “Combined time- and space-resolved Raman spectrometer for the non-invasive depth profiling of chemical hazards,” Anal. Bioanal. Chem.403, 255–263 (2012).
[CrossRef] [PubMed]

Towrie, M.

Wang, L.

L. Wang, S. L. Jacques, and L. Zheng, “MCML - Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Meth. Prog. Bio.47, 131–146 (1995).
[CrossRef]

Wang, Q.

T. J. Pfefer, Q. Wang, and R. A. Drezek, “Monte Carlo modeling of time-resolved fluorescence for depth-selective interrogation of layered tissue,” Comput. Meth. Prog. Bio.104, 161–167 (2011).
[CrossRef]

Wilson, R. H.

Yakovlev, V. V.

R. Arora, G. I. Petrov, V. V. Yakovlev, and M. O. Scully, “Detecting anthrax in the mail via coherent Raman microspectroscopy,” Proc. Natl. Acad. Sci. U.S.A.109, 1151–1153 (2012).
[CrossRef]

Zhao, Y.

Y. Zhao, X. Li, and L. Ma, “Multidimensional Monte Carlo model for two-photon laser-induced fluorescence and amplified spontaneous emission,” Comput. Phys. Commun.183, 1588–1595 (2012).
[CrossRef]

Zheng, L.

L. Wang, S. L. Jacques, and L. Zheng, “MCML - Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Meth. Prog. Bio.47, 131–146 (1995).
[CrossRef]

Anal. Bioanal. Chem.

B. Cletus, W. Olds, E. L. Izake, S. Sundarajoo, P. M. Fredericks, and E. Jaatinen, “Combined time- and space-resolved Raman spectrometer for the non-invasive depth profiling of chemical hazards,” Anal. Bioanal. Chem.403, 255–263 (2012).
[CrossRef] [PubMed]

Analyst

F. Ariese, H. Meuzelaar, M. M. Kerssens, J. B. Buijs, and C. Gooijer, “Picosecond Raman spectroscopy with a fast intensified CCD camera for depth analysis of diffusely scattering media,” Analyst134, 1192–1197 (2009).
[CrossRef] [PubMed]

Appl. Spectrosc.

Astrophysics

L. G. Henyey and J. L. Greenstein, “Diffuse radiation in the galaxy,” Astrophysics93, 70–83 (1941).
[CrossRef]

Biomed. Opt. Express

Comput. Meth. Prog. Bio.

L. Wang, S. L. Jacques, and L. Zheng, “MCML - Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Meth. Prog. Bio.47, 131–146 (1995).
[CrossRef]

T. J. Pfefer, Q. Wang, and R. A. Drezek, “Monte Carlo modeling of time-resolved fluorescence for depth-selective interrogation of layered tissue,” Comput. Meth. Prog. Bio.104, 161–167 (2011).
[CrossRef]

Comput. Phys. Commun.

Y. Zhao, X. Li, and L. Ma, “Multidimensional Monte Carlo model for two-photon laser-induced fluorescence and amplified spontaneous emission,” Comput. Phys. Commun.183, 1588–1595 (2012).
[CrossRef]

J. Biomed. Opt.

A. Nijssen, K. Maquelin, L. F. Santos, P. J. Caspers, T. C. Bakker Schut, J. C. den Hollander, M. H. A. Neumann, and G. J. Puppels, “Discriminating basal cell carcinoma from perilesional skin using high wave-number Raman spectroscopy,” J. Biomed. Opt.12, 034004 (2007).
[CrossRef] [PubMed]

M. D. Morris, P. Matousek, M. Towrie, A. W. Parker, A. E. Goodship, and E. R. C. Draper, “Kerr-gated time-resolved Raman spectroscopy of equine cortical bone tissue,” J. Biomed. Opt.10, 014014 (2005).
[CrossRef]

Nat. Photonics

A. Alù and N. Engheta, “Tuning the scattering response of optical nanoantennas with nanocircuit loads,” Nat. Photonics2, 307–310 (2008).
[CrossRef]

Opt. Commun.

A. Leray, C. Odin, E. Huguet, F. Amblard, and Y. Le Grand, “Spatially distributed two-photon excitation fluorescence in scattering media: experiments and time-resolved Monte Carlo simulations,” Opt. Commun.272, 269–278 (2007).
[CrossRef]

Opt. Express

Proc. Natl. Acad. Sci. U.S.A.

A. S. Haka, K. E. Shafer-Peltier, M. Fitzmaurice, J. Crowe, R. R. Dasari, and M. S. Feld, “Diagnosing breast cancer by using Raman spectroscopy,” Proc. Natl. Acad. Sci. U.S.A.125, 12371–12376 (2005).
[CrossRef]

R. Arora, G. I. Petrov, V. V. Yakovlev, and M. O. Scully, “Detecting anthrax in the mail via coherent Raman microspectroscopy,” Proc. Natl. Acad. Sci. U.S.A.109, 1151–1153 (2012).
[CrossRef]

Rep. Prog. Phys.

B. B. Das, F. Liu, and R. R. Alfano, “Time-resolved fluourescence and photon migration studies in biomedical and model random media,” Rep. Prog. Phys.60, 227–292 (1997).
[CrossRef]

Talanta

O. Mengual, G. Meunier, I. Cayré, K. Puech, and P. Snabre, “TURBISCAN MA 2000: multiple light scattering measurement for concentrated emulsion and suspension instability analysis,” Talanta50, 445–456 (1999).
[CrossRef]

Other

R. W. Boyd, Nonlinear Optics (Academic Press, 2003), 2nd ed.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Conceptual figure illustrating how scattering increases the path length traveled inside a turbid medium: a) without scattering, b) with scattering, c) coordinate system used to describe scattering. Where u is the direction vector before a scattering event, and u′ is the direction vector after a scattering event.

Fig. 2
Fig. 2

Intensity of the Raman signal and dwell time as a function of scatterer concentration: a) the set of baseline parameters (see the text) are used, b) a weak absorption (la = 10 mm) is included, c) a larger diameter incident beam (δρ = 0.1 mm) is used, d) a larger anisotropy parameter (g = 0.9) is used.

Fig. 3
Fig. 3

Backward spatial distribution of the: a) Raman scattered light, b) elastically scattered light. Backward temporal distribution of the: c) Raman scattered light, d) elastically scattered light.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

P i = 1 e Δ r / l i ,

Metrics