C. Tian, “Hydrodynamic and field-theoretic approaches to light localization in open media,” Physica E 49, 124–153 (2013).

[CrossRef]

T. Sperling, W. Bührer, C. M. Aegerter, and G. Maret, “Direct determination of the transition to localization of light in three dimensions,” Nat. Phot. 7, 48–52 (2013).

[CrossRef]

B. Payne, T. Mahler, and A. Yamilov, “Effect of evanescent channels on position-dependent diffusion in disordered waveguides,” Waves in Random and Complex Media 23, 43–55 (2013).

[CrossRef]

A. Yamilov, R. Sarma, B. Redding, B. Payne, H. Noh, and H. Cao, “Position-dependent diffusion of light in disordered waveguides,” arXiv:1303.3244 (2013).

J. Wang and A. Z. Genack, “Transport through modes in random media,” Nature 471, 345–348 (2011).

[CrossRef]
[PubMed]

L. Sapienza, H. Thyrrestrup, S. Stobbe, P. D. Garcia, S. Smolka, and P. Lodahl, “Cavity quantum electrodynamics with anderson-localized modes,” Science 327, 1352–1355 (2010).

[CrossRef]
[PubMed]

B. Payne, J. Andreasen, H. Cao, and A. Yamilov, “Relation between transmission and energy stored in random media with gain,” Phys. Rev. B 82, 104204 (2010).

[CrossRef]

A. Yamilov and B. Payne, “Classification of regimes of wave transport in quasi-one-dimensional nonconservative random media,” J. Mod. Opt. 57, 1916–1921 (2010).

[CrossRef]

C. Tian, S. Cheung, and Z. Zhang, “Local diffusion theory for localized waves in open media,” Phys. Rev. Lett. 105, 263905 (2010).

[CrossRef]

B. Payne, A. Yamilov, and S. E. Skipetrov, “Anderson localization as position-dependent diffusion in disordered waveguides,” Phys. Rev. B 82, 024205 (2010).

[CrossRef]

Z. Q. Zhang, A. A. Chabanov, S. K. Cheung, C. H. Wong, and A. Z. Genack, “Dynamics of localized waves: Pulsed microwave transmissions in quasi-one-dimensional media,” Phys. Rev. B 79, 144203 (2009).

[CrossRef]

A. Lagendijk, B. van Tiggelen, and D. S. Wiersma, “Fifty years of anderson localization,” Phys. Today 62, 24–29 (2009).

[CrossRef]

H. Hu, A. Strybulevych, J. H. Page, S. E. Skipetrov, and B. A. van Tiggelen, “Localization of ultrasound in a three-dimensional elastic network,” Nat. Phys. 4, 945–948 (2008).

[CrossRef]

N. Cherroret and S. E. Skipetrov, “Microscopic derivation of self-consistent equations of anderson localization in a disordered medium of finite size,” Phys. Rev. E 77, 046608 (2008).

[CrossRef]

C. Tian, “Supersymmetric field theory of local light diffusion in semi-infinite media,” Phys. Rev. B 77, 064205 (2008).

[CrossRef]

M. Störzer, P. Gross, C. Aegerter, and G. Maret, “Observation of the critical regime near anderson localization of light,” Phys. Rev. Lett. 96, 063904 (2006).

[CrossRef]
[PubMed]

L. I. Deych, A. Yamilov, and A. A. Lisyansky, “Scaling in one-dimensional localized absorbing systems,” Phys. Rev. B 64, 024201 (2001).

[CrossRef]

A. Mirlin, “Statistics of energy levels and eigen-functions in disordered systems,” Phys. Rep. 326, 259–382 (2000).

[CrossRef]

B. A. van Tiggelen, A. Lagendijk, and D. S. Wiersma, “Reflection and transmission of waves near the localization threshold,” Phys. Rev. Lett. 84, 4333–4336 (2000).

[CrossRef]
[PubMed]

A. A. Chabanov, M. Stoytchev, and A. Z. Genack, “Statistical signatures of photon localization,” Nature 404, 850–853 (2000).

[CrossRef]
[PubMed]

M. C. van Rossum and T. M. Nieuwenhuizen, “Multiple scattering of classical waves: microscopy, mesoscopy, and diffusion,” Rev. Mod. Phys. 71, 313–371 (1999).

[CrossRef]

P. W. Brouwer, “Transmission through a many-channel random waveguide with absorption,” Phys. Rev. B 57, 10526–10536 (1998).

[CrossRef]

C. W. Beenakker, “Random-matrix theory of quantum transport,” Rev. Mod. Phys. 69, 731–808 (1997).

[CrossRef]

V. D. Freilikher, M. Pustilnik, and I. Yurkevich, “Effect of absorption on the wave transport in the strong localization regime,” Phys. Rev. Lett. 73, 810–813 (1994).

[CrossRef]
[PubMed]

J. B. Pendry, “Symmetry and transport of waves in one-dimensional disordered systems,” Adv. Phys. 43, 461–542 (1994).

[CrossRef]

J. Kroha, C. M. Soukoulis, and P. Wölfle, “Localization of classical waves in a random medium: A self-consistent theory,” Phys. Rev. B 47, 11093–11096 (1993).

[CrossRef]

P. A. Lee, D. A. Stone, and H. Fukuyamak, “Universal conductance fluctuations in metals: Effects of finite temperature, interactions, and magnetic field,” Phys. Rev. B 35, 1039–1070 (1987).

[CrossRef]

S. John, “Electromagnetic absorption in a disordered medium near a photon mobility edge,” Phys. Rev. Lett. 53, 2169–2172 (1984).

[CrossRef]

P. W. Anderson, D. J. Thouless, E. Abrahams, and D. S. Fisher, “New method for a scaling theory of localization,” Phys. Rev. B 22, 3519–3526 (1980).

[CrossRef]

D. Vollhardt and P. Wölfle, “Diagrammatic, self-consistent treatment of the anderson localization problem in d≤ 2 dimensions,” Phys. Rev. B 22, 4666–4679 (1980).

[CrossRef]

E. Abrahams, P. W. Anderson, D. C. Licciardello, and T. V. Ramakrishnan, “Scaling theory of localization: Absence of quantum diffusion in two dimensions,” Phys. Rev. Lett. 42, 673–676 (1979).

[CrossRef]

P. W. Anderson, “Absence of diffusion in certain random lattices,” Phys. Rev. 109, 1492–1505 (1958).

[CrossRef]

P. W. Anderson, D. J. Thouless, E. Abrahams, and D. S. Fisher, “New method for a scaling theory of localization,” Phys. Rev. B 22, 3519–3526 (1980).

[CrossRef]

E. Abrahams, P. W. Anderson, D. C. Licciardello, and T. V. Ramakrishnan, “Scaling theory of localization: Absence of quantum diffusion in two dimensions,” Phys. Rev. Lett. 42, 673–676 (1979).

[CrossRef]

M. Störzer, P. Gross, C. Aegerter, and G. Maret, “Observation of the critical regime near anderson localization of light,” Phys. Rev. Lett. 96, 063904 (2006).

[CrossRef]
[PubMed]

T. Sperling, W. Bührer, C. M. Aegerter, and G. Maret, “Direct determination of the transition to localization of light in three dimensions,” Nat. Phot. 7, 48–52 (2013).

[CrossRef]

E. Akkermans and G. Montambaux, Mesoscopic Physics of Electrons and Photons (Cambridge University Press, Cambridge, UK, 2007).

[CrossRef]

P. W. Anderson, D. J. Thouless, E. Abrahams, and D. S. Fisher, “New method for a scaling theory of localization,” Phys. Rev. B 22, 3519–3526 (1980).

[CrossRef]

E. Abrahams, P. W. Anderson, D. C. Licciardello, and T. V. Ramakrishnan, “Scaling theory of localization: Absence of quantum diffusion in two dimensions,” Phys. Rev. Lett. 42, 673–676 (1979).

[CrossRef]

P. W. Anderson, “Absence of diffusion in certain random lattices,” Phys. Rev. 109, 1492–1505 (1958).

[CrossRef]

B. Payne, J. Andreasen, H. Cao, and A. Yamilov, “Relation between transmission and energy stored in random media with gain,” Phys. Rev. B 82, 104204 (2010).

[CrossRef]

C. W. Beenakker, “Random-matrix theory of quantum transport,” Rev. Mod. Phys. 69, 731–808 (1997).

[CrossRef]

P. W. Brouwer, “Transmission through a many-channel random waveguide with absorption,” Phys. Rev. B 57, 10526–10536 (1998).

[CrossRef]

T. Sperling, W. Bührer, C. M. Aegerter, and G. Maret, “Direct determination of the transition to localization of light in three dimensions,” Nat. Phot. 7, 48–52 (2013).

[CrossRef]

A. Yamilov, R. Sarma, B. Redding, B. Payne, H. Noh, and H. Cao, “Position-dependent diffusion of light in disordered waveguides,” arXiv:1303.3244 (2013).

B. Payne, J. Andreasen, H. Cao, and A. Yamilov, “Relation between transmission and energy stored in random media with gain,” Phys. Rev. B 82, 104204 (2010).

[CrossRef]

Z. Q. Zhang, A. A. Chabanov, S. K. Cheung, C. H. Wong, and A. Z. Genack, “Dynamics of localized waves: Pulsed microwave transmissions in quasi-one-dimensional media,” Phys. Rev. B 79, 144203 (2009).

[CrossRef]

A. A. Chabanov, M. Stoytchev, and A. Z. Genack, “Statistical signatures of photon localization,” Nature 404, 850–853 (2000).

[CrossRef]
[PubMed]

S. Chandresekhar, Radiative Transfer (Dover, New York, 1960).

N. Cherroret and S. E. Skipetrov, “Microscopic derivation of self-consistent equations of anderson localization in a disordered medium of finite size,” Phys. Rev. E 77, 046608 (2008).

[CrossRef]

C. Tian, S. Cheung, and Z. Zhang, “Local diffusion theory for localized waves in open media,” Phys. Rev. Lett. 105, 263905 (2010).

[CrossRef]

Z. Q. Zhang, A. A. Chabanov, S. K. Cheung, C. H. Wong, and A. Z. Genack, “Dynamics of localized waves: Pulsed microwave transmissions in quasi-one-dimensional media,” Phys. Rev. B 79, 144203 (2009).

[CrossRef]

L. I. Deych, A. Yamilov, and A. A. Lisyansky, “Scaling in one-dimensional localized absorbing systems,” Phys. Rev. B 64, 024201 (2001).

[CrossRef]

P. M. Morse and H. Feshbach, Methods of Theoretical Physics (McGraw-Hill, New York, 1953).

P. W. Anderson, D. J. Thouless, E. Abrahams, and D. S. Fisher, “New method for a scaling theory of localization,” Phys. Rev. B 22, 3519–3526 (1980).

[CrossRef]

V. D. Freilikher, M. Pustilnik, and I. Yurkevich, “Effect of absorption on the wave transport in the strong localization regime,” Phys. Rev. Lett. 73, 810–813 (1994).

[CrossRef]
[PubMed]

P. A. Lee, D. A. Stone, and H. Fukuyamak, “Universal conductance fluctuations in metals: Effects of finite temperature, interactions, and magnetic field,” Phys. Rev. B 35, 1039–1070 (1987).

[CrossRef]

L. Sapienza, H. Thyrrestrup, S. Stobbe, P. D. Garcia, S. Smolka, and P. Lodahl, “Cavity quantum electrodynamics with anderson-localized modes,” Science 327, 1352–1355 (2010).

[CrossRef]
[PubMed]

J. Wang and A. Z. Genack, “Transport through modes in random media,” Nature 471, 345–348 (2011).

[CrossRef]
[PubMed]

Z. Q. Zhang, A. A. Chabanov, S. K. Cheung, C. H. Wong, and A. Z. Genack, “Dynamics of localized waves: Pulsed microwave transmissions in quasi-one-dimensional media,” Phys. Rev. B 79, 144203 (2009).

[CrossRef]

A. A. Chabanov, M. Stoytchev, and A. Z. Genack, “Statistical signatures of photon localization,” Nature 404, 850–853 (2000).

[CrossRef]
[PubMed]

M. Störzer, P. Gross, C. Aegerter, and G. Maret, “Observation of the critical regime near anderson localization of light,” Phys. Rev. Lett. 96, 063904 (2006).

[CrossRef]
[PubMed]

H. Hu, A. Strybulevych, J. H. Page, S. E. Skipetrov, and B. A. van Tiggelen, “Localization of ultrasound in a three-dimensional elastic network,” Nat. Phys. 4, 945–948 (2008).

[CrossRef]

S. John, “Electromagnetic absorption in a disordered medium near a photon mobility edge,” Phys. Rev. Lett. 53, 2169–2172 (1984).

[CrossRef]

J. Kroha, C. M. Soukoulis, and P. Wölfle, “Localization of classical waves in a random medium: A self-consistent theory,” Phys. Rev. B 47, 11093–11096 (1993).

[CrossRef]

A. Lagendijk, B. van Tiggelen, and D. S. Wiersma, “Fifty years of anderson localization,” Phys. Today 62, 24–29 (2009).

[CrossRef]

B. A. van Tiggelen, A. Lagendijk, and D. S. Wiersma, “Reflection and transmission of waves near the localization threshold,” Phys. Rev. Lett. 84, 4333–4336 (2000).

[CrossRef]
[PubMed]

P. A. Lee, D. A. Stone, and H. Fukuyamak, “Universal conductance fluctuations in metals: Effects of finite temperature, interactions, and magnetic field,” Phys. Rev. B 35, 1039–1070 (1987).

[CrossRef]

E. Abrahams, P. W. Anderson, D. C. Licciardello, and T. V. Ramakrishnan, “Scaling theory of localization: Absence of quantum diffusion in two dimensions,” Phys. Rev. Lett. 42, 673–676 (1979).

[CrossRef]

L. I. Deych, A. Yamilov, and A. A. Lisyansky, “Scaling in one-dimensional localized absorbing systems,” Phys. Rev. B 64, 024201 (2001).

[CrossRef]

L. Sapienza, H. Thyrrestrup, S. Stobbe, P. D. Garcia, S. Smolka, and P. Lodahl, “Cavity quantum electrodynamics with anderson-localized modes,” Science 327, 1352–1355 (2010).

[CrossRef]
[PubMed]

B. Payne, T. Mahler, and A. Yamilov, “Effect of evanescent channels on position-dependent diffusion in disordered waveguides,” Waves in Random and Complex Media 23, 43–55 (2013).

[CrossRef]

T. Sperling, W. Bührer, C. M. Aegerter, and G. Maret, “Direct determination of the transition to localization of light in three dimensions,” Nat. Phot. 7, 48–52 (2013).

[CrossRef]

M. Störzer, P. Gross, C. Aegerter, and G. Maret, “Observation of the critical regime near anderson localization of light,” Phys. Rev. Lett. 96, 063904 (2006).

[CrossRef]
[PubMed]

A. Mirlin, “Statistics of energy levels and eigen-functions in disordered systems,” Phys. Rep. 326, 259–382 (2000).

[CrossRef]

E. Akkermans and G. Montambaux, Mesoscopic Physics of Electrons and Photons (Cambridge University Press, Cambridge, UK, 2007).

[CrossRef]

P. M. Morse and H. Feshbach, Methods of Theoretical Physics (McGraw-Hill, New York, 1953).

M. C. van Rossum and T. M. Nieuwenhuizen, “Multiple scattering of classical waves: microscopy, mesoscopy, and diffusion,” Rev. Mod. Phys. 71, 313–371 (1999).

[CrossRef]

A. Yamilov, R. Sarma, B. Redding, B. Payne, H. Noh, and H. Cao, “Position-dependent diffusion of light in disordered waveguides,” arXiv:1303.3244 (2013).

H. Hu, A. Strybulevych, J. H. Page, S. E. Skipetrov, and B. A. van Tiggelen, “Localization of ultrasound in a three-dimensional elastic network,” Nat. Phys. 4, 945–948 (2008).

[CrossRef]

B. Payne, T. Mahler, and A. Yamilov, “Effect of evanescent channels on position-dependent diffusion in disordered waveguides,” Waves in Random and Complex Media 23, 43–55 (2013).

[CrossRef]

A. Yamilov, R. Sarma, B. Redding, B. Payne, H. Noh, and H. Cao, “Position-dependent diffusion of light in disordered waveguides,” arXiv:1303.3244 (2013).

B. Payne, J. Andreasen, H. Cao, and A. Yamilov, “Relation between transmission and energy stored in random media with gain,” Phys. Rev. B 82, 104204 (2010).

[CrossRef]

A. Yamilov and B. Payne, “Classification of regimes of wave transport in quasi-one-dimensional nonconservative random media,” J. Mod. Opt. 57, 1916–1921 (2010).

[CrossRef]

B. Payne, A. Yamilov, and S. E. Skipetrov, “Anderson localization as position-dependent diffusion in disordered waveguides,” Phys. Rev. B 82, 024205 (2010).

[CrossRef]

J. B. Pendry, “Symmetry and transport of waves in one-dimensional disordered systems,” Adv. Phys. 43, 461–542 (1994).

[CrossRef]

V. D. Freilikher, M. Pustilnik, and I. Yurkevich, “Effect of absorption on the wave transport in the strong localization regime,” Phys. Rev. Lett. 73, 810–813 (1994).

[CrossRef]
[PubMed]

E. Abrahams, P. W. Anderson, D. C. Licciardello, and T. V. Ramakrishnan, “Scaling theory of localization: Absence of quantum diffusion in two dimensions,” Phys. Rev. Lett. 42, 673–676 (1979).

[CrossRef]

A. Yamilov, R. Sarma, B. Redding, B. Payne, H. Noh, and H. Cao, “Position-dependent diffusion of light in disordered waveguides,” arXiv:1303.3244 (2013).

L. Sapienza, H. Thyrrestrup, S. Stobbe, P. D. Garcia, S. Smolka, and P. Lodahl, “Cavity quantum electrodynamics with anderson-localized modes,” Science 327, 1352–1355 (2010).

[CrossRef]
[PubMed]

A. Yamilov, R. Sarma, B. Redding, B. Payne, H. Noh, and H. Cao, “Position-dependent diffusion of light in disordered waveguides,” arXiv:1303.3244 (2013).

B. Payne, A. Yamilov, and S. E. Skipetrov, “Anderson localization as position-dependent diffusion in disordered waveguides,” Phys. Rev. B 82, 024205 (2010).

[CrossRef]

H. Hu, A. Strybulevych, J. H. Page, S. E. Skipetrov, and B. A. van Tiggelen, “Localization of ultrasound in a three-dimensional elastic network,” Nat. Phys. 4, 945–948 (2008).

[CrossRef]

N. Cherroret and S. E. Skipetrov, “Microscopic derivation of self-consistent equations of anderson localization in a disordered medium of finite size,” Phys. Rev. E 77, 046608 (2008).

[CrossRef]

L. Sapienza, H. Thyrrestrup, S. Stobbe, P. D. Garcia, S. Smolka, and P. Lodahl, “Cavity quantum electrodynamics with anderson-localized modes,” Science 327, 1352–1355 (2010).

[CrossRef]
[PubMed]

J. Kroha, C. M. Soukoulis, and P. Wölfle, “Localization of classical waves in a random medium: A self-consistent theory,” Phys. Rev. B 47, 11093–11096 (1993).

[CrossRef]

T. Sperling, W. Bührer, C. M. Aegerter, and G. Maret, “Direct determination of the transition to localization of light in three dimensions,” Nat. Phot. 7, 48–52 (2013).

[CrossRef]

L. Sapienza, H. Thyrrestrup, S. Stobbe, P. D. Garcia, S. Smolka, and P. Lodahl, “Cavity quantum electrodynamics with anderson-localized modes,” Science 327, 1352–1355 (2010).

[CrossRef]
[PubMed]

P. A. Lee, D. A. Stone, and H. Fukuyamak, “Universal conductance fluctuations in metals: Effects of finite temperature, interactions, and magnetic field,” Phys. Rev. B 35, 1039–1070 (1987).

[CrossRef]

M. Störzer, P. Gross, C. Aegerter, and G. Maret, “Observation of the critical regime near anderson localization of light,” Phys. Rev. Lett. 96, 063904 (2006).

[CrossRef]
[PubMed]

A. A. Chabanov, M. Stoytchev, and A. Z. Genack, “Statistical signatures of photon localization,” Nature 404, 850–853 (2000).

[CrossRef]
[PubMed]

H. Hu, A. Strybulevych, J. H. Page, S. E. Skipetrov, and B. A. van Tiggelen, “Localization of ultrasound in a three-dimensional elastic network,” Nat. Phys. 4, 945–948 (2008).

[CrossRef]

P. W. Anderson, D. J. Thouless, E. Abrahams, and D. S. Fisher, “New method for a scaling theory of localization,” Phys. Rev. B 22, 3519–3526 (1980).

[CrossRef]

L. Sapienza, H. Thyrrestrup, S. Stobbe, P. D. Garcia, S. Smolka, and P. Lodahl, “Cavity quantum electrodynamics with anderson-localized modes,” Science 327, 1352–1355 (2010).

[CrossRef]
[PubMed]

C. Tian, “Hydrodynamic and field-theoretic approaches to light localization in open media,” Physica E 49, 124–153 (2013).

[CrossRef]

C. Tian, S. Cheung, and Z. Zhang, “Local diffusion theory for localized waves in open media,” Phys. Rev. Lett. 105, 263905 (2010).

[CrossRef]

C. Tian, “Supersymmetric field theory of local light diffusion in semi-infinite media,” Phys. Rev. B 77, 064205 (2008).

[CrossRef]

L. Y. Zhao, C. Tian, Z. Q. Zhang, and X. D. Zhang, “Unusual Brownian motion of photons in open absorbing media,” arXiv:1304.0516 (2013).

M. C. van Rossum and T. M. Nieuwenhuizen, “Multiple scattering of classical waves: microscopy, mesoscopy, and diffusion,” Rev. Mod. Phys. 71, 313–371 (1999).

[CrossRef]

A. Lagendijk, B. van Tiggelen, and D. S. Wiersma, “Fifty years of anderson localization,” Phys. Today 62, 24–29 (2009).

[CrossRef]

H. Hu, A. Strybulevych, J. H. Page, S. E. Skipetrov, and B. A. van Tiggelen, “Localization of ultrasound in a three-dimensional elastic network,” Nat. Phys. 4, 945–948 (2008).

[CrossRef]

B. A. van Tiggelen, A. Lagendijk, and D. S. Wiersma, “Reflection and transmission of waves near the localization threshold,” Phys. Rev. Lett. 84, 4333–4336 (2000).

[CrossRef]
[PubMed]

D. Vollhardt and P. Wölfle, “Diagrammatic, self-consistent treatment of the anderson localization problem in d≤ 2 dimensions,” Phys. Rev. B 22, 4666–4679 (1980).

[CrossRef]

J. Wang and A. Z. Genack, “Transport through modes in random media,” Nature 471, 345–348 (2011).

[CrossRef]
[PubMed]

L. V. Wang and H. Wu, Biomedical Optics: Principles and Imaging(Wiley-Interscience, 2007).

A. Lagendijk, B. van Tiggelen, and D. S. Wiersma, “Fifty years of anderson localization,” Phys. Today 62, 24–29 (2009).

[CrossRef]

B. A. van Tiggelen, A. Lagendijk, and D. S. Wiersma, “Reflection and transmission of waves near the localization threshold,” Phys. Rev. Lett. 84, 4333–4336 (2000).

[CrossRef]
[PubMed]

J. Kroha, C. M. Soukoulis, and P. Wölfle, “Localization of classical waves in a random medium: A self-consistent theory,” Phys. Rev. B 47, 11093–11096 (1993).

[CrossRef]

D. Vollhardt and P. Wölfle, “Diagrammatic, self-consistent treatment of the anderson localization problem in d≤ 2 dimensions,” Phys. Rev. B 22, 4666–4679 (1980).

[CrossRef]

Z. Q. Zhang, A. A. Chabanov, S. K. Cheung, C. H. Wong, and A. Z. Genack, “Dynamics of localized waves: Pulsed microwave transmissions in quasi-one-dimensional media,” Phys. Rev. B 79, 144203 (2009).

[CrossRef]

L. V. Wang and H. Wu, Biomedical Optics: Principles and Imaging(Wiley-Interscience, 2007).

B. Payne, T. Mahler, and A. Yamilov, “Effect of evanescent channels on position-dependent diffusion in disordered waveguides,” Waves in Random and Complex Media 23, 43–55 (2013).

[CrossRef]

A. Yamilov, R. Sarma, B. Redding, B. Payne, H. Noh, and H. Cao, “Position-dependent diffusion of light in disordered waveguides,” arXiv:1303.3244 (2013).

B. Payne, A. Yamilov, and S. E. Skipetrov, “Anderson localization as position-dependent diffusion in disordered waveguides,” Phys. Rev. B 82, 024205 (2010).

[CrossRef]

B. Payne, J. Andreasen, H. Cao, and A. Yamilov, “Relation between transmission and energy stored in random media with gain,” Phys. Rev. B 82, 104204 (2010).

[CrossRef]

A. Yamilov and B. Payne, “Classification of regimes of wave transport in quasi-one-dimensional nonconservative random media,” J. Mod. Opt. 57, 1916–1921 (2010).

[CrossRef]

L. I. Deych, A. Yamilov, and A. A. Lisyansky, “Scaling in one-dimensional localized absorbing systems,” Phys. Rev. B 64, 024201 (2001).

[CrossRef]

V. D. Freilikher, M. Pustilnik, and I. Yurkevich, “Effect of absorption on the wave transport in the strong localization regime,” Phys. Rev. Lett. 73, 810–813 (1994).

[CrossRef]
[PubMed]

L. Y. Zhao, C. Tian, Z. Q. Zhang, and X. D. Zhang, “Unusual Brownian motion of photons in open absorbing media,” arXiv:1304.0516 (2013).

C. Tian, S. Cheung, and Z. Zhang, “Local diffusion theory for localized waves in open media,” Phys. Rev. Lett. 105, 263905 (2010).

[CrossRef]

Z. Q. Zhang, A. A. Chabanov, S. K. Cheung, C. H. Wong, and A. Z. Genack, “Dynamics of localized waves: Pulsed microwave transmissions in quasi-one-dimensional media,” Phys. Rev. B 79, 144203 (2009).

[CrossRef]

L. Y. Zhao, C. Tian, Z. Q. Zhang, and X. D. Zhang, “Unusual Brownian motion of photons in open absorbing media,” arXiv:1304.0516 (2013).

L. Y. Zhao, C. Tian, Z. Q. Zhang, and X. D. Zhang, “Unusual Brownian motion of photons in open absorbing media,” arXiv:1304.0516 (2013).

J. B. Pendry, “Symmetry and transport of waves in one-dimensional disordered systems,” Adv. Phys. 43, 461–542 (1994).

[CrossRef]

A. Yamilov and B. Payne, “Classification of regimes of wave transport in quasi-one-dimensional nonconservative random media,” J. Mod. Opt. 57, 1916–1921 (2010).

[CrossRef]

T. Sperling, W. Bührer, C. M. Aegerter, and G. Maret, “Direct determination of the transition to localization of light in three dimensions,” Nat. Phot. 7, 48–52 (2013).

[CrossRef]

H. Hu, A. Strybulevych, J. H. Page, S. E. Skipetrov, and B. A. van Tiggelen, “Localization of ultrasound in a three-dimensional elastic network,” Nat. Phys. 4, 945–948 (2008).

[CrossRef]

A. A. Chabanov, M. Stoytchev, and A. Z. Genack, “Statistical signatures of photon localization,” Nature 404, 850–853 (2000).

[CrossRef]
[PubMed]

J. Wang and A. Z. Genack, “Transport through modes in random media,” Nature 471, 345–348 (2011).

[CrossRef]
[PubMed]

A. Mirlin, “Statistics of energy levels and eigen-functions in disordered systems,” Phys. Rep. 326, 259–382 (2000).

[CrossRef]

P. W. Anderson, “Absence of diffusion in certain random lattices,” Phys. Rev. 109, 1492–1505 (1958).

[CrossRef]

D. Vollhardt and P. Wölfle, “Diagrammatic, self-consistent treatment of the anderson localization problem in d≤ 2 dimensions,” Phys. Rev. B 22, 4666–4679 (1980).

[CrossRef]

J. Kroha, C. M. Soukoulis, and P. Wölfle, “Localization of classical waves in a random medium: A self-consistent theory,” Phys. Rev. B 47, 11093–11096 (1993).

[CrossRef]

Z. Q. Zhang, A. A. Chabanov, S. K. Cheung, C. H. Wong, and A. Z. Genack, “Dynamics of localized waves: Pulsed microwave transmissions in quasi-one-dimensional media,” Phys. Rev. B 79, 144203 (2009).

[CrossRef]

C. Tian, “Supersymmetric field theory of local light diffusion in semi-infinite media,” Phys. Rev. B 77, 064205 (2008).

[CrossRef]

B. Payne, A. Yamilov, and S. E. Skipetrov, “Anderson localization as position-dependent diffusion in disordered waveguides,” Phys. Rev. B 82, 024205 (2010).

[CrossRef]

B. Payne, J. Andreasen, H. Cao, and A. Yamilov, “Relation between transmission and energy stored in random media with gain,” Phys. Rev. B 82, 104204 (2010).

[CrossRef]

P. A. Lee, D. A. Stone, and H. Fukuyamak, “Universal conductance fluctuations in metals: Effects of finite temperature, interactions, and magnetic field,” Phys. Rev. B 35, 1039–1070 (1987).

[CrossRef]

P. W. Anderson, D. J. Thouless, E. Abrahams, and D. S. Fisher, “New method for a scaling theory of localization,” Phys. Rev. B 22, 3519–3526 (1980).

[CrossRef]

L. I. Deych, A. Yamilov, and A. A. Lisyansky, “Scaling in one-dimensional localized absorbing systems,” Phys. Rev. B 64, 024201 (2001).

[CrossRef]

P. W. Brouwer, “Transmission through a many-channel random waveguide with absorption,” Phys. Rev. B 57, 10526–10536 (1998).

[CrossRef]

N. Cherroret and S. E. Skipetrov, “Microscopic derivation of self-consistent equations of anderson localization in a disordered medium of finite size,” Phys. Rev. E 77, 046608 (2008).

[CrossRef]

B. A. van Tiggelen, A. Lagendijk, and D. S. Wiersma, “Reflection and transmission of waves near the localization threshold,” Phys. Rev. Lett. 84, 4333–4336 (2000).

[CrossRef]
[PubMed]

M. Störzer, P. Gross, C. Aegerter, and G. Maret, “Observation of the critical regime near anderson localization of light,” Phys. Rev. Lett. 96, 063904 (2006).

[CrossRef]
[PubMed]

C. Tian, S. Cheung, and Z. Zhang, “Local diffusion theory for localized waves in open media,” Phys. Rev. Lett. 105, 263905 (2010).

[CrossRef]

E. Abrahams, P. W. Anderson, D. C. Licciardello, and T. V. Ramakrishnan, “Scaling theory of localization: Absence of quantum diffusion in two dimensions,” Phys. Rev. Lett. 42, 673–676 (1979).

[CrossRef]

S. John, “Electromagnetic absorption in a disordered medium near a photon mobility edge,” Phys. Rev. Lett. 53, 2169–2172 (1984).

[CrossRef]

V. D. Freilikher, M. Pustilnik, and I. Yurkevich, “Effect of absorption on the wave transport in the strong localization regime,” Phys. Rev. Lett. 73, 810–813 (1994).

[CrossRef]
[PubMed]

A. Lagendijk, B. van Tiggelen, and D. S. Wiersma, “Fifty years of anderson localization,” Phys. Today 62, 24–29 (2009).

[CrossRef]

C. Tian, “Hydrodynamic and field-theoretic approaches to light localization in open media,” Physica E 49, 124–153 (2013).

[CrossRef]

M. C. van Rossum and T. M. Nieuwenhuizen, “Multiple scattering of classical waves: microscopy, mesoscopy, and diffusion,” Rev. Mod. Phys. 71, 313–371 (1999).

[CrossRef]

C. W. Beenakker, “Random-matrix theory of quantum transport,” Rev. Mod. Phys. 69, 731–808 (1997).

[CrossRef]

L. Sapienza, H. Thyrrestrup, S. Stobbe, P. D. Garcia, S. Smolka, and P. Lodahl, “Cavity quantum electrodynamics with anderson-localized modes,” Science 327, 1352–1355 (2010).

[CrossRef]
[PubMed]

B. Payne, T. Mahler, and A. Yamilov, “Effect of evanescent channels on position-dependent diffusion in disordered waveguides,” Waves in Random and Complex Media 23, 43–55 (2013).

[CrossRef]

S. Chandresekhar, Radiative Transfer (Dover, New York, 1960).

L. V. Wang and H. Wu, Biomedical Optics: Principles and Imaging(Wiley-Interscience, 2007).

P. M. Morse and H. Feshbach, Methods of Theoretical Physics (McGraw-Hill, New York, 1953).

A. Yamilov, R. Sarma, B. Redding, B. Payne, H. Noh, and H. Cao, “Position-dependent diffusion of light in disordered waveguides,” arXiv:1303.3244 (2013).

E. Akkermans and G. Montambaux, Mesoscopic Physics of Electrons and Photons (Cambridge University Press, Cambridge, UK, 2007).

[CrossRef]

B. L. Altshuler, P. A. Lee, and R. A. Webb, eds., Mesoscopic Phenomena in Solids (North Holland, Amsterdam, 1991).

L. Y. Zhao, C. Tian, Z. Q. Zhang, and X. D. Zhang, “Unusual Brownian motion of photons in open absorbing media,” arXiv:1304.0516 (2013).