Abstract

The design and characterization of silicon-on-insulator mid-infrared spectrometers operating at 3.8μm is reported. The devices are fabricated on 200mm SOI wafers in a CMOS pilot line. Both arrayed waveguide grating structures and planar concave grating structures were designed and tested. Low insertion loss (1.5-2.5dB) and good crosstalk characteristics (15-20dB) are demonstrated, together with waveguide propagation losses in the range of 3 to 6dB/cm.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Hallynck and P. Bienstman, “Integrated optical pressure sensors in silicon-on-insulator,” IEEE Photon. J.4(2), 443–450 (2012).
    [CrossRef]
  2. M. C. Estevez, M. Alvarez, and L. M. Lechuga, “Integrated optical devices for lab-on-a-chip biosensing applications,” Laser Photon. Rev.6(4), 463–487 (2012).
    [CrossRef]
  3. K. De Vos, I. Bartolozzi, E. Schacht, P. Bienstman, and R. Baets, “Silicon-on-Insulator microring resonator for sensitive and label-free biosensing,” Opt. Express15(12), 7610–7615 (2007).
    [CrossRef] [PubMed]
  4. G. Roelkens, W. M. J. Green, B. Kuyken, X. Liu, N. Hattasan, A. Gassenq, L. Cerutti, J. B. Rodriguez, R. M. Osgood, E. Tournie, and R. Baets, “III-V/silicon photonics for short-wave infrared spectroscopy,” J. Quantum Electron.48(2), 292–298 (2012).
    [CrossRef]
  5. X. Liu, B. Kuyken, G. Roelkens, R. Baets, R. M. Osgood, and W. M. J. Green, “Bridging the Mid-Infrared-to-Telecom Gap with Silicon Nanophotonic Spectral Translation,” Nat. Photonics6(10), 667–671 (2012).
    [CrossRef]
  6. R. Soref, “Mid-infrared photonics in silicon and germanium,” Nat. Photonics4(8), 495–497 (2010).
    [CrossRef]
  7. R. A. Soref, S. J. Emelett, and W. R. Buchwald, “Silicon waveguided components for the long-wave infrared region,” J. Opt. A, Pure Appl. Opt.8(10), 840–848 (2006).
    [CrossRef]
  8. http://www.epixfab.eu/
  9. G. Z. Mashanovich, M. M. Milošević, M. Nedeljkovic, N. Owens, B. Xiong, E. J. Teo, and Y. Hu, “Low loss silicon waveguides for the mid-infrared,” Opt. Express19(8), 7112–7119 (2011).
    [CrossRef] [PubMed]
  10. M. M. Milosevic, M. Nedeljkovic, T. B. Masaud, E. Jaberansary, H. M. H. Chong, N. G. Emerson, G. T. Reed, and G. Z. Mashanovich, “Silicon waveguides and devices for the mid-infrared,” Appl. Phys. Lett.101(12), 121105 (2012).
    [CrossRef]
  11. C. Reimer, M. Nedeljkovic, D. J. M. Stothard, M. O. S. Esnault, C. Reardon, L. O’Faolain, M. Dunn, G. Z. Mashanovich, and T. F. Krauss, “Mid-infrared photonic crystal waveguides in silicon,” Opt. Express20(28), 29361–29368 (2012).
    [CrossRef] [PubMed]
  12. http://www.photond.com/products/fimmwave.htm
  13. K. K. Lee, D. R. Lim, L. C. Kimerling, J. Shin, and F. Cerrina, “Fabrication of ultralow-loss Si/SiO2 waveguides by roughness reduction,” Opt. Lett.26(23), 1888–1890 (2001).
    [CrossRef] [PubMed]
  14. Q. Fang, J. F. Song, S. H. Tao, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Low Loss (~6.45dB/cm) Sub-Micron Polycrystalline Silicon Waveguide Integrated with Efficient SiON Waveguide Coupler,” Opt. Express16(9), 6425–6432 (2008).
    [CrossRef] [PubMed]
  15. M. K. Smit and C. Van Dam, “Phasar-based wdm-devices: Principles, design and applications,” IEEE J. Sel. Top. Quantum Electron.2(2), 236–250 (1996).
    [CrossRef]
  16. W. Bogaerts, P. Dumon, D. Van Thourhout, D. Taillaert, P. Jaenen, J. Wouters, S. Beckx, V. Wiaux, and R. Baets, “Compact wavelength selective functions in silicon-on-insulator photonic wires,” IEEE J. Sel. Top. Quantum Electron.12(6), 1394–1401 (2006).
    [CrossRef]
  17. W. Bogaerts, S. Selvaraja, P. Dumon, J. Brouckaert, K. De Vos, D. Van Thourhout, and R. Baets, “Silicon-on-Insulator Spectral Filters Fabricated with CMOS Technology,” IEEE J. Sel. Top. Quantum Electron.16(1), 33–44 (2010).
    [CrossRef]
  18. R. Marz, Integrated Optics, Design and Modeling. (Artech House Inc., 1994)
  19. J. Brouckaert, W. Bogaerts, P. Dumon, D. Van Thourhout, and R. Baets, “Planar concave grating demultiplexer fabricated on a nanophotonic silicon-on-insulator platform,” J. Lightwave Technol.25(5), 1269–1275 (2007).
    [CrossRef]

2012

G. Roelkens, W. M. J. Green, B. Kuyken, X. Liu, N. Hattasan, A. Gassenq, L. Cerutti, J. B. Rodriguez, R. M. Osgood, E. Tournie, and R. Baets, “III-V/silicon photonics for short-wave infrared spectroscopy,” J. Quantum Electron.48(2), 292–298 (2012).
[CrossRef]

X. Liu, B. Kuyken, G. Roelkens, R. Baets, R. M. Osgood, and W. M. J. Green, “Bridging the Mid-Infrared-to-Telecom Gap with Silicon Nanophotonic Spectral Translation,” Nat. Photonics6(10), 667–671 (2012).
[CrossRef]

E. Hallynck and P. Bienstman, “Integrated optical pressure sensors in silicon-on-insulator,” IEEE Photon. J.4(2), 443–450 (2012).
[CrossRef]

M. C. Estevez, M. Alvarez, and L. M. Lechuga, “Integrated optical devices for lab-on-a-chip biosensing applications,” Laser Photon. Rev.6(4), 463–487 (2012).
[CrossRef]

M. M. Milosevic, M. Nedeljkovic, T. B. Masaud, E. Jaberansary, H. M. H. Chong, N. G. Emerson, G. T. Reed, and G. Z. Mashanovich, “Silicon waveguides and devices for the mid-infrared,” Appl. Phys. Lett.101(12), 121105 (2012).
[CrossRef]

C. Reimer, M. Nedeljkovic, D. J. M. Stothard, M. O. S. Esnault, C. Reardon, L. O’Faolain, M. Dunn, G. Z. Mashanovich, and T. F. Krauss, “Mid-infrared photonic crystal waveguides in silicon,” Opt. Express20(28), 29361–29368 (2012).
[CrossRef] [PubMed]

2011

2010

W. Bogaerts, S. Selvaraja, P. Dumon, J. Brouckaert, K. De Vos, D. Van Thourhout, and R. Baets, “Silicon-on-Insulator Spectral Filters Fabricated with CMOS Technology,” IEEE J. Sel. Top. Quantum Electron.16(1), 33–44 (2010).
[CrossRef]

R. Soref, “Mid-infrared photonics in silicon and germanium,” Nat. Photonics4(8), 495–497 (2010).
[CrossRef]

2008

2007

2006

R. A. Soref, S. J. Emelett, and W. R. Buchwald, “Silicon waveguided components for the long-wave infrared region,” J. Opt. A, Pure Appl. Opt.8(10), 840–848 (2006).
[CrossRef]

W. Bogaerts, P. Dumon, D. Van Thourhout, D. Taillaert, P. Jaenen, J. Wouters, S. Beckx, V. Wiaux, and R. Baets, “Compact wavelength selective functions in silicon-on-insulator photonic wires,” IEEE J. Sel. Top. Quantum Electron.12(6), 1394–1401 (2006).
[CrossRef]

2001

1996

M. K. Smit and C. Van Dam, “Phasar-based wdm-devices: Principles, design and applications,” IEEE J. Sel. Top. Quantum Electron.2(2), 236–250 (1996).
[CrossRef]

Alvarez, M.

M. C. Estevez, M. Alvarez, and L. M. Lechuga, “Integrated optical devices for lab-on-a-chip biosensing applications,” Laser Photon. Rev.6(4), 463–487 (2012).
[CrossRef]

Baets, R.

G. Roelkens, W. M. J. Green, B. Kuyken, X. Liu, N. Hattasan, A. Gassenq, L. Cerutti, J. B. Rodriguez, R. M. Osgood, E. Tournie, and R. Baets, “III-V/silicon photonics for short-wave infrared spectroscopy,” J. Quantum Electron.48(2), 292–298 (2012).
[CrossRef]

X. Liu, B. Kuyken, G. Roelkens, R. Baets, R. M. Osgood, and W. M. J. Green, “Bridging the Mid-Infrared-to-Telecom Gap with Silicon Nanophotonic Spectral Translation,” Nat. Photonics6(10), 667–671 (2012).
[CrossRef]

W. Bogaerts, S. Selvaraja, P. Dumon, J. Brouckaert, K. De Vos, D. Van Thourhout, and R. Baets, “Silicon-on-Insulator Spectral Filters Fabricated with CMOS Technology,” IEEE J. Sel. Top. Quantum Electron.16(1), 33–44 (2010).
[CrossRef]

J. Brouckaert, W. Bogaerts, P. Dumon, D. Van Thourhout, and R. Baets, “Planar concave grating demultiplexer fabricated on a nanophotonic silicon-on-insulator platform,” J. Lightwave Technol.25(5), 1269–1275 (2007).
[CrossRef]

K. De Vos, I. Bartolozzi, E. Schacht, P. Bienstman, and R. Baets, “Silicon-on-Insulator microring resonator for sensitive and label-free biosensing,” Opt. Express15(12), 7610–7615 (2007).
[CrossRef] [PubMed]

W. Bogaerts, P. Dumon, D. Van Thourhout, D. Taillaert, P. Jaenen, J. Wouters, S. Beckx, V. Wiaux, and R. Baets, “Compact wavelength selective functions in silicon-on-insulator photonic wires,” IEEE J. Sel. Top. Quantum Electron.12(6), 1394–1401 (2006).
[CrossRef]

Bartolozzi, I.

Beckx, S.

W. Bogaerts, P. Dumon, D. Van Thourhout, D. Taillaert, P. Jaenen, J. Wouters, S. Beckx, V. Wiaux, and R. Baets, “Compact wavelength selective functions in silicon-on-insulator photonic wires,” IEEE J. Sel. Top. Quantum Electron.12(6), 1394–1401 (2006).
[CrossRef]

Bienstman, P.

Bogaerts, W.

W. Bogaerts, S. Selvaraja, P. Dumon, J. Brouckaert, K. De Vos, D. Van Thourhout, and R. Baets, “Silicon-on-Insulator Spectral Filters Fabricated with CMOS Technology,” IEEE J. Sel. Top. Quantum Electron.16(1), 33–44 (2010).
[CrossRef]

J. Brouckaert, W. Bogaerts, P. Dumon, D. Van Thourhout, and R. Baets, “Planar concave grating demultiplexer fabricated on a nanophotonic silicon-on-insulator platform,” J. Lightwave Technol.25(5), 1269–1275 (2007).
[CrossRef]

W. Bogaerts, P. Dumon, D. Van Thourhout, D. Taillaert, P. Jaenen, J. Wouters, S. Beckx, V. Wiaux, and R. Baets, “Compact wavelength selective functions in silicon-on-insulator photonic wires,” IEEE J. Sel. Top. Quantum Electron.12(6), 1394–1401 (2006).
[CrossRef]

Brouckaert, J.

W. Bogaerts, S. Selvaraja, P. Dumon, J. Brouckaert, K. De Vos, D. Van Thourhout, and R. Baets, “Silicon-on-Insulator Spectral Filters Fabricated with CMOS Technology,” IEEE J. Sel. Top. Quantum Electron.16(1), 33–44 (2010).
[CrossRef]

J. Brouckaert, W. Bogaerts, P. Dumon, D. Van Thourhout, and R. Baets, “Planar concave grating demultiplexer fabricated on a nanophotonic silicon-on-insulator platform,” J. Lightwave Technol.25(5), 1269–1275 (2007).
[CrossRef]

Buchwald, W. R.

R. A. Soref, S. J. Emelett, and W. R. Buchwald, “Silicon waveguided components for the long-wave infrared region,” J. Opt. A, Pure Appl. Opt.8(10), 840–848 (2006).
[CrossRef]

Cerrina, F.

Cerutti, L.

G. Roelkens, W. M. J. Green, B. Kuyken, X. Liu, N. Hattasan, A. Gassenq, L. Cerutti, J. B. Rodriguez, R. M. Osgood, E. Tournie, and R. Baets, “III-V/silicon photonics for short-wave infrared spectroscopy,” J. Quantum Electron.48(2), 292–298 (2012).
[CrossRef]

Chong, H. M. H.

M. M. Milosevic, M. Nedeljkovic, T. B. Masaud, E. Jaberansary, H. M. H. Chong, N. G. Emerson, G. T. Reed, and G. Z. Mashanovich, “Silicon waveguides and devices for the mid-infrared,” Appl. Phys. Lett.101(12), 121105 (2012).
[CrossRef]

De Vos, K.

W. Bogaerts, S. Selvaraja, P. Dumon, J. Brouckaert, K. De Vos, D. Van Thourhout, and R. Baets, “Silicon-on-Insulator Spectral Filters Fabricated with CMOS Technology,” IEEE J. Sel. Top. Quantum Electron.16(1), 33–44 (2010).
[CrossRef]

K. De Vos, I. Bartolozzi, E. Schacht, P. Bienstman, and R. Baets, “Silicon-on-Insulator microring resonator for sensitive and label-free biosensing,” Opt. Express15(12), 7610–7615 (2007).
[CrossRef] [PubMed]

Dumon, P.

W. Bogaerts, S. Selvaraja, P. Dumon, J. Brouckaert, K. De Vos, D. Van Thourhout, and R. Baets, “Silicon-on-Insulator Spectral Filters Fabricated with CMOS Technology,” IEEE J. Sel. Top. Quantum Electron.16(1), 33–44 (2010).
[CrossRef]

J. Brouckaert, W. Bogaerts, P. Dumon, D. Van Thourhout, and R. Baets, “Planar concave grating demultiplexer fabricated on a nanophotonic silicon-on-insulator platform,” J. Lightwave Technol.25(5), 1269–1275 (2007).
[CrossRef]

W. Bogaerts, P. Dumon, D. Van Thourhout, D. Taillaert, P. Jaenen, J. Wouters, S. Beckx, V. Wiaux, and R. Baets, “Compact wavelength selective functions in silicon-on-insulator photonic wires,” IEEE J. Sel. Top. Quantum Electron.12(6), 1394–1401 (2006).
[CrossRef]

Dunn, M.

Emelett, S. J.

R. A. Soref, S. J. Emelett, and W. R. Buchwald, “Silicon waveguided components for the long-wave infrared region,” J. Opt. A, Pure Appl. Opt.8(10), 840–848 (2006).
[CrossRef]

Emerson, N. G.

M. M. Milosevic, M. Nedeljkovic, T. B. Masaud, E. Jaberansary, H. M. H. Chong, N. G. Emerson, G. T. Reed, and G. Z. Mashanovich, “Silicon waveguides and devices for the mid-infrared,” Appl. Phys. Lett.101(12), 121105 (2012).
[CrossRef]

Esnault, M. O. S.

Estevez, M. C.

M. C. Estevez, M. Alvarez, and L. M. Lechuga, “Integrated optical devices for lab-on-a-chip biosensing applications,” Laser Photon. Rev.6(4), 463–487 (2012).
[CrossRef]

Fang, Q.

Gassenq, A.

G. Roelkens, W. M. J. Green, B. Kuyken, X. Liu, N. Hattasan, A. Gassenq, L. Cerutti, J. B. Rodriguez, R. M. Osgood, E. Tournie, and R. Baets, “III-V/silicon photonics for short-wave infrared spectroscopy,” J. Quantum Electron.48(2), 292–298 (2012).
[CrossRef]

Green, W. M. J.

X. Liu, B. Kuyken, G. Roelkens, R. Baets, R. M. Osgood, and W. M. J. Green, “Bridging the Mid-Infrared-to-Telecom Gap with Silicon Nanophotonic Spectral Translation,” Nat. Photonics6(10), 667–671 (2012).
[CrossRef]

G. Roelkens, W. M. J. Green, B. Kuyken, X. Liu, N. Hattasan, A. Gassenq, L. Cerutti, J. B. Rodriguez, R. M. Osgood, E. Tournie, and R. Baets, “III-V/silicon photonics for short-wave infrared spectroscopy,” J. Quantum Electron.48(2), 292–298 (2012).
[CrossRef]

Hallynck, E.

E. Hallynck and P. Bienstman, “Integrated optical pressure sensors in silicon-on-insulator,” IEEE Photon. J.4(2), 443–450 (2012).
[CrossRef]

Hattasan, N.

G. Roelkens, W. M. J. Green, B. Kuyken, X. Liu, N. Hattasan, A. Gassenq, L. Cerutti, J. B. Rodriguez, R. M. Osgood, E. Tournie, and R. Baets, “III-V/silicon photonics for short-wave infrared spectroscopy,” J. Quantum Electron.48(2), 292–298 (2012).
[CrossRef]

Hu, Y.

Jaberansary, E.

M. M. Milosevic, M. Nedeljkovic, T. B. Masaud, E. Jaberansary, H. M. H. Chong, N. G. Emerson, G. T. Reed, and G. Z. Mashanovich, “Silicon waveguides and devices for the mid-infrared,” Appl. Phys. Lett.101(12), 121105 (2012).
[CrossRef]

Jaenen, P.

W. Bogaerts, P. Dumon, D. Van Thourhout, D. Taillaert, P. Jaenen, J. Wouters, S. Beckx, V. Wiaux, and R. Baets, “Compact wavelength selective functions in silicon-on-insulator photonic wires,” IEEE J. Sel. Top. Quantum Electron.12(6), 1394–1401 (2006).
[CrossRef]

Kimerling, L. C.

Krauss, T. F.

Kuyken, B.

G. Roelkens, W. M. J. Green, B. Kuyken, X. Liu, N. Hattasan, A. Gassenq, L. Cerutti, J. B. Rodriguez, R. M. Osgood, E. Tournie, and R. Baets, “III-V/silicon photonics for short-wave infrared spectroscopy,” J. Quantum Electron.48(2), 292–298 (2012).
[CrossRef]

X. Liu, B. Kuyken, G. Roelkens, R. Baets, R. M. Osgood, and W. M. J. Green, “Bridging the Mid-Infrared-to-Telecom Gap with Silicon Nanophotonic Spectral Translation,” Nat. Photonics6(10), 667–671 (2012).
[CrossRef]

Kwong, D. L.

Lechuga, L. M.

M. C. Estevez, M. Alvarez, and L. M. Lechuga, “Integrated optical devices for lab-on-a-chip biosensing applications,” Laser Photon. Rev.6(4), 463–487 (2012).
[CrossRef]

Lee, K. K.

Lim, D. R.

Liu, X.

G. Roelkens, W. M. J. Green, B. Kuyken, X. Liu, N. Hattasan, A. Gassenq, L. Cerutti, J. B. Rodriguez, R. M. Osgood, E. Tournie, and R. Baets, “III-V/silicon photonics for short-wave infrared spectroscopy,” J. Quantum Electron.48(2), 292–298 (2012).
[CrossRef]

X. Liu, B. Kuyken, G. Roelkens, R. Baets, R. M. Osgood, and W. M. J. Green, “Bridging the Mid-Infrared-to-Telecom Gap with Silicon Nanophotonic Spectral Translation,” Nat. Photonics6(10), 667–671 (2012).
[CrossRef]

Lo, G. Q.

Masaud, T. B.

M. M. Milosevic, M. Nedeljkovic, T. B. Masaud, E. Jaberansary, H. M. H. Chong, N. G. Emerson, G. T. Reed, and G. Z. Mashanovich, “Silicon waveguides and devices for the mid-infrared,” Appl. Phys. Lett.101(12), 121105 (2012).
[CrossRef]

Mashanovich, G. Z.

Milosevic, M. M.

M. M. Milosevic, M. Nedeljkovic, T. B. Masaud, E. Jaberansary, H. M. H. Chong, N. G. Emerson, G. T. Reed, and G. Z. Mashanovich, “Silicon waveguides and devices for the mid-infrared,” Appl. Phys. Lett.101(12), 121105 (2012).
[CrossRef]

Miloševic, M. M.

Nedeljkovic, M.

O’Faolain, L.

Osgood, R. M.

G. Roelkens, W. M. J. Green, B. Kuyken, X. Liu, N. Hattasan, A. Gassenq, L. Cerutti, J. B. Rodriguez, R. M. Osgood, E. Tournie, and R. Baets, “III-V/silicon photonics for short-wave infrared spectroscopy,” J. Quantum Electron.48(2), 292–298 (2012).
[CrossRef]

X. Liu, B. Kuyken, G. Roelkens, R. Baets, R. M. Osgood, and W. M. J. Green, “Bridging the Mid-Infrared-to-Telecom Gap with Silicon Nanophotonic Spectral Translation,” Nat. Photonics6(10), 667–671 (2012).
[CrossRef]

Owens, N.

Reardon, C.

Reed, G. T.

M. M. Milosevic, M. Nedeljkovic, T. B. Masaud, E. Jaberansary, H. M. H. Chong, N. G. Emerson, G. T. Reed, and G. Z. Mashanovich, “Silicon waveguides and devices for the mid-infrared,” Appl. Phys. Lett.101(12), 121105 (2012).
[CrossRef]

Reimer, C.

Rodriguez, J. B.

G. Roelkens, W. M. J. Green, B. Kuyken, X. Liu, N. Hattasan, A. Gassenq, L. Cerutti, J. B. Rodriguez, R. M. Osgood, E. Tournie, and R. Baets, “III-V/silicon photonics for short-wave infrared spectroscopy,” J. Quantum Electron.48(2), 292–298 (2012).
[CrossRef]

Roelkens, G.

G. Roelkens, W. M. J. Green, B. Kuyken, X. Liu, N. Hattasan, A. Gassenq, L. Cerutti, J. B. Rodriguez, R. M. Osgood, E. Tournie, and R. Baets, “III-V/silicon photonics for short-wave infrared spectroscopy,” J. Quantum Electron.48(2), 292–298 (2012).
[CrossRef]

X. Liu, B. Kuyken, G. Roelkens, R. Baets, R. M. Osgood, and W. M. J. Green, “Bridging the Mid-Infrared-to-Telecom Gap with Silicon Nanophotonic Spectral Translation,” Nat. Photonics6(10), 667–671 (2012).
[CrossRef]

Schacht, E.

Selvaraja, S.

W. Bogaerts, S. Selvaraja, P. Dumon, J. Brouckaert, K. De Vos, D. Van Thourhout, and R. Baets, “Silicon-on-Insulator Spectral Filters Fabricated with CMOS Technology,” IEEE J. Sel. Top. Quantum Electron.16(1), 33–44 (2010).
[CrossRef]

Shin, J.

Smit, M. K.

M. K. Smit and C. Van Dam, “Phasar-based wdm-devices: Principles, design and applications,” IEEE J. Sel. Top. Quantum Electron.2(2), 236–250 (1996).
[CrossRef]

Song, J. F.

Soref, R.

R. Soref, “Mid-infrared photonics in silicon and germanium,” Nat. Photonics4(8), 495–497 (2010).
[CrossRef]

Soref, R. A.

R. A. Soref, S. J. Emelett, and W. R. Buchwald, “Silicon waveguided components for the long-wave infrared region,” J. Opt. A, Pure Appl. Opt.8(10), 840–848 (2006).
[CrossRef]

Stothard, D. J. M.

Taillaert, D.

W. Bogaerts, P. Dumon, D. Van Thourhout, D. Taillaert, P. Jaenen, J. Wouters, S. Beckx, V. Wiaux, and R. Baets, “Compact wavelength selective functions in silicon-on-insulator photonic wires,” IEEE J. Sel. Top. Quantum Electron.12(6), 1394–1401 (2006).
[CrossRef]

Tao, S. H.

Teo, E. J.

Tournie, E.

G. Roelkens, W. M. J. Green, B. Kuyken, X. Liu, N. Hattasan, A. Gassenq, L. Cerutti, J. B. Rodriguez, R. M. Osgood, E. Tournie, and R. Baets, “III-V/silicon photonics for short-wave infrared spectroscopy,” J. Quantum Electron.48(2), 292–298 (2012).
[CrossRef]

Van Dam, C.

M. K. Smit and C. Van Dam, “Phasar-based wdm-devices: Principles, design and applications,” IEEE J. Sel. Top. Quantum Electron.2(2), 236–250 (1996).
[CrossRef]

Van Thourhout, D.

W. Bogaerts, S. Selvaraja, P. Dumon, J. Brouckaert, K. De Vos, D. Van Thourhout, and R. Baets, “Silicon-on-Insulator Spectral Filters Fabricated with CMOS Technology,” IEEE J. Sel. Top. Quantum Electron.16(1), 33–44 (2010).
[CrossRef]

J. Brouckaert, W. Bogaerts, P. Dumon, D. Van Thourhout, and R. Baets, “Planar concave grating demultiplexer fabricated on a nanophotonic silicon-on-insulator platform,” J. Lightwave Technol.25(5), 1269–1275 (2007).
[CrossRef]

W. Bogaerts, P. Dumon, D. Van Thourhout, D. Taillaert, P. Jaenen, J. Wouters, S. Beckx, V. Wiaux, and R. Baets, “Compact wavelength selective functions in silicon-on-insulator photonic wires,” IEEE J. Sel. Top. Quantum Electron.12(6), 1394–1401 (2006).
[CrossRef]

Wiaux, V.

W. Bogaerts, P. Dumon, D. Van Thourhout, D. Taillaert, P. Jaenen, J. Wouters, S. Beckx, V. Wiaux, and R. Baets, “Compact wavelength selective functions in silicon-on-insulator photonic wires,” IEEE J. Sel. Top. Quantum Electron.12(6), 1394–1401 (2006).
[CrossRef]

Wouters, J.

W. Bogaerts, P. Dumon, D. Van Thourhout, D. Taillaert, P. Jaenen, J. Wouters, S. Beckx, V. Wiaux, and R. Baets, “Compact wavelength selective functions in silicon-on-insulator photonic wires,” IEEE J. Sel. Top. Quantum Electron.12(6), 1394–1401 (2006).
[CrossRef]

Xiong, B.

Yu, M. B.

Appl. Phys. Lett.

M. M. Milosevic, M. Nedeljkovic, T. B. Masaud, E. Jaberansary, H. M. H. Chong, N. G. Emerson, G. T. Reed, and G. Z. Mashanovich, “Silicon waveguides and devices for the mid-infrared,” Appl. Phys. Lett.101(12), 121105 (2012).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

M. K. Smit and C. Van Dam, “Phasar-based wdm-devices: Principles, design and applications,” IEEE J. Sel. Top. Quantum Electron.2(2), 236–250 (1996).
[CrossRef]

W. Bogaerts, P. Dumon, D. Van Thourhout, D. Taillaert, P. Jaenen, J. Wouters, S. Beckx, V. Wiaux, and R. Baets, “Compact wavelength selective functions in silicon-on-insulator photonic wires,” IEEE J. Sel. Top. Quantum Electron.12(6), 1394–1401 (2006).
[CrossRef]

W. Bogaerts, S. Selvaraja, P. Dumon, J. Brouckaert, K. De Vos, D. Van Thourhout, and R. Baets, “Silicon-on-Insulator Spectral Filters Fabricated with CMOS Technology,” IEEE J. Sel. Top. Quantum Electron.16(1), 33–44 (2010).
[CrossRef]

IEEE Photon. J.

E. Hallynck and P. Bienstman, “Integrated optical pressure sensors in silicon-on-insulator,” IEEE Photon. J.4(2), 443–450 (2012).
[CrossRef]

J. Lightwave Technol.

J. Opt. A, Pure Appl. Opt.

R. A. Soref, S. J. Emelett, and W. R. Buchwald, “Silicon waveguided components for the long-wave infrared region,” J. Opt. A, Pure Appl. Opt.8(10), 840–848 (2006).
[CrossRef]

J. Quantum Electron.

G. Roelkens, W. M. J. Green, B. Kuyken, X. Liu, N. Hattasan, A. Gassenq, L. Cerutti, J. B. Rodriguez, R. M. Osgood, E. Tournie, and R. Baets, “III-V/silicon photonics for short-wave infrared spectroscopy,” J. Quantum Electron.48(2), 292–298 (2012).
[CrossRef]

Laser Photon. Rev.

M. C. Estevez, M. Alvarez, and L. M. Lechuga, “Integrated optical devices for lab-on-a-chip biosensing applications,” Laser Photon. Rev.6(4), 463–487 (2012).
[CrossRef]

Nat. Photonics

X. Liu, B. Kuyken, G. Roelkens, R. Baets, R. M. Osgood, and W. M. J. Green, “Bridging the Mid-Infrared-to-Telecom Gap with Silicon Nanophotonic Spectral Translation,” Nat. Photonics6(10), 667–671 (2012).
[CrossRef]

R. Soref, “Mid-infrared photonics in silicon and germanium,” Nat. Photonics4(8), 495–497 (2010).
[CrossRef]

Opt. Express

Opt. Lett.

Other

R. Marz, Integrated Optics, Design and Modeling. (Artech House Inc., 1994)

http://www.photond.com/products/fimmwave.htm

http://www.epixfab.eu/

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Schematic view of wafer-stack fabrication by layer deposition (drawings are not to scale).

Fig. 2
Fig. 2

(a) Representative SEM cross-section image of a waveguide structure implemented in the imecAP process where top oxide is partially etched for better imaging; (b) a bird’s eye view of an imec400 waveguide structure; (c-d) mode profile of the imecAP waveguide cross-sections; (e) mode profile of the imec400 waveguide cross-section. Actual dimensions for waveguides are given in section 3.1.

Fig. 3
Fig. 3

Schematic top view of grating couplers connecting to the different types of waveguide circuits.

Fig. 4
Fig. 4

Waveguide losses at wavelength 3760 nm.

Fig. 5
Fig. 5

Waveguide loss versus wavelength.

Fig. 6
Fig. 6

Substrate leakage loss versus wavelength for the respective waveguide structures.

Fig. 7
Fig. 7

(a) Schematic view of an AWG illustrating all critical structures. (b) a detail of the shallow-deep transition used in AWG2 at the star coupler waveguide interface together with an SEM picture of this part of the AWG.

Fig. 8
Fig. 8

Transmission spectrum of AWG1, AWG2 and AWG3 respectively.

Fig. 9
Fig. 9

Schematic view of planar concave grating

Fig. 10
Fig. 10

Normalized transmission response of PCG1 and PCG2 respectively.

Tables (2)

Tables Icon

Table 1 Design and layout parameters summary for AWGs

Tables Icon

Table 2 Design and layout parameters summary for PCGs

Metrics