Abstract

We present 1-to-8 wavelength (de-)multiplexer devices based on a binary tree of cascaded Mach-Zehnder-like lattice filters, and manufactured using a 90 nm CMOS-integrated silicon photonics technology. We demonstrate that these devices combine a flat pass-band over more than 50% of the channel spacing with low insertion loss of less than 1.6 dB, and have a small device size of approximately 500 × 400 µm. This makes this type of filters well suited for application as WDM (de-)multiplexer in silicon photonics transceivers for optical data communication in large scale computer systems.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Benner, D. M. Kuchta, P. K. Pepeljugoski, R. A. Budd, G. Hougham, B. V. Fasano, K. Marston, H. Bagheri, E. J. Seminaro, H. Xu, D. Meadowcroft, M. H. Fields, L. McColloch, M. Robinson, F. W. Miller, R. Kaneshiro, R. Granger, D. Childers, and E. Childers, “Optics for high-performance servers and supercomputers,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2010), paper OTuH1. http://www.opticsinfobase.org/abstract.cfm?URI=OFC-2010-OTuH1
  2. T. Fukazawa, F. Ohno, and T. Baba, “Very compact arrayed-waveguide-grating demultiplexer using Si photonic wire waveguides,” Jpn. J. Appl. Phys.43(No. 5B), L673–L675 (2004).
    [CrossRef]
  3. J. Brouckaert, W. Bogaerts, P. Dumon, D. Van Thourhout, and R. Baets, “Planar concave grating demultiplexer fabricated on a nanophotonic silicon-on-insulator platform,” J. Lightwave Technol.25(5), 1269–1274 (2007).
    [CrossRef]
  4. S. Pathak, M. Vanslembrouck, P. Dumon, D. Van Thourhout, and W. Bogaerts, “Optimized silicon AWG with flattened spectral response using an MMI aperture,” J. Lightwave Technol.31(1), 87–93 (2013).
    [CrossRef]
  5. C. Dragone, “Frequency routing device having a wide and substantially flat passband,” U.S. Patent 5488680, 1996.
  6. G. H. B. Thompson, R. Epworth, C. Rogers, S. Day, and S. Ojha, “An original low-loss and pass-band flattened SiO2 on Si planar wavelength demultiplexer,” in Optical Fiber Communication Conference, Vol. 2 of 1998 OSA Technical Digest Series (Optical Society of America, 1998), paper TuN1. http://www.opticsinfobase.org/abstract.cfm?URI=OFC-1998-TuN1
  7. K. Yamada, T. Shoji, T. Tsuchizawa, T. Watanabe, J. Takahashi, and S. Itabashi, “Silicon-wire-based ultrasmall lattice filters with wide free spectral ranges,” Opt. Lett.28(18), 1663–1664 (2003).
    [CrossRef] [PubMed]
  8. Y. P. Li, C. H. Henry, C. Y. Laskowski, H. H. Yaffe, and R. L. Sweatt, “Monolithic optical waveguide 1.31/1.55 µm WDM with −50 dB crosstalk over 100 nm bandwidth,” Electron. Lett.31(24), 2100–2101 (1995).
    [CrossRef]
  9. C. K. Madsen and J. H. Zhao, Optical Filter Design and Analysis: A Signal Processing Approach (John Wiley & Sons Inc., 2001).
  10. F. Horst, W. M. Green, B. Offrein, and Y. A. Vlasov, “Silicon photonic WDM devices: simulation, design and implementation,” Proc. SPIE7386, 73862L, 73862L-9 (2009).
    [CrossRef]
  11. F. Horst, “Silicon integrated waveguide devices for filtering and wavelength demultiplexing,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2010), paper OWJ3. http://www.opticsinfobase.org/abstract.cfm?URI=OFC-2010-OWJ3
    [CrossRef]
  12. H. Toba, K. Oda, N. Takato, and K. Nosu, “5GHz-spaced, eight-channel, guided-wave tunable multi/demultiplexer for optical FDM transmission systems,” Electron. Lett.23(15), 788–789 (1987).
    [CrossRef]
  13. C. G. H. Roeloffzen, F. Horst, B. J. Offrein, R. Germann, G. L. Bona, H. W. M. Salemink, and R. M. de Ridder, “Tunable Passband Flattened 1-from-16 Binary-Tree Structured Add-After-Drop Multiplexer Using SiON Waveguide Technology,” IEEE Photon. Technol. Lett.12(9), 1201–1203 (2000).
    [CrossRef]
  14. C. H. Henry, E. J. Laskowski, Y. P. Li, and H. H. Yaffe, “Optimized waveguide structure,” US patent 5719976.
  15. S. Assefa, S. Shank, W. Green, M. Khater, E. Kiewra, C. Reinholm, S. Kamlapurkar, A. Rylyakov, C. Schow, F. Horst, H. Pan, T. Topuria, P. Rice, D. M. Gill, J. Rosenberg, T. Barwicz, M. Yang, J. Proesel, J. Hofrichter, B. Offrein, X. Gu, W. Haensch, J. Ellis-Monaghan, and Y. Vlasov, “CMOS Integrated Silicon Nanophotonics: Enabling Technology for Exascale Computational Systems,” presented at SEMICON 2011, Tokyo, Japan.
  16. S. Assefa, S. Shank, W. Green, M. Khater, E. Kiewra, C. Reinholm, S. Kamlapurkar, A. Rylyakov, C. Schow, F. Horst, H. Pan, T. Topuria, P. Rice, D. M. Gill, J. Rosenberg, T. Barwicz, M. Yang, J. Proesel, J. Hofrichter, B. Offrein, X. Gu, W. Haensch, J. Ellis-Monaghan, and Y. Vlasov, “A 90nm CMOS integrated Nano-Photonics technology for 25Gbps WDM optical communications applications,” Electron Devices Meeting (IEDM), 2012 IEEE International, pp.33.8.1,33.8.3. http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6479162&isnumber=6478950
    [CrossRef]

2013 (1)

2009 (1)

F. Horst, W. M. Green, B. Offrein, and Y. A. Vlasov, “Silicon photonic WDM devices: simulation, design and implementation,” Proc. SPIE7386, 73862L, 73862L-9 (2009).
[CrossRef]

2007 (1)

2004 (1)

T. Fukazawa, F. Ohno, and T. Baba, “Very compact arrayed-waveguide-grating demultiplexer using Si photonic wire waveguides,” Jpn. J. Appl. Phys.43(No. 5B), L673–L675 (2004).
[CrossRef]

2003 (1)

2000 (1)

C. G. H. Roeloffzen, F. Horst, B. J. Offrein, R. Germann, G. L. Bona, H. W. M. Salemink, and R. M. de Ridder, “Tunable Passband Flattened 1-from-16 Binary-Tree Structured Add-After-Drop Multiplexer Using SiON Waveguide Technology,” IEEE Photon. Technol. Lett.12(9), 1201–1203 (2000).
[CrossRef]

1995 (1)

Y. P. Li, C. H. Henry, C. Y. Laskowski, H. H. Yaffe, and R. L. Sweatt, “Monolithic optical waveguide 1.31/1.55 µm WDM with −50 dB crosstalk over 100 nm bandwidth,” Electron. Lett.31(24), 2100–2101 (1995).
[CrossRef]

1987 (1)

H. Toba, K. Oda, N. Takato, and K. Nosu, “5GHz-spaced, eight-channel, guided-wave tunable multi/demultiplexer for optical FDM transmission systems,” Electron. Lett.23(15), 788–789 (1987).
[CrossRef]

Baba, T.

T. Fukazawa, F. Ohno, and T. Baba, “Very compact arrayed-waveguide-grating demultiplexer using Si photonic wire waveguides,” Jpn. J. Appl. Phys.43(No. 5B), L673–L675 (2004).
[CrossRef]

Baets, R.

Bogaerts, W.

Bona, G. L.

C. G. H. Roeloffzen, F. Horst, B. J. Offrein, R. Germann, G. L. Bona, H. W. M. Salemink, and R. M. de Ridder, “Tunable Passband Flattened 1-from-16 Binary-Tree Structured Add-After-Drop Multiplexer Using SiON Waveguide Technology,” IEEE Photon. Technol. Lett.12(9), 1201–1203 (2000).
[CrossRef]

Brouckaert, J.

de Ridder, R. M.

C. G. H. Roeloffzen, F. Horst, B. J. Offrein, R. Germann, G. L. Bona, H. W. M. Salemink, and R. M. de Ridder, “Tunable Passband Flattened 1-from-16 Binary-Tree Structured Add-After-Drop Multiplexer Using SiON Waveguide Technology,” IEEE Photon. Technol. Lett.12(9), 1201–1203 (2000).
[CrossRef]

Dumon, P.

Fukazawa, T.

T. Fukazawa, F. Ohno, and T. Baba, “Very compact arrayed-waveguide-grating demultiplexer using Si photonic wire waveguides,” Jpn. J. Appl. Phys.43(No. 5B), L673–L675 (2004).
[CrossRef]

Germann, R.

C. G. H. Roeloffzen, F. Horst, B. J. Offrein, R. Germann, G. L. Bona, H. W. M. Salemink, and R. M. de Ridder, “Tunable Passband Flattened 1-from-16 Binary-Tree Structured Add-After-Drop Multiplexer Using SiON Waveguide Technology,” IEEE Photon. Technol. Lett.12(9), 1201–1203 (2000).
[CrossRef]

Green, W. M.

F. Horst, W. M. Green, B. Offrein, and Y. A. Vlasov, “Silicon photonic WDM devices: simulation, design and implementation,” Proc. SPIE7386, 73862L, 73862L-9 (2009).
[CrossRef]

Henry, C. H.

Y. P. Li, C. H. Henry, C. Y. Laskowski, H. H. Yaffe, and R. L. Sweatt, “Monolithic optical waveguide 1.31/1.55 µm WDM with −50 dB crosstalk over 100 nm bandwidth,” Electron. Lett.31(24), 2100–2101 (1995).
[CrossRef]

Horst, F.

F. Horst, W. M. Green, B. Offrein, and Y. A. Vlasov, “Silicon photonic WDM devices: simulation, design and implementation,” Proc. SPIE7386, 73862L, 73862L-9 (2009).
[CrossRef]

C. G. H. Roeloffzen, F. Horst, B. J. Offrein, R. Germann, G. L. Bona, H. W. M. Salemink, and R. M. de Ridder, “Tunable Passband Flattened 1-from-16 Binary-Tree Structured Add-After-Drop Multiplexer Using SiON Waveguide Technology,” IEEE Photon. Technol. Lett.12(9), 1201–1203 (2000).
[CrossRef]

Itabashi, S.

Laskowski, C. Y.

Y. P. Li, C. H. Henry, C. Y. Laskowski, H. H. Yaffe, and R. L. Sweatt, “Monolithic optical waveguide 1.31/1.55 µm WDM with −50 dB crosstalk over 100 nm bandwidth,” Electron. Lett.31(24), 2100–2101 (1995).
[CrossRef]

Li, Y. P.

Y. P. Li, C. H. Henry, C. Y. Laskowski, H. H. Yaffe, and R. L. Sweatt, “Monolithic optical waveguide 1.31/1.55 µm WDM with −50 dB crosstalk over 100 nm bandwidth,” Electron. Lett.31(24), 2100–2101 (1995).
[CrossRef]

Nosu, K.

H. Toba, K. Oda, N. Takato, and K. Nosu, “5GHz-spaced, eight-channel, guided-wave tunable multi/demultiplexer for optical FDM transmission systems,” Electron. Lett.23(15), 788–789 (1987).
[CrossRef]

Oda, K.

H. Toba, K. Oda, N. Takato, and K. Nosu, “5GHz-spaced, eight-channel, guided-wave tunable multi/demultiplexer for optical FDM transmission systems,” Electron. Lett.23(15), 788–789 (1987).
[CrossRef]

Offrein, B.

F. Horst, W. M. Green, B. Offrein, and Y. A. Vlasov, “Silicon photonic WDM devices: simulation, design and implementation,” Proc. SPIE7386, 73862L, 73862L-9 (2009).
[CrossRef]

Offrein, B. J.

C. G. H. Roeloffzen, F. Horst, B. J. Offrein, R. Germann, G. L. Bona, H. W. M. Salemink, and R. M. de Ridder, “Tunable Passband Flattened 1-from-16 Binary-Tree Structured Add-After-Drop Multiplexer Using SiON Waveguide Technology,” IEEE Photon. Technol. Lett.12(9), 1201–1203 (2000).
[CrossRef]

Ohno, F.

T. Fukazawa, F. Ohno, and T. Baba, “Very compact arrayed-waveguide-grating demultiplexer using Si photonic wire waveguides,” Jpn. J. Appl. Phys.43(No. 5B), L673–L675 (2004).
[CrossRef]

Pathak, S.

Roeloffzen, C. G. H.

C. G. H. Roeloffzen, F. Horst, B. J. Offrein, R. Germann, G. L. Bona, H. W. M. Salemink, and R. M. de Ridder, “Tunable Passband Flattened 1-from-16 Binary-Tree Structured Add-After-Drop Multiplexer Using SiON Waveguide Technology,” IEEE Photon. Technol. Lett.12(9), 1201–1203 (2000).
[CrossRef]

Salemink, H. W. M.

C. G. H. Roeloffzen, F. Horst, B. J. Offrein, R. Germann, G. L. Bona, H. W. M. Salemink, and R. M. de Ridder, “Tunable Passband Flattened 1-from-16 Binary-Tree Structured Add-After-Drop Multiplexer Using SiON Waveguide Technology,” IEEE Photon. Technol. Lett.12(9), 1201–1203 (2000).
[CrossRef]

Shoji, T.

Sweatt, R. L.

Y. P. Li, C. H. Henry, C. Y. Laskowski, H. H. Yaffe, and R. L. Sweatt, “Monolithic optical waveguide 1.31/1.55 µm WDM with −50 dB crosstalk over 100 nm bandwidth,” Electron. Lett.31(24), 2100–2101 (1995).
[CrossRef]

Takahashi, J.

Takato, N.

H. Toba, K. Oda, N. Takato, and K. Nosu, “5GHz-spaced, eight-channel, guided-wave tunable multi/demultiplexer for optical FDM transmission systems,” Electron. Lett.23(15), 788–789 (1987).
[CrossRef]

Toba, H.

H. Toba, K. Oda, N. Takato, and K. Nosu, “5GHz-spaced, eight-channel, guided-wave tunable multi/demultiplexer for optical FDM transmission systems,” Electron. Lett.23(15), 788–789 (1987).
[CrossRef]

Tsuchizawa, T.

Van Thourhout, D.

Vanslembrouck, M.

Vlasov, Y. A.

F. Horst, W. M. Green, B. Offrein, and Y. A. Vlasov, “Silicon photonic WDM devices: simulation, design and implementation,” Proc. SPIE7386, 73862L, 73862L-9 (2009).
[CrossRef]

Watanabe, T.

Yaffe, H. H.

Y. P. Li, C. H. Henry, C. Y. Laskowski, H. H. Yaffe, and R. L. Sweatt, “Monolithic optical waveguide 1.31/1.55 µm WDM with −50 dB crosstalk over 100 nm bandwidth,” Electron. Lett.31(24), 2100–2101 (1995).
[CrossRef]

Yamada, K.

Electron. Lett. (2)

Y. P. Li, C. H. Henry, C. Y. Laskowski, H. H. Yaffe, and R. L. Sweatt, “Monolithic optical waveguide 1.31/1.55 µm WDM with −50 dB crosstalk over 100 nm bandwidth,” Electron. Lett.31(24), 2100–2101 (1995).
[CrossRef]

H. Toba, K. Oda, N. Takato, and K. Nosu, “5GHz-spaced, eight-channel, guided-wave tunable multi/demultiplexer for optical FDM transmission systems,” Electron. Lett.23(15), 788–789 (1987).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

C. G. H. Roeloffzen, F. Horst, B. J. Offrein, R. Germann, G. L. Bona, H. W. M. Salemink, and R. M. de Ridder, “Tunable Passband Flattened 1-from-16 Binary-Tree Structured Add-After-Drop Multiplexer Using SiON Waveguide Technology,” IEEE Photon. Technol. Lett.12(9), 1201–1203 (2000).
[CrossRef]

J. Lightwave Technol. (2)

Jpn. J. Appl. Phys. (1)

T. Fukazawa, F. Ohno, and T. Baba, “Very compact arrayed-waveguide-grating demultiplexer using Si photonic wire waveguides,” Jpn. J. Appl. Phys.43(No. 5B), L673–L675 (2004).
[CrossRef]

Opt. Lett. (1)

Proc. SPIE (1)

F. Horst, W. M. Green, B. Offrein, and Y. A. Vlasov, “Silicon photonic WDM devices: simulation, design and implementation,” Proc. SPIE7386, 73862L, 73862L-9 (2009).
[CrossRef]

Other (8)

F. Horst, “Silicon integrated waveguide devices for filtering and wavelength demultiplexing,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2010), paper OWJ3. http://www.opticsinfobase.org/abstract.cfm?URI=OFC-2010-OWJ3
[CrossRef]

C. K. Madsen and J. H. Zhao, Optical Filter Design and Analysis: A Signal Processing Approach (John Wiley & Sons Inc., 2001).

C. H. Henry, E. J. Laskowski, Y. P. Li, and H. H. Yaffe, “Optimized waveguide structure,” US patent 5719976.

S. Assefa, S. Shank, W. Green, M. Khater, E. Kiewra, C. Reinholm, S. Kamlapurkar, A. Rylyakov, C. Schow, F. Horst, H. Pan, T. Topuria, P. Rice, D. M. Gill, J. Rosenberg, T. Barwicz, M. Yang, J. Proesel, J. Hofrichter, B. Offrein, X. Gu, W. Haensch, J. Ellis-Monaghan, and Y. Vlasov, “CMOS Integrated Silicon Nanophotonics: Enabling Technology for Exascale Computational Systems,” presented at SEMICON 2011, Tokyo, Japan.

S. Assefa, S. Shank, W. Green, M. Khater, E. Kiewra, C. Reinholm, S. Kamlapurkar, A. Rylyakov, C. Schow, F. Horst, H. Pan, T. Topuria, P. Rice, D. M. Gill, J. Rosenberg, T. Barwicz, M. Yang, J. Proesel, J. Hofrichter, B. Offrein, X. Gu, W. Haensch, J. Ellis-Monaghan, and Y. Vlasov, “A 90nm CMOS integrated Nano-Photonics technology for 25Gbps WDM optical communications applications,” Electron Devices Meeting (IEDM), 2012 IEEE International, pp.33.8.1,33.8.3. http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6479162&isnumber=6478950
[CrossRef]

A. Benner, D. M. Kuchta, P. K. Pepeljugoski, R. A. Budd, G. Hougham, B. V. Fasano, K. Marston, H. Bagheri, E. J. Seminaro, H. Xu, D. Meadowcroft, M. H. Fields, L. McColloch, M. Robinson, F. W. Miller, R. Kaneshiro, R. Granger, D. Childers, and E. Childers, “Optics for high-performance servers and supercomputers,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2010), paper OTuH1. http://www.opticsinfobase.org/abstract.cfm?URI=OFC-2010-OTuH1

C. Dragone, “Frequency routing device having a wide and substantially flat passband,” U.S. Patent 5488680, 1996.

G. H. B. Thompson, R. Epworth, C. Rogers, S. Day, and S. Ojha, “An original low-loss and pass-band flattened SiO2 on Si planar wavelength demultiplexer,” in Optical Fiber Communication Conference, Vol. 2 of 1998 OSA Technical Digest Series (Optical Society of America, 1998), paper TuN1. http://www.opticsinfobase.org/abstract.cfm?URI=OFC-1998-TuN1

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic layout of a 1 to 8 demultiplexer based on a binary tree of wavelength splitting filters.

Fig. 2
Fig. 2

Waveguide layout and calculated transmission spectra of the wavelength splitters used in the Cascaded Mach-Zehnder demultiplexer.

Fig. 3
Fig. 3

Calculated transmission of a 1 to 8 demultiplexer based on a binary tree of Mach-Zehnder-like lattice filters.

Fig. 4
Fig. 4

Micrograph of a completed CMZ demultiplexer.

Fig. 5
Fig. 5

Measured transmission curves of a CMZ demultiplexer, normalized to the maximum transmission of a straight waveguide.

Tables (1)

Tables Icon

Table 1 Parameters for the calculation of the delay line lengths of the wavelength splitters in a Cascaded Mach-Zehnder wavelength filter

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

FSR= λ 2 n gr ΔL
Δ L Base = λ 2 2δλ n gr
Δ L FS = λ n eff
ΔL=Δ L FSR +Δ L Shift

Metrics