Abstract

A surface micro/nano structuring technique was demonstrated by utilizing a picosecond laser beam to rapidly modify the optical property of copper surfaces with a scanning speed up to tens of millimeters per second. Three kinds of surface micro/nanostructures corresponding to three levels of reflectance were produced which are obviously different from those induced by a femtosecond or nanosecond laser. Specifically, a porous coral-like structure results in over 97% absorptivity in the visible spectral region and over 90% absorptivity in average in the UV, visible, and NIR regions (250 – 2500 nm). Potential applications may include solar energy absorbers, thermal radiation sources, and radiative heat transfer devices.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. I. Etsion, “State of the art in laser surface texturing,” J. Tribol.-Trans. ASME127(1), 248–253 (2005).
  2. A. M. Kietzig, S. G. Hatzikiriakos, and P. Englezos, “Patterned superhydrophobic metallic surfaces,” Langmuir25(8), 4821–4827 (2009).
    [CrossRef] [PubMed]
  3. M. Erdoǧan, B. Öktem, H. Kalaycıoğlu, S. Yavaş, P. K. Mukhopadhyay, K. Eken, K. Ozgören, Y. Aykaç, U. H. Tazebay, and F. Ö. Ilday, “Texturing of titanium (Ti6Al4V) medical implant surfaces with MHz-repetition-rate femtosecond and picosecond Yb-doped fiber lasers,” Opt. Express19(11), 10986–10996 (2011).
    [CrossRef] [PubMed]
  4. C. Wu, C. H. Crouch, L. Zhao, J. E. Carey, R. Younkin, J. A. Levinson, E. Mazur, R. M. Farrell, P. Gothoskar, and A. Karger, “Near-unity below-band-gap absorption by microstructured silicon,” Appl. Phys. Lett.78(13), 1850–1852 (2001).
    [CrossRef]
  5. A. Y. Vorobyev and C. Guo, “Femtosecond laser blackening of platinum,” J. Appl. Phys.104(5), 053516 (2008).
    [CrossRef]
  6. A. Y. Vorobyev and C. Guo, “Colorizing metals with femtosecond laser pulses,” Appl. Phys. Lett.92(4), 041914 (2008).
    [CrossRef]
  7. A. Y. Vorobyev, A. N. Topkov, O. V. Gurin, V. A. Svich, and C. Guo, “Enhanced absorption of metals over ultrabroad electromagnetic spectrum,” Appl. Phys. Lett.95(12), 121106 (2009).
    [CrossRef]
  8. A. Y. Vorobyev and C. Guo, “Metallic light absorbers produced by femtosecond laser pulses,” Adv. Mech. Eng.2010, 452749 (2010).
  9. K. Paivasaari, J. J. J. Kaakkunen, M. Kuittinen, and T. Jaaskelainen, “Enhanced optical absorptance of metals using interferometric femtosecond ablation,” Opt. Express15(21), 13838–13843 (2007).
    [CrossRef] [PubMed]
  10. J. J. J. Kaakkunen, K. Paivasaari, M. Kuittinen, and T. Jaaskelainen, “Morphology studies of the metal surfaces with enhanced absorption fabricated using interferometric femtosecond ablation,” Appl. Phys., A Mater. Sci. Process.94(2), 215–220 (2009).
    [CrossRef]
  11. G. Tang, A. C. Hourd, and A. Abdolvand, “Nanosecond pulsed laser blackening of copper,” Appl. Phys. Lett.101(23), 231902 (2012).
    [CrossRef]
  12. C. G. Granqvist, “Solar energy materials,” Adv. Mater.15(21), 1789–1803 (2003).
    [CrossRef]
  13. S. Tao, R. L. Jacobsen, and B. Wu, “Physical mechanisms for picosecond laser ablation of silicon carbide at infrared and ultraviolet wavelengths,” Appl. Phys. Lett.97(18), 181918 (2010).
    [CrossRef]
  14. A. Ancona, S. Döring, C. Jauregui, F. Röser, J. Limpert, S. Nolte, and A. Tünnermann, “Femtosecond and picosecond laser drilling of metals at high repetition rates and average powers,” Opt. Lett.34(21), 3304–3306 (2009).
    [CrossRef] [PubMed]
  15. N. Bärsch, J. Jakobi, S. Weiler, and S. Barcikowski, “Pure colloidal metal and ceramic nanoparticles from high-power picosecond laser ablation in water and acetone,” Nanotechnology20(44), 445603 (2009).
    [CrossRef] [PubMed]
  16. Y. Yang, J. Yang, C. Liang, and H. Wang, “Ultra-broadband enhanced absorption of metal surfaces structured by femtosecond laser pulses,” Opt. Express16(15), 11259–11265 (2008).
    [CrossRef] [PubMed]
  17. M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “The morphological and optical characteristics of femtosecond laser-induced large-area micro/nanostructures on GaAs, Si, and brass,” Opt. Express18(S4Suppl 4), A600–A619 (2010).
    [CrossRef] [PubMed]
  18. A. Deinega, I. Valuev, B. Potapkin, and Y. Lozovik, “Antireflective properties of pyramidally textured surfaces,” Opt. Lett.35(2), 106–108 (2010).
    [CrossRef] [PubMed]
  19. A. Deinega, I. Valuev, B. Potapkin, and Y. Lozovik, “Minimizing light reflection from dielectric textured surfaces,” J. Opt. Soc. Am. A28(5), 770–777 (2011).
    [CrossRef] [PubMed]
  20. S. Amoruso, G. Ausanio, R. Bruzzese, L. Gragnaniello, L. Lanotte, M. Vitiello, and X. Wang, “Characterization of laser ablation of solid targets with near-infrared laser pulses of 100 fs and 1 ps duration,” Appl. Surf. Sci.252(13), 4863–4870 (2006).
    [CrossRef]
  21. S. Amoruso, G. Ausanio, A. C. Barone, R. Bruzzese, L. Gragnaniello, M. Vitiello, and X. Wang, “Ultrashort laser ablation of solid matter in vacuum: a comparison between the picosecond and femtosecond regimes,” J. Phys. At. Mol. Opt. Phys.38(20), L329–L338 (2005).
    [CrossRef]
  22. H. S. Desarkar, P. Kumbhakar, and A. K. Mitra, “Effect of ablation time and laser fluence on the optical properties of copper nano colloids prepared by laser ablation technique,” Appl Nanosci2(3), 285–291 (2012).
    [CrossRef]
  23. K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat Commun2, 517 (2011).
    [CrossRef] [PubMed]
  24. A. Polyakov, S. Cabrini, S. Dhuey, B. Harteneck, P. J. Schuck, and H. A. Padmore, “Plasmonic light trapping in nanostructured metal surfaces,” Appl. Phys. Lett.98(20), 203104 (2011).
    [CrossRef]

2012 (2)

G. Tang, A. C. Hourd, and A. Abdolvand, “Nanosecond pulsed laser blackening of copper,” Appl. Phys. Lett.101(23), 231902 (2012).
[CrossRef]

H. S. Desarkar, P. Kumbhakar, and A. K. Mitra, “Effect of ablation time and laser fluence on the optical properties of copper nano colloids prepared by laser ablation technique,” Appl Nanosci2(3), 285–291 (2012).
[CrossRef]

2011 (4)

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat Commun2, 517 (2011).
[CrossRef] [PubMed]

A. Polyakov, S. Cabrini, S. Dhuey, B. Harteneck, P. J. Schuck, and H. A. Padmore, “Plasmonic light trapping in nanostructured metal surfaces,” Appl. Phys. Lett.98(20), 203104 (2011).
[CrossRef]

A. Deinega, I. Valuev, B. Potapkin, and Y. Lozovik, “Minimizing light reflection from dielectric textured surfaces,” J. Opt. Soc. Am. A28(5), 770–777 (2011).
[CrossRef] [PubMed]

M. Erdoǧan, B. Öktem, H. Kalaycıoğlu, S. Yavaş, P. K. Mukhopadhyay, K. Eken, K. Ozgören, Y. Aykaç, U. H. Tazebay, and F. Ö. Ilday, “Texturing of titanium (Ti6Al4V) medical implant surfaces with MHz-repetition-rate femtosecond and picosecond Yb-doped fiber lasers,” Opt. Express19(11), 10986–10996 (2011).
[CrossRef] [PubMed]

2010 (4)

A. Deinega, I. Valuev, B. Potapkin, and Y. Lozovik, “Antireflective properties of pyramidally textured surfaces,” Opt. Lett.35(2), 106–108 (2010).
[CrossRef] [PubMed]

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “The morphological and optical characteristics of femtosecond laser-induced large-area micro/nanostructures on GaAs, Si, and brass,” Opt. Express18(S4Suppl 4), A600–A619 (2010).
[CrossRef] [PubMed]

S. Tao, R. L. Jacobsen, and B. Wu, “Physical mechanisms for picosecond laser ablation of silicon carbide at infrared and ultraviolet wavelengths,” Appl. Phys. Lett.97(18), 181918 (2010).
[CrossRef]

A. Y. Vorobyev and C. Guo, “Metallic light absorbers produced by femtosecond laser pulses,” Adv. Mech. Eng.2010, 452749 (2010).

2009 (5)

J. J. J. Kaakkunen, K. Paivasaari, M. Kuittinen, and T. Jaaskelainen, “Morphology studies of the metal surfaces with enhanced absorption fabricated using interferometric femtosecond ablation,” Appl. Phys., A Mater. Sci. Process.94(2), 215–220 (2009).
[CrossRef]

A. Y. Vorobyev, A. N. Topkov, O. V. Gurin, V. A. Svich, and C. Guo, “Enhanced absorption of metals over ultrabroad electromagnetic spectrum,” Appl. Phys. Lett.95(12), 121106 (2009).
[CrossRef]

A. M. Kietzig, S. G. Hatzikiriakos, and P. Englezos, “Patterned superhydrophobic metallic surfaces,” Langmuir25(8), 4821–4827 (2009).
[CrossRef] [PubMed]

N. Bärsch, J. Jakobi, S. Weiler, and S. Barcikowski, “Pure colloidal metal and ceramic nanoparticles from high-power picosecond laser ablation in water and acetone,” Nanotechnology20(44), 445603 (2009).
[CrossRef] [PubMed]

A. Ancona, S. Döring, C. Jauregui, F. Röser, J. Limpert, S. Nolte, and A. Tünnermann, “Femtosecond and picosecond laser drilling of metals at high repetition rates and average powers,” Opt. Lett.34(21), 3304–3306 (2009).
[CrossRef] [PubMed]

2008 (3)

Y. Yang, J. Yang, C. Liang, and H. Wang, “Ultra-broadband enhanced absorption of metal surfaces structured by femtosecond laser pulses,” Opt. Express16(15), 11259–11265 (2008).
[CrossRef] [PubMed]

A. Y. Vorobyev and C. Guo, “Femtosecond laser blackening of platinum,” J. Appl. Phys.104(5), 053516 (2008).
[CrossRef]

A. Y. Vorobyev and C. Guo, “Colorizing metals with femtosecond laser pulses,” Appl. Phys. Lett.92(4), 041914 (2008).
[CrossRef]

2007 (1)

2006 (1)

S. Amoruso, G. Ausanio, R. Bruzzese, L. Gragnaniello, L. Lanotte, M. Vitiello, and X. Wang, “Characterization of laser ablation of solid targets with near-infrared laser pulses of 100 fs and 1 ps duration,” Appl. Surf. Sci.252(13), 4863–4870 (2006).
[CrossRef]

2005 (2)

S. Amoruso, G. Ausanio, A. C. Barone, R. Bruzzese, L. Gragnaniello, M. Vitiello, and X. Wang, “Ultrashort laser ablation of solid matter in vacuum: a comparison between the picosecond and femtosecond regimes,” J. Phys. At. Mol. Opt. Phys.38(20), L329–L338 (2005).
[CrossRef]

I. Etsion, “State of the art in laser surface texturing,” J. Tribol.-Trans. ASME127(1), 248–253 (2005).

2003 (1)

C. G. Granqvist, “Solar energy materials,” Adv. Mater.15(21), 1789–1803 (2003).
[CrossRef]

2001 (1)

C. Wu, C. H. Crouch, L. Zhao, J. E. Carey, R. Younkin, J. A. Levinson, E. Mazur, R. M. Farrell, P. Gothoskar, and A. Karger, “Near-unity below-band-gap absorption by microstructured silicon,” Appl. Phys. Lett.78(13), 1850–1852 (2001).
[CrossRef]

Abdolvand, A.

G. Tang, A. C. Hourd, and A. Abdolvand, “Nanosecond pulsed laser blackening of copper,” Appl. Phys. Lett.101(23), 231902 (2012).
[CrossRef]

Amoruso, S.

S. Amoruso, G. Ausanio, R. Bruzzese, L. Gragnaniello, L. Lanotte, M. Vitiello, and X. Wang, “Characterization of laser ablation of solid targets with near-infrared laser pulses of 100 fs and 1 ps duration,” Appl. Surf. Sci.252(13), 4863–4870 (2006).
[CrossRef]

S. Amoruso, G. Ausanio, A. C. Barone, R. Bruzzese, L. Gragnaniello, M. Vitiello, and X. Wang, “Ultrashort laser ablation of solid matter in vacuum: a comparison between the picosecond and femtosecond regimes,” J. Phys. At. Mol. Opt. Phys.38(20), L329–L338 (2005).
[CrossRef]

Ancona, A.

Atwater, H. A.

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat Commun2, 517 (2011).
[CrossRef] [PubMed]

Ausanio, G.

S. Amoruso, G. Ausanio, R. Bruzzese, L. Gragnaniello, L. Lanotte, M. Vitiello, and X. Wang, “Characterization of laser ablation of solid targets with near-infrared laser pulses of 100 fs and 1 ps duration,” Appl. Surf. Sci.252(13), 4863–4870 (2006).
[CrossRef]

S. Amoruso, G. Ausanio, A. C. Barone, R. Bruzzese, L. Gragnaniello, M. Vitiello, and X. Wang, “Ultrashort laser ablation of solid matter in vacuum: a comparison between the picosecond and femtosecond regimes,” J. Phys. At. Mol. Opt. Phys.38(20), L329–L338 (2005).
[CrossRef]

Aydin, K.

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat Commun2, 517 (2011).
[CrossRef] [PubMed]

Aykaç, Y.

Barcikowski, S.

N. Bärsch, J. Jakobi, S. Weiler, and S. Barcikowski, “Pure colloidal metal and ceramic nanoparticles from high-power picosecond laser ablation in water and acetone,” Nanotechnology20(44), 445603 (2009).
[CrossRef] [PubMed]

Barone, A. C.

S. Amoruso, G. Ausanio, A. C. Barone, R. Bruzzese, L. Gragnaniello, M. Vitiello, and X. Wang, “Ultrashort laser ablation of solid matter in vacuum: a comparison between the picosecond and femtosecond regimes,” J. Phys. At. Mol. Opt. Phys.38(20), L329–L338 (2005).
[CrossRef]

Bärsch, N.

N. Bärsch, J. Jakobi, S. Weiler, and S. Barcikowski, “Pure colloidal metal and ceramic nanoparticles from high-power picosecond laser ablation in water and acetone,” Nanotechnology20(44), 445603 (2009).
[CrossRef] [PubMed]

Briggs, R. M.

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat Commun2, 517 (2011).
[CrossRef] [PubMed]

Bruzzese, R.

S. Amoruso, G. Ausanio, R. Bruzzese, L. Gragnaniello, L. Lanotte, M. Vitiello, and X. Wang, “Characterization of laser ablation of solid targets with near-infrared laser pulses of 100 fs and 1 ps duration,” Appl. Surf. Sci.252(13), 4863–4870 (2006).
[CrossRef]

S. Amoruso, G. Ausanio, A. C. Barone, R. Bruzzese, L. Gragnaniello, M. Vitiello, and X. Wang, “Ultrashort laser ablation of solid matter in vacuum: a comparison between the picosecond and femtosecond regimes,” J. Phys. At. Mol. Opt. Phys.38(20), L329–L338 (2005).
[CrossRef]

Cabrini, S.

A. Polyakov, S. Cabrini, S. Dhuey, B. Harteneck, P. J. Schuck, and H. A. Padmore, “Plasmonic light trapping in nanostructured metal surfaces,” Appl. Phys. Lett.98(20), 203104 (2011).
[CrossRef]

Carey, J. E.

C. Wu, C. H. Crouch, L. Zhao, J. E. Carey, R. Younkin, J. A. Levinson, E. Mazur, R. M. Farrell, P. Gothoskar, and A. Karger, “Near-unity below-band-gap absorption by microstructured silicon,” Appl. Phys. Lett.78(13), 1850–1852 (2001).
[CrossRef]

Cheng, Y.

Crouch, C. H.

C. Wu, C. H. Crouch, L. Zhao, J. E. Carey, R. Younkin, J. A. Levinson, E. Mazur, R. M. Farrell, P. Gothoskar, and A. Karger, “Near-unity below-band-gap absorption by microstructured silicon,” Appl. Phys. Lett.78(13), 1850–1852 (2001).
[CrossRef]

Deinega, A.

Desarkar, H. S.

H. S. Desarkar, P. Kumbhakar, and A. K. Mitra, “Effect of ablation time and laser fluence on the optical properties of copper nano colloids prepared by laser ablation technique,” Appl Nanosci2(3), 285–291 (2012).
[CrossRef]

Dhuey, S.

A. Polyakov, S. Cabrini, S. Dhuey, B. Harteneck, P. J. Schuck, and H. A. Padmore, “Plasmonic light trapping in nanostructured metal surfaces,” Appl. Phys. Lett.98(20), 203104 (2011).
[CrossRef]

Döring, S.

Eken, K.

Englezos, P.

A. M. Kietzig, S. G. Hatzikiriakos, and P. Englezos, “Patterned superhydrophobic metallic surfaces,” Langmuir25(8), 4821–4827 (2009).
[CrossRef] [PubMed]

Erdogan, M.

Etsion, I.

I. Etsion, “State of the art in laser surface texturing,” J. Tribol.-Trans. ASME127(1), 248–253 (2005).

Farrell, R. M.

C. Wu, C. H. Crouch, L. Zhao, J. E. Carey, R. Younkin, J. A. Levinson, E. Mazur, R. M. Farrell, P. Gothoskar, and A. Karger, “Near-unity below-band-gap absorption by microstructured silicon,” Appl. Phys. Lett.78(13), 1850–1852 (2001).
[CrossRef]

Ferry, V. E.

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat Commun2, 517 (2011).
[CrossRef] [PubMed]

Gothoskar, P.

C. Wu, C. H. Crouch, L. Zhao, J. E. Carey, R. Younkin, J. A. Levinson, E. Mazur, R. M. Farrell, P. Gothoskar, and A. Karger, “Near-unity below-band-gap absorption by microstructured silicon,” Appl. Phys. Lett.78(13), 1850–1852 (2001).
[CrossRef]

Gragnaniello, L.

S. Amoruso, G. Ausanio, R. Bruzzese, L. Gragnaniello, L. Lanotte, M. Vitiello, and X. Wang, “Characterization of laser ablation of solid targets with near-infrared laser pulses of 100 fs and 1 ps duration,” Appl. Surf. Sci.252(13), 4863–4870 (2006).
[CrossRef]

S. Amoruso, G. Ausanio, A. C. Barone, R. Bruzzese, L. Gragnaniello, M. Vitiello, and X. Wang, “Ultrashort laser ablation of solid matter in vacuum: a comparison between the picosecond and femtosecond regimes,” J. Phys. At. Mol. Opt. Phys.38(20), L329–L338 (2005).
[CrossRef]

Granqvist, C. G.

C. G. Granqvist, “Solar energy materials,” Adv. Mater.15(21), 1789–1803 (2003).
[CrossRef]

Guo, C.

A. Y. Vorobyev and C. Guo, “Metallic light absorbers produced by femtosecond laser pulses,” Adv. Mech. Eng.2010, 452749 (2010).

A. Y. Vorobyev, A. N. Topkov, O. V. Gurin, V. A. Svich, and C. Guo, “Enhanced absorption of metals over ultrabroad electromagnetic spectrum,” Appl. Phys. Lett.95(12), 121106 (2009).
[CrossRef]

A. Y. Vorobyev and C. Guo, “Femtosecond laser blackening of platinum,” J. Appl. Phys.104(5), 053516 (2008).
[CrossRef]

A. Y. Vorobyev and C. Guo, “Colorizing metals with femtosecond laser pulses,” Appl. Phys. Lett.92(4), 041914 (2008).
[CrossRef]

Gurin, O. V.

A. Y. Vorobyev, A. N. Topkov, O. V. Gurin, V. A. Svich, and C. Guo, “Enhanced absorption of metals over ultrabroad electromagnetic spectrum,” Appl. Phys. Lett.95(12), 121106 (2009).
[CrossRef]

Harteneck, B.

A. Polyakov, S. Cabrini, S. Dhuey, B. Harteneck, P. J. Schuck, and H. A. Padmore, “Plasmonic light trapping in nanostructured metal surfaces,” Appl. Phys. Lett.98(20), 203104 (2011).
[CrossRef]

Hatzikiriakos, S. G.

A. M. Kietzig, S. G. Hatzikiriakos, and P. Englezos, “Patterned superhydrophobic metallic surfaces,” Langmuir25(8), 4821–4827 (2009).
[CrossRef] [PubMed]

Hourd, A. C.

G. Tang, A. C. Hourd, and A. Abdolvand, “Nanosecond pulsed laser blackening of copper,” Appl. Phys. Lett.101(23), 231902 (2012).
[CrossRef]

Huang, M.

Ilday, F. Ö.

Jaaskelainen, T.

J. J. J. Kaakkunen, K. Paivasaari, M. Kuittinen, and T. Jaaskelainen, “Morphology studies of the metal surfaces with enhanced absorption fabricated using interferometric femtosecond ablation,” Appl. Phys., A Mater. Sci. Process.94(2), 215–220 (2009).
[CrossRef]

K. Paivasaari, J. J. J. Kaakkunen, M. Kuittinen, and T. Jaaskelainen, “Enhanced optical absorptance of metals using interferometric femtosecond ablation,” Opt. Express15(21), 13838–13843 (2007).
[CrossRef] [PubMed]

Jacobsen, R. L.

S. Tao, R. L. Jacobsen, and B. Wu, “Physical mechanisms for picosecond laser ablation of silicon carbide at infrared and ultraviolet wavelengths,” Appl. Phys. Lett.97(18), 181918 (2010).
[CrossRef]

Jakobi, J.

N. Bärsch, J. Jakobi, S. Weiler, and S. Barcikowski, “Pure colloidal metal and ceramic nanoparticles from high-power picosecond laser ablation in water and acetone,” Nanotechnology20(44), 445603 (2009).
[CrossRef] [PubMed]

Jauregui, C.

Kaakkunen, J. J. J.

J. J. J. Kaakkunen, K. Paivasaari, M. Kuittinen, and T. Jaaskelainen, “Morphology studies of the metal surfaces with enhanced absorption fabricated using interferometric femtosecond ablation,” Appl. Phys., A Mater. Sci. Process.94(2), 215–220 (2009).
[CrossRef]

K. Paivasaari, J. J. J. Kaakkunen, M. Kuittinen, and T. Jaaskelainen, “Enhanced optical absorptance of metals using interferometric femtosecond ablation,” Opt. Express15(21), 13838–13843 (2007).
[CrossRef] [PubMed]

Kalaycioglu, H.

Karger, A.

C. Wu, C. H. Crouch, L. Zhao, J. E. Carey, R. Younkin, J. A. Levinson, E. Mazur, R. M. Farrell, P. Gothoskar, and A. Karger, “Near-unity below-band-gap absorption by microstructured silicon,” Appl. Phys. Lett.78(13), 1850–1852 (2001).
[CrossRef]

Kietzig, A. M.

A. M. Kietzig, S. G. Hatzikiriakos, and P. Englezos, “Patterned superhydrophobic metallic surfaces,” Langmuir25(8), 4821–4827 (2009).
[CrossRef] [PubMed]

Kuittinen, M.

J. J. J. Kaakkunen, K. Paivasaari, M. Kuittinen, and T. Jaaskelainen, “Morphology studies of the metal surfaces with enhanced absorption fabricated using interferometric femtosecond ablation,” Appl. Phys., A Mater. Sci. Process.94(2), 215–220 (2009).
[CrossRef]

K. Paivasaari, J. J. J. Kaakkunen, M. Kuittinen, and T. Jaaskelainen, “Enhanced optical absorptance of metals using interferometric femtosecond ablation,” Opt. Express15(21), 13838–13843 (2007).
[CrossRef] [PubMed]

Kumbhakar, P.

H. S. Desarkar, P. Kumbhakar, and A. K. Mitra, “Effect of ablation time and laser fluence on the optical properties of copper nano colloids prepared by laser ablation technique,” Appl Nanosci2(3), 285–291 (2012).
[CrossRef]

Lanotte, L.

S. Amoruso, G. Ausanio, R. Bruzzese, L. Gragnaniello, L. Lanotte, M. Vitiello, and X. Wang, “Characterization of laser ablation of solid targets with near-infrared laser pulses of 100 fs and 1 ps duration,” Appl. Surf. Sci.252(13), 4863–4870 (2006).
[CrossRef]

Levinson, J. A.

C. Wu, C. H. Crouch, L. Zhao, J. E. Carey, R. Younkin, J. A. Levinson, E. Mazur, R. M. Farrell, P. Gothoskar, and A. Karger, “Near-unity below-band-gap absorption by microstructured silicon,” Appl. Phys. Lett.78(13), 1850–1852 (2001).
[CrossRef]

Liang, C.

Limpert, J.

Lozovik, Y.

Mazur, E.

C. Wu, C. H. Crouch, L. Zhao, J. E. Carey, R. Younkin, J. A. Levinson, E. Mazur, R. M. Farrell, P. Gothoskar, and A. Karger, “Near-unity below-band-gap absorption by microstructured silicon,” Appl. Phys. Lett.78(13), 1850–1852 (2001).
[CrossRef]

Mitra, A. K.

H. S. Desarkar, P. Kumbhakar, and A. K. Mitra, “Effect of ablation time and laser fluence on the optical properties of copper nano colloids prepared by laser ablation technique,” Appl Nanosci2(3), 285–291 (2012).
[CrossRef]

Mukhopadhyay, P. K.

Nolte, S.

Öktem, B.

Ozgören, K.

Padmore, H. A.

A. Polyakov, S. Cabrini, S. Dhuey, B. Harteneck, P. J. Schuck, and H. A. Padmore, “Plasmonic light trapping in nanostructured metal surfaces,” Appl. Phys. Lett.98(20), 203104 (2011).
[CrossRef]

Paivasaari, K.

J. J. J. Kaakkunen, K. Paivasaari, M. Kuittinen, and T. Jaaskelainen, “Morphology studies of the metal surfaces with enhanced absorption fabricated using interferometric femtosecond ablation,” Appl. Phys., A Mater. Sci. Process.94(2), 215–220 (2009).
[CrossRef]

K. Paivasaari, J. J. J. Kaakkunen, M. Kuittinen, and T. Jaaskelainen, “Enhanced optical absorptance of metals using interferometric femtosecond ablation,” Opt. Express15(21), 13838–13843 (2007).
[CrossRef] [PubMed]

Polyakov, A.

A. Polyakov, S. Cabrini, S. Dhuey, B. Harteneck, P. J. Schuck, and H. A. Padmore, “Plasmonic light trapping in nanostructured metal surfaces,” Appl. Phys. Lett.98(20), 203104 (2011).
[CrossRef]

Potapkin, B.

Röser, F.

Schuck, P. J.

A. Polyakov, S. Cabrini, S. Dhuey, B. Harteneck, P. J. Schuck, and H. A. Padmore, “Plasmonic light trapping in nanostructured metal surfaces,” Appl. Phys. Lett.98(20), 203104 (2011).
[CrossRef]

Svich, V. A.

A. Y. Vorobyev, A. N. Topkov, O. V. Gurin, V. A. Svich, and C. Guo, “Enhanced absorption of metals over ultrabroad electromagnetic spectrum,” Appl. Phys. Lett.95(12), 121106 (2009).
[CrossRef]

Tang, G.

G. Tang, A. C. Hourd, and A. Abdolvand, “Nanosecond pulsed laser blackening of copper,” Appl. Phys. Lett.101(23), 231902 (2012).
[CrossRef]

Tao, S.

S. Tao, R. L. Jacobsen, and B. Wu, “Physical mechanisms for picosecond laser ablation of silicon carbide at infrared and ultraviolet wavelengths,” Appl. Phys. Lett.97(18), 181918 (2010).
[CrossRef]

Tazebay, U. H.

Topkov, A. N.

A. Y. Vorobyev, A. N. Topkov, O. V. Gurin, V. A. Svich, and C. Guo, “Enhanced absorption of metals over ultrabroad electromagnetic spectrum,” Appl. Phys. Lett.95(12), 121106 (2009).
[CrossRef]

Tünnermann, A.

Valuev, I.

Vitiello, M.

S. Amoruso, G. Ausanio, R. Bruzzese, L. Gragnaniello, L. Lanotte, M. Vitiello, and X. Wang, “Characterization of laser ablation of solid targets with near-infrared laser pulses of 100 fs and 1 ps duration,” Appl. Surf. Sci.252(13), 4863–4870 (2006).
[CrossRef]

S. Amoruso, G. Ausanio, A. C. Barone, R. Bruzzese, L. Gragnaniello, M. Vitiello, and X. Wang, “Ultrashort laser ablation of solid matter in vacuum: a comparison between the picosecond and femtosecond regimes,” J. Phys. At. Mol. Opt. Phys.38(20), L329–L338 (2005).
[CrossRef]

Vorobyev, A. Y.

A. Y. Vorobyev and C. Guo, “Metallic light absorbers produced by femtosecond laser pulses,” Adv. Mech. Eng.2010, 452749 (2010).

A. Y. Vorobyev, A. N. Topkov, O. V. Gurin, V. A. Svich, and C. Guo, “Enhanced absorption of metals over ultrabroad electromagnetic spectrum,” Appl. Phys. Lett.95(12), 121106 (2009).
[CrossRef]

A. Y. Vorobyev and C. Guo, “Femtosecond laser blackening of platinum,” J. Appl. Phys.104(5), 053516 (2008).
[CrossRef]

A. Y. Vorobyev and C. Guo, “Colorizing metals with femtosecond laser pulses,” Appl. Phys. Lett.92(4), 041914 (2008).
[CrossRef]

Wang, H.

Wang, X.

S. Amoruso, G. Ausanio, R. Bruzzese, L. Gragnaniello, L. Lanotte, M. Vitiello, and X. Wang, “Characterization of laser ablation of solid targets with near-infrared laser pulses of 100 fs and 1 ps duration,” Appl. Surf. Sci.252(13), 4863–4870 (2006).
[CrossRef]

S. Amoruso, G. Ausanio, A. C. Barone, R. Bruzzese, L. Gragnaniello, M. Vitiello, and X. Wang, “Ultrashort laser ablation of solid matter in vacuum: a comparison between the picosecond and femtosecond regimes,” J. Phys. At. Mol. Opt. Phys.38(20), L329–L338 (2005).
[CrossRef]

Weiler, S.

N. Bärsch, J. Jakobi, S. Weiler, and S. Barcikowski, “Pure colloidal metal and ceramic nanoparticles from high-power picosecond laser ablation in water and acetone,” Nanotechnology20(44), 445603 (2009).
[CrossRef] [PubMed]

Wu, B.

S. Tao, R. L. Jacobsen, and B. Wu, “Physical mechanisms for picosecond laser ablation of silicon carbide at infrared and ultraviolet wavelengths,” Appl. Phys. Lett.97(18), 181918 (2010).
[CrossRef]

Wu, C.

C. Wu, C. H. Crouch, L. Zhao, J. E. Carey, R. Younkin, J. A. Levinson, E. Mazur, R. M. Farrell, P. Gothoskar, and A. Karger, “Near-unity below-band-gap absorption by microstructured silicon,” Appl. Phys. Lett.78(13), 1850–1852 (2001).
[CrossRef]

Xu, N.

Xu, Z.

Yang, J.

Yang, Y.

Yavas, S.

Younkin, R.

C. Wu, C. H. Crouch, L. Zhao, J. E. Carey, R. Younkin, J. A. Levinson, E. Mazur, R. M. Farrell, P. Gothoskar, and A. Karger, “Near-unity below-band-gap absorption by microstructured silicon,” Appl. Phys. Lett.78(13), 1850–1852 (2001).
[CrossRef]

Zhao, F.

Zhao, L.

C. Wu, C. H. Crouch, L. Zhao, J. E. Carey, R. Younkin, J. A. Levinson, E. Mazur, R. M. Farrell, P. Gothoskar, and A. Karger, “Near-unity below-band-gap absorption by microstructured silicon,” Appl. Phys. Lett.78(13), 1850–1852 (2001).
[CrossRef]

Adv. Mater. (1)

C. G. Granqvist, “Solar energy materials,” Adv. Mater.15(21), 1789–1803 (2003).
[CrossRef]

Adv. Mech. Eng. (1)

A. Y. Vorobyev and C. Guo, “Metallic light absorbers produced by femtosecond laser pulses,” Adv. Mech. Eng.2010, 452749 (2010).

Appl Nanosci (1)

H. S. Desarkar, P. Kumbhakar, and A. K. Mitra, “Effect of ablation time and laser fluence on the optical properties of copper nano colloids prepared by laser ablation technique,” Appl Nanosci2(3), 285–291 (2012).
[CrossRef]

Appl. Phys. Lett. (6)

G. Tang, A. C. Hourd, and A. Abdolvand, “Nanosecond pulsed laser blackening of copper,” Appl. Phys. Lett.101(23), 231902 (2012).
[CrossRef]

A. Polyakov, S. Cabrini, S. Dhuey, B. Harteneck, P. J. Schuck, and H. A. Padmore, “Plasmonic light trapping in nanostructured metal surfaces,” Appl. Phys. Lett.98(20), 203104 (2011).
[CrossRef]

S. Tao, R. L. Jacobsen, and B. Wu, “Physical mechanisms for picosecond laser ablation of silicon carbide at infrared and ultraviolet wavelengths,” Appl. Phys. Lett.97(18), 181918 (2010).
[CrossRef]

C. Wu, C. H. Crouch, L. Zhao, J. E. Carey, R. Younkin, J. A. Levinson, E. Mazur, R. M. Farrell, P. Gothoskar, and A. Karger, “Near-unity below-band-gap absorption by microstructured silicon,” Appl. Phys. Lett.78(13), 1850–1852 (2001).
[CrossRef]

A. Y. Vorobyev and C. Guo, “Colorizing metals with femtosecond laser pulses,” Appl. Phys. Lett.92(4), 041914 (2008).
[CrossRef]

A. Y. Vorobyev, A. N. Topkov, O. V. Gurin, V. A. Svich, and C. Guo, “Enhanced absorption of metals over ultrabroad electromagnetic spectrum,” Appl. Phys. Lett.95(12), 121106 (2009).
[CrossRef]

Appl. Phys., A Mater. Sci. Process. (1)

J. J. J. Kaakkunen, K. Paivasaari, M. Kuittinen, and T. Jaaskelainen, “Morphology studies of the metal surfaces with enhanced absorption fabricated using interferometric femtosecond ablation,” Appl. Phys., A Mater. Sci. Process.94(2), 215–220 (2009).
[CrossRef]

Appl. Surf. Sci. (1)

S. Amoruso, G. Ausanio, R. Bruzzese, L. Gragnaniello, L. Lanotte, M. Vitiello, and X. Wang, “Characterization of laser ablation of solid targets with near-infrared laser pulses of 100 fs and 1 ps duration,” Appl. Surf. Sci.252(13), 4863–4870 (2006).
[CrossRef]

J. Appl. Phys. (1)

A. Y. Vorobyev and C. Guo, “Femtosecond laser blackening of platinum,” J. Appl. Phys.104(5), 053516 (2008).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Phys. At. Mol. Opt. Phys. (1)

S. Amoruso, G. Ausanio, A. C. Barone, R. Bruzzese, L. Gragnaniello, M. Vitiello, and X. Wang, “Ultrashort laser ablation of solid matter in vacuum: a comparison between the picosecond and femtosecond regimes,” J. Phys. At. Mol. Opt. Phys.38(20), L329–L338 (2005).
[CrossRef]

J. Tribol.-Trans. ASME (1)

I. Etsion, “State of the art in laser surface texturing,” J. Tribol.-Trans. ASME127(1), 248–253 (2005).

Langmuir (1)

A. M. Kietzig, S. G. Hatzikiriakos, and P. Englezos, “Patterned superhydrophobic metallic surfaces,” Langmuir25(8), 4821–4827 (2009).
[CrossRef] [PubMed]

Nanotechnology (1)

N. Bärsch, J. Jakobi, S. Weiler, and S. Barcikowski, “Pure colloidal metal and ceramic nanoparticles from high-power picosecond laser ablation in water and acetone,” Nanotechnology20(44), 445603 (2009).
[CrossRef] [PubMed]

Nat Commun (1)

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat Commun2, 517 (2011).
[CrossRef] [PubMed]

Opt. Express (4)

Opt. Lett. (2)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Reflectance as a function of wavelength for samples with different laser scanning intervals. For comparison, the reflectance of polished Cu surface is also plotted. The dashed line is the calculated reflectance curve for I = 40 μm without plateau areas. The inset shows the optical photograph of polished Cu (left) and blackened Cu (right, I = 5 μm).

Fig. 2
Fig. 2

(a) X-ray diffraction patterns of sample surfaces with different laser scanning intervals. (b) Contrast of absorptance as well as the content of oxide on sample surfaces with different scanning intervals.

Fig. 3
Fig. 3

SEM images of surface structures. Here, the scanning interval for sample (a), (b) and (c) is 5 μm, 30 μm, and 50 μm, respectively.

Fig. 4
Fig. 4

(a), (b), (c) 3D OM morphology images of surface structures formed on copper with different laser scanning intervals. (d) Comparison of the corresponding Ra and Rz together with absorptance.

Fig. 5
Fig. 5

Magnified SEM images of sample surface showing the nanoscale features covering the surface of micro protrusions (a, c, e) and micro cavities (b, d, f). (a) and (b), (c) and (d), (e) and (f) are for surfaces with I = 5 μm, 30 μm, and 50 μm, respectively.

Tables (1)

Tables Icon

Table 1 Summarizing of obtained surface structures and reflectance with different laser sources.

Metrics