Abstract

Graphene is a two-dimensional material with exotic electronic, optical and thermal properties. The optical absorption in monolayer graphene is limited by the fine structure constant α. Here we demonstrated the strong enhancement of light absorption and thermal radiation in homogeneous graphene. Numerical simulations show that the light absorbance can be controlled from near zero to 100% by tuning the Fermi energy. Moreover, a set of periodically located absorption peaks is observed at near grazing incidence. Based on this unique property, highly directive comb-like thermal radiation at near-infrared frequencies is demonstrated.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature438(7065), 197–200 (2005).
    [CrossRef] [PubMed]
  2. Y. Zhang, Y. W. Tan, H. L. Stormer, and P. Kim, “Experimental observation of the quantum Hall effect and Berry’s phase in graphene,” Nature438(7065), 201–204 (2005).
    [CrossRef] [PubMed]
  3. J. Nilsson, A. H. C. Neto, F. Guinea, and N. M. R. Peres, “Electronic properties of graphene multilayers,” Phys. Rev. Lett.97(26), 266801 (2006).
    [CrossRef] [PubMed]
  4. A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater.6(3), 183–191 (2007).
    [CrossRef] [PubMed]
  5. A. B. Kuzmenko, E. van Heumen, F. Carbone, and D. van der Marel, “Universal optical conductance of graphite,” Phys. Rev. Lett.100(11), 117401 (2008).
    [CrossRef] [PubMed]
  6. R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science320(5881), 1308–1308 (2008).
    [CrossRef] [PubMed]
  7. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).
  8. J. Horng, C. F. Chen, B. Geng, C. Girit, Y. Zhang, Z. Hao, H. A. Bechtel, M. Martin, A. Zettl, M. F. Crommie, Y. R. Shen, and F. Wang, “Drude conductivity of Dirac fermions in graphene,” Phys. Rev. B83(16), 165113 (2011).
    [CrossRef]
  9. S. De and J. N. Coleman, “Are there fundamental limitations on the sheet resistance and transmittance of thin graphene films?” ACS Nano4(5), 2713–2720 (2010).
    [CrossRef] [PubMed]
  10. F. Wang, Y. Zhang, C. Tian, C. Girit, A. Zettl, M. Crommie, and Y. R. Shen, “Gate-variable optical transitions in graphene,” Science320(5873), 206–209 (2008).
    [CrossRef] [PubMed]
  11. Y. Zhang, T. T. Tang, C. Girit, Z. Hao, M. C. Martin, A. Zettl, M. F. Crommie, Y. R. Shen, and F. Wang, “Direct observation of a widely tunable bandgap in bilayer graphene,” Nature459(7248), 820–823 (2009).
    [CrossRef] [PubMed]
  12. L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol.6(10), 630–634 (2011).
    [CrossRef] [PubMed]
  13. A. Vakil and N. Engheta, “Transformation optics using graphene,” Science332(6035), 1291–1294 (2011).
    [CrossRef] [PubMed]
  14. H. Yan, X. Li, B. Chandra, G. Tulevski, Y. Wu, M. Freitag, W. Zhu, P. Avouris, and F. Xia, “Tunable infrared plasmonic devices using graphene/insulator stacks,” Nat. Nanotechnol.7(5), 330–334 (2012).
    [CrossRef] [PubMed]
  15. R. Alaee, M. Farhat, C. Rockstuhl, and F. Lederer, “A perfect absorber made of a graphene micro-ribbon metamaterial,” Opt. Express20(27), 28017–28024 (2012).
    [CrossRef] [PubMed]
  16. A. Y. Nikitin, F. Guinea, F. J. Garcia-Vidal, and L. Martin-Moreno, “Surface plasmon enhanced absorption and suppressed transmission in periodic arrays of graphene ribbons,” Phys. Rev. B85(8), 081405 (2012).
    [CrossRef]
  17. S. Thongrattanasiri, F. H. L. Koppens, and F. J. García de Abajo, “Complete optical absorption in periodically patterned graphene,” Phys. Rev. Lett.108(4), 047401 (2012).
    [CrossRef] [PubMed]
  18. N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett.100(20), 207402 (2008).
    [CrossRef] [PubMed]
  19. M. Pu, C. Hu, M. Wang, C. Huang, Z. Zhao, C. Wang, Q. Feng, and X. Luo, “Design principles for infrared wide-angle perfect absorber based on plasmonic structure,” Opt. Express19(18), 17413–17420 (2011).
    [CrossRef] [PubMed]
  20. P. Bouchon, C. Koechlin, F. Pardo, R. Haïdar, and J.-L. Pelouard, “Wideband omnidirectional infrared absorber with a patchwork of plasmonic nanoantennas,” Opt. Lett.37(6), 1038–1040 (2012).
    [CrossRef] [PubMed]
  21. Q. Feng, M. Pu, C. Hu, and X. Luo, “Engineering the dispersion of metamaterial surface for broadband infrared absorption,” Opt. Lett.37(11), 2133–2135 (2012).
    [CrossRef] [PubMed]
  22. M. Pu, Q. Feng, M. Wang, C. Hu, C. Huang, X. Ma, Z. Zhao, C. Wang, and X. Luo, “Ultrathin broadband nearly perfect absorber with symmetrical coherent illumination,” Opt. Express20(3), 2246–2254 (2012).
    [CrossRef] [PubMed]
  23. M. Pu, Q. Feng, C. Hu, and X. Luo, “Perfect absorption of light by coherently induced plasmon hybridization in ultrathin metamaterial film,” Plasmonics7(4), 733–738 (2012).
    [CrossRef]
  24. J.-J. Greffet, R. Carminati, K. Joulain, J.-P. Mulet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature416(6876), 61–64 (2002).
    [CrossRef] [PubMed]
  25. M. Diem, T. Koschny, and C. M. Soukoulis, “Wide-angle perfect absorber/thermal emitter in the terahertz regime,” Phys. Rev. B79(3), 033101 (2009).
    [CrossRef]
  26. X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett.107(4), 045901 (2011).
    [CrossRef] [PubMed]
  27. J. A. Mason, S. Smith, and D. Wasserman, “Strong absorption and selective thermal emission from a midinfrared metamaterial,” Appl. Phys. Lett.98(24), 241105 (2011).
    [CrossRef]
  28. A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, “Superior thermal conductivity of single-layer graphene,” Nano Lett.8(3), 902–907 (2008).
    [CrossRef] [PubMed]
  29. K. Kim, W. Regan, B. Geng, B. Alemán, B. M. Kessler, F. Wang, M. F. Crommie, and A. Zettl, “High-temperature stability of suspended single-layer graphene,” Phys. Status Solidi4(11), 302–304 (2010) (RRL).
    [CrossRef]
  30. M. Freitag, H. Y. Chiu, M. Steiner, V. Perebeinos, and P. Avouris, “Thermal infrared emission from biased graphene,” Nat. Nanotechnol.5(7), 497–501 (2010).
    [CrossRef] [PubMed]
  31. A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys.82(3), 2257–2298 (2010).
    [CrossRef]
  32. B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater.9(9), 707–715 (2010).
    [CrossRef] [PubMed]
  33. M. Pu, C. Hu, C. Huang, C. Wang, Z. Zhao, Y. Wang, and X. Luo, “Investigation of Fano resonance in planar metamaterial with perturbed periodicity,” Opt. Express21(1), 992–1001 (2013).
    [CrossRef] [PubMed]
  34. P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature450(7173), 1214–1217 (2007).
    [CrossRef] [PubMed]

2013 (1)

2012 (8)

P. Bouchon, C. Koechlin, F. Pardo, R. Haïdar, and J.-L. Pelouard, “Wideband omnidirectional infrared absorber with a patchwork of plasmonic nanoantennas,” Opt. Lett.37(6), 1038–1040 (2012).
[CrossRef] [PubMed]

Q. Feng, M. Pu, C. Hu, and X. Luo, “Engineering the dispersion of metamaterial surface for broadband infrared absorption,” Opt. Lett.37(11), 2133–2135 (2012).
[CrossRef] [PubMed]

M. Pu, Q. Feng, M. Wang, C. Hu, C. Huang, X. Ma, Z. Zhao, C. Wang, and X. Luo, “Ultrathin broadband nearly perfect absorber with symmetrical coherent illumination,” Opt. Express20(3), 2246–2254 (2012).
[CrossRef] [PubMed]

M. Pu, Q. Feng, C. Hu, and X. Luo, “Perfect absorption of light by coherently induced plasmon hybridization in ultrathin metamaterial film,” Plasmonics7(4), 733–738 (2012).
[CrossRef]

H. Yan, X. Li, B. Chandra, G. Tulevski, Y. Wu, M. Freitag, W. Zhu, P. Avouris, and F. Xia, “Tunable infrared plasmonic devices using graphene/insulator stacks,” Nat. Nanotechnol.7(5), 330–334 (2012).
[CrossRef] [PubMed]

R. Alaee, M. Farhat, C. Rockstuhl, and F. Lederer, “A perfect absorber made of a graphene micro-ribbon metamaterial,” Opt. Express20(27), 28017–28024 (2012).
[CrossRef] [PubMed]

A. Y. Nikitin, F. Guinea, F. J. Garcia-Vidal, and L. Martin-Moreno, “Surface plasmon enhanced absorption and suppressed transmission in periodic arrays of graphene ribbons,” Phys. Rev. B85(8), 081405 (2012).
[CrossRef]

S. Thongrattanasiri, F. H. L. Koppens, and F. J. García de Abajo, “Complete optical absorption in periodically patterned graphene,” Phys. Rev. Lett.108(4), 047401 (2012).
[CrossRef] [PubMed]

2011 (6)

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol.6(10), 630–634 (2011).
[CrossRef] [PubMed]

A. Vakil and N. Engheta, “Transformation optics using graphene,” Science332(6035), 1291–1294 (2011).
[CrossRef] [PubMed]

M. Pu, C. Hu, M. Wang, C. Huang, Z. Zhao, C. Wang, Q. Feng, and X. Luo, “Design principles for infrared wide-angle perfect absorber based on plasmonic structure,” Opt. Express19(18), 17413–17420 (2011).
[CrossRef] [PubMed]

J. Horng, C. F. Chen, B. Geng, C. Girit, Y. Zhang, Z. Hao, H. A. Bechtel, M. Martin, A. Zettl, M. F. Crommie, Y. R. Shen, and F. Wang, “Drude conductivity of Dirac fermions in graphene,” Phys. Rev. B83(16), 165113 (2011).
[CrossRef]

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett.107(4), 045901 (2011).
[CrossRef] [PubMed]

J. A. Mason, S. Smith, and D. Wasserman, “Strong absorption and selective thermal emission from a midinfrared metamaterial,” Appl. Phys. Lett.98(24), 241105 (2011).
[CrossRef]

2010 (5)

K. Kim, W. Regan, B. Geng, B. Alemán, B. M. Kessler, F. Wang, M. F. Crommie, and A. Zettl, “High-temperature stability of suspended single-layer graphene,” Phys. Status Solidi4(11), 302–304 (2010) (RRL).
[CrossRef]

M. Freitag, H. Y. Chiu, M. Steiner, V. Perebeinos, and P. Avouris, “Thermal infrared emission from biased graphene,” Nat. Nanotechnol.5(7), 497–501 (2010).
[CrossRef] [PubMed]

A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys.82(3), 2257–2298 (2010).
[CrossRef]

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater.9(9), 707–715 (2010).
[CrossRef] [PubMed]

S. De and J. N. Coleman, “Are there fundamental limitations on the sheet resistance and transmittance of thin graphene films?” ACS Nano4(5), 2713–2720 (2010).
[CrossRef] [PubMed]

2009 (2)

Y. Zhang, T. T. Tang, C. Girit, Z. Hao, M. C. Martin, A. Zettl, M. F. Crommie, Y. R. Shen, and F. Wang, “Direct observation of a widely tunable bandgap in bilayer graphene,” Nature459(7248), 820–823 (2009).
[CrossRef] [PubMed]

M. Diem, T. Koschny, and C. M. Soukoulis, “Wide-angle perfect absorber/thermal emitter in the terahertz regime,” Phys. Rev. B79(3), 033101 (2009).
[CrossRef]

2008 (5)

A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, “Superior thermal conductivity of single-layer graphene,” Nano Lett.8(3), 902–907 (2008).
[CrossRef] [PubMed]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett.100(20), 207402 (2008).
[CrossRef] [PubMed]

F. Wang, Y. Zhang, C. Tian, C. Girit, A. Zettl, M. Crommie, and Y. R. Shen, “Gate-variable optical transitions in graphene,” Science320(5873), 206–209 (2008).
[CrossRef] [PubMed]

A. B. Kuzmenko, E. van Heumen, F. Carbone, and D. van der Marel, “Universal optical conductance of graphite,” Phys. Rev. Lett.100(11), 117401 (2008).
[CrossRef] [PubMed]

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science320(5881), 1308–1308 (2008).
[CrossRef] [PubMed]

2007 (2)

A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater.6(3), 183–191 (2007).
[CrossRef] [PubMed]

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature450(7173), 1214–1217 (2007).
[CrossRef] [PubMed]

2006 (1)

J. Nilsson, A. H. C. Neto, F. Guinea, and N. M. R. Peres, “Electronic properties of graphene multilayers,” Phys. Rev. Lett.97(26), 266801 (2006).
[CrossRef] [PubMed]

2005 (2)

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature438(7065), 197–200 (2005).
[CrossRef] [PubMed]

Y. Zhang, Y. W. Tan, H. L. Stormer, and P. Kim, “Experimental observation of the quantum Hall effect and Berry’s phase in graphene,” Nature438(7065), 201–204 (2005).
[CrossRef] [PubMed]

2002 (1)

J.-J. Greffet, R. Carminati, K. Joulain, J.-P. Mulet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature416(6876), 61–64 (2002).
[CrossRef] [PubMed]

Alaee, R.

Alemán, B.

K. Kim, W. Regan, B. Geng, B. Alemán, B. M. Kessler, F. Wang, M. F. Crommie, and A. Zettl, “High-temperature stability of suspended single-layer graphene,” Phys. Status Solidi4(11), 302–304 (2010) (RRL).
[CrossRef]

Arcizet, O.

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature450(7173), 1214–1217 (2007).
[CrossRef] [PubMed]

Avouris, P.

H. Yan, X. Li, B. Chandra, G. Tulevski, Y. Wu, M. Freitag, W. Zhu, P. Avouris, and F. Xia, “Tunable infrared plasmonic devices using graphene/insulator stacks,” Nat. Nanotechnol.7(5), 330–334 (2012).
[CrossRef] [PubMed]

M. Freitag, H. Y. Chiu, M. Steiner, V. Perebeinos, and P. Avouris, “Thermal infrared emission from biased graphene,” Nat. Nanotechnol.5(7), 497–501 (2010).
[CrossRef] [PubMed]

Balandin, A. A.

A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, “Superior thermal conductivity of single-layer graphene,” Nano Lett.8(3), 902–907 (2008).
[CrossRef] [PubMed]

Bao, W.

A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, “Superior thermal conductivity of single-layer graphene,” Nano Lett.8(3), 902–907 (2008).
[CrossRef] [PubMed]

Bechtel, H. A.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol.6(10), 630–634 (2011).
[CrossRef] [PubMed]

J. Horng, C. F. Chen, B. Geng, C. Girit, Y. Zhang, Z. Hao, H. A. Bechtel, M. Martin, A. Zettl, M. F. Crommie, Y. R. Shen, and F. Wang, “Drude conductivity of Dirac fermions in graphene,” Phys. Rev. B83(16), 165113 (2011).
[CrossRef]

Blake, P.

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science320(5881), 1308–1308 (2008).
[CrossRef] [PubMed]

Booth, T. J.

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science320(5881), 1308–1308 (2008).
[CrossRef] [PubMed]

Bouchon, P.

Calizo, I.

A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, “Superior thermal conductivity of single-layer graphene,” Nano Lett.8(3), 902–907 (2008).
[CrossRef] [PubMed]

Carbone, F.

A. B. Kuzmenko, E. van Heumen, F. Carbone, and D. van der Marel, “Universal optical conductance of graphite,” Phys. Rev. Lett.100(11), 117401 (2008).
[CrossRef] [PubMed]

Carminati, R.

J.-J. Greffet, R. Carminati, K. Joulain, J.-P. Mulet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature416(6876), 61–64 (2002).
[CrossRef] [PubMed]

Chandra, B.

H. Yan, X. Li, B. Chandra, G. Tulevski, Y. Wu, M. Freitag, W. Zhu, P. Avouris, and F. Xia, “Tunable infrared plasmonic devices using graphene/insulator stacks,” Nat. Nanotechnol.7(5), 330–334 (2012).
[CrossRef] [PubMed]

Chen, C. F.

J. Horng, C. F. Chen, B. Geng, C. Girit, Y. Zhang, Z. Hao, H. A. Bechtel, M. Martin, A. Zettl, M. F. Crommie, Y. R. Shen, and F. Wang, “Drude conductivity of Dirac fermions in graphene,” Phys. Rev. B83(16), 165113 (2011).
[CrossRef]

Chen, Y.

J.-J. Greffet, R. Carminati, K. Joulain, J.-P. Mulet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature416(6876), 61–64 (2002).
[CrossRef] [PubMed]

Chiu, H. Y.

M. Freitag, H. Y. Chiu, M. Steiner, V. Perebeinos, and P. Avouris, “Thermal infrared emission from biased graphene,” Nat. Nanotechnol.5(7), 497–501 (2010).
[CrossRef] [PubMed]

Chong, C. T.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater.9(9), 707–715 (2010).
[CrossRef] [PubMed]

Coleman, J. N.

S. De and J. N. Coleman, “Are there fundamental limitations on the sheet resistance and transmittance of thin graphene films?” ACS Nano4(5), 2713–2720 (2010).
[CrossRef] [PubMed]

Crommie, M.

F. Wang, Y. Zhang, C. Tian, C. Girit, A. Zettl, M. Crommie, and Y. R. Shen, “Gate-variable optical transitions in graphene,” Science320(5873), 206–209 (2008).
[CrossRef] [PubMed]

Crommie, M. F.

J. Horng, C. F. Chen, B. Geng, C. Girit, Y. Zhang, Z. Hao, H. A. Bechtel, M. Martin, A. Zettl, M. F. Crommie, Y. R. Shen, and F. Wang, “Drude conductivity of Dirac fermions in graphene,” Phys. Rev. B83(16), 165113 (2011).
[CrossRef]

K. Kim, W. Regan, B. Geng, B. Alemán, B. M. Kessler, F. Wang, M. F. Crommie, and A. Zettl, “High-temperature stability of suspended single-layer graphene,” Phys. Status Solidi4(11), 302–304 (2010) (RRL).
[CrossRef]

Y. Zhang, T. T. Tang, C. Girit, Z. Hao, M. C. Martin, A. Zettl, M. F. Crommie, Y. R. Shen, and F. Wang, “Direct observation of a widely tunable bandgap in bilayer graphene,” Nature459(7248), 820–823 (2009).
[CrossRef] [PubMed]

De, S.

S. De and J. N. Coleman, “Are there fundamental limitations on the sheet resistance and transmittance of thin graphene films?” ACS Nano4(5), 2713–2720 (2010).
[CrossRef] [PubMed]

Del’Haye, P.

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature450(7173), 1214–1217 (2007).
[CrossRef] [PubMed]

Diem, M.

M. Diem, T. Koschny, and C. M. Soukoulis, “Wide-angle perfect absorber/thermal emitter in the terahertz regime,” Phys. Rev. B79(3), 033101 (2009).
[CrossRef]

Dubonos, S. V.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature438(7065), 197–200 (2005).
[CrossRef] [PubMed]

Engheta, N.

A. Vakil and N. Engheta, “Transformation optics using graphene,” Science332(6035), 1291–1294 (2011).
[CrossRef] [PubMed]

Farhat, M.

Feng, Q.

Firsov, A. A.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature438(7065), 197–200 (2005).
[CrossRef] [PubMed]

Flach, S.

A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys.82(3), 2257–2298 (2010).
[CrossRef]

Freitag, M.

H. Yan, X. Li, B. Chandra, G. Tulevski, Y. Wu, M. Freitag, W. Zhu, P. Avouris, and F. Xia, “Tunable infrared plasmonic devices using graphene/insulator stacks,” Nat. Nanotechnol.7(5), 330–334 (2012).
[CrossRef] [PubMed]

M. Freitag, H. Y. Chiu, M. Steiner, V. Perebeinos, and P. Avouris, “Thermal infrared emission from biased graphene,” Nat. Nanotechnol.5(7), 497–501 (2010).
[CrossRef] [PubMed]

García de Abajo, F. J.

S. Thongrattanasiri, F. H. L. Koppens, and F. J. García de Abajo, “Complete optical absorption in periodically patterned graphene,” Phys. Rev. Lett.108(4), 047401 (2012).
[CrossRef] [PubMed]

Garcia-Vidal, F. J.

A. Y. Nikitin, F. Guinea, F. J. Garcia-Vidal, and L. Martin-Moreno, “Surface plasmon enhanced absorption and suppressed transmission in periodic arrays of graphene ribbons,” Phys. Rev. B85(8), 081405 (2012).
[CrossRef]

Geim, A. K.

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science320(5881), 1308–1308 (2008).
[CrossRef] [PubMed]

A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater.6(3), 183–191 (2007).
[CrossRef] [PubMed]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature438(7065), 197–200 (2005).
[CrossRef] [PubMed]

Geng, B.

J. Horng, C. F. Chen, B. Geng, C. Girit, Y. Zhang, Z. Hao, H. A. Bechtel, M. Martin, A. Zettl, M. F. Crommie, Y. R. Shen, and F. Wang, “Drude conductivity of Dirac fermions in graphene,” Phys. Rev. B83(16), 165113 (2011).
[CrossRef]

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol.6(10), 630–634 (2011).
[CrossRef] [PubMed]

K. Kim, W. Regan, B. Geng, B. Alemán, B. M. Kessler, F. Wang, M. F. Crommie, and A. Zettl, “High-temperature stability of suspended single-layer graphene,” Phys. Status Solidi4(11), 302–304 (2010) (RRL).
[CrossRef]

Ghosh, S.

A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, “Superior thermal conductivity of single-layer graphene,” Nano Lett.8(3), 902–907 (2008).
[CrossRef] [PubMed]

Giessen, H.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater.9(9), 707–715 (2010).
[CrossRef] [PubMed]

Girit, C.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol.6(10), 630–634 (2011).
[CrossRef] [PubMed]

J. Horng, C. F. Chen, B. Geng, C. Girit, Y. Zhang, Z. Hao, H. A. Bechtel, M. Martin, A. Zettl, M. F. Crommie, Y. R. Shen, and F. Wang, “Drude conductivity of Dirac fermions in graphene,” Phys. Rev. B83(16), 165113 (2011).
[CrossRef]

Y. Zhang, T. T. Tang, C. Girit, Z. Hao, M. C. Martin, A. Zettl, M. F. Crommie, Y. R. Shen, and F. Wang, “Direct observation of a widely tunable bandgap in bilayer graphene,” Nature459(7248), 820–823 (2009).
[CrossRef] [PubMed]

F. Wang, Y. Zhang, C. Tian, C. Girit, A. Zettl, M. Crommie, and Y. R. Shen, “Gate-variable optical transitions in graphene,” Science320(5873), 206–209 (2008).
[CrossRef] [PubMed]

Greffet, J.-J.

J.-J. Greffet, R. Carminati, K. Joulain, J.-P. Mulet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature416(6876), 61–64 (2002).
[CrossRef] [PubMed]

Grigorenko, A. N.

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science320(5881), 1308–1308 (2008).
[CrossRef] [PubMed]

Grigorieva, I. V.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature438(7065), 197–200 (2005).
[CrossRef] [PubMed]

Guinea, F.

A. Y. Nikitin, F. Guinea, F. J. Garcia-Vidal, and L. Martin-Moreno, “Surface plasmon enhanced absorption and suppressed transmission in periodic arrays of graphene ribbons,” Phys. Rev. B85(8), 081405 (2012).
[CrossRef]

J. Nilsson, A. H. C. Neto, F. Guinea, and N. M. R. Peres, “Electronic properties of graphene multilayers,” Phys. Rev. Lett.97(26), 266801 (2006).
[CrossRef] [PubMed]

Haïdar, R.

Halas, N. J.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater.9(9), 707–715 (2010).
[CrossRef] [PubMed]

Hao, Z.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol.6(10), 630–634 (2011).
[CrossRef] [PubMed]

J. Horng, C. F. Chen, B. Geng, C. Girit, Y. Zhang, Z. Hao, H. A. Bechtel, M. Martin, A. Zettl, M. F. Crommie, Y. R. Shen, and F. Wang, “Drude conductivity of Dirac fermions in graphene,” Phys. Rev. B83(16), 165113 (2011).
[CrossRef]

Y. Zhang, T. T. Tang, C. Girit, Z. Hao, M. C. Martin, A. Zettl, M. F. Crommie, Y. R. Shen, and F. Wang, “Direct observation of a widely tunable bandgap in bilayer graphene,” Nature459(7248), 820–823 (2009).
[CrossRef] [PubMed]

Holzwarth, R.

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature450(7173), 1214–1217 (2007).
[CrossRef] [PubMed]

Horng, J.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol.6(10), 630–634 (2011).
[CrossRef] [PubMed]

J. Horng, C. F. Chen, B. Geng, C. Girit, Y. Zhang, Z. Hao, H. A. Bechtel, M. Martin, A. Zettl, M. F. Crommie, Y. R. Shen, and F. Wang, “Drude conductivity of Dirac fermions in graphene,” Phys. Rev. B83(16), 165113 (2011).
[CrossRef]

Hu, C.

Huang, C.

Jiang, D.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature438(7065), 197–200 (2005).
[CrossRef] [PubMed]

Jokerst, N. M.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett.107(4), 045901 (2011).
[CrossRef] [PubMed]

Joulain, K.

J.-J. Greffet, R. Carminati, K. Joulain, J.-P. Mulet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature416(6876), 61–64 (2002).
[CrossRef] [PubMed]

Ju, L.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol.6(10), 630–634 (2011).
[CrossRef] [PubMed]

Katsnelson, M. I.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature438(7065), 197–200 (2005).
[CrossRef] [PubMed]

Kessler, B. M.

K. Kim, W. Regan, B. Geng, B. Alemán, B. M. Kessler, F. Wang, M. F. Crommie, and A. Zettl, “High-temperature stability of suspended single-layer graphene,” Phys. Status Solidi4(11), 302–304 (2010) (RRL).
[CrossRef]

Kim, K.

K. Kim, W. Regan, B. Geng, B. Alemán, B. M. Kessler, F. Wang, M. F. Crommie, and A. Zettl, “High-temperature stability of suspended single-layer graphene,” Phys. Status Solidi4(11), 302–304 (2010) (RRL).
[CrossRef]

Kim, P.

Y. Zhang, Y. W. Tan, H. L. Stormer, and P. Kim, “Experimental observation of the quantum Hall effect and Berry’s phase in graphene,” Nature438(7065), 201–204 (2005).
[CrossRef] [PubMed]

Kippenberg, T. J.

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature450(7173), 1214–1217 (2007).
[CrossRef] [PubMed]

Kivshar, Y. S.

A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys.82(3), 2257–2298 (2010).
[CrossRef]

Koechlin, C.

Koppens, F. H. L.

S. Thongrattanasiri, F. H. L. Koppens, and F. J. García de Abajo, “Complete optical absorption in periodically patterned graphene,” Phys. Rev. Lett.108(4), 047401 (2012).
[CrossRef] [PubMed]

Koschny, T.

M. Diem, T. Koschny, and C. M. Soukoulis, “Wide-angle perfect absorber/thermal emitter in the terahertz regime,” Phys. Rev. B79(3), 033101 (2009).
[CrossRef]

Kuzmenko, A. B.

A. B. Kuzmenko, E. van Heumen, F. Carbone, and D. van der Marel, “Universal optical conductance of graphite,” Phys. Rev. Lett.100(11), 117401 (2008).
[CrossRef] [PubMed]

Landy, N. I.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett.100(20), 207402 (2008).
[CrossRef] [PubMed]

Lau, C. N.

A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, “Superior thermal conductivity of single-layer graphene,” Nano Lett.8(3), 902–907 (2008).
[CrossRef] [PubMed]

Lederer, F.

Li, X.

H. Yan, X. Li, B. Chandra, G. Tulevski, Y. Wu, M. Freitag, W. Zhu, P. Avouris, and F. Xia, “Tunable infrared plasmonic devices using graphene/insulator stacks,” Nat. Nanotechnol.7(5), 330–334 (2012).
[CrossRef] [PubMed]

Liang, X.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol.6(10), 630–634 (2011).
[CrossRef] [PubMed]

Liu, X.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett.107(4), 045901 (2011).
[CrossRef] [PubMed]

Luk’yanchuk, B.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater.9(9), 707–715 (2010).
[CrossRef] [PubMed]

Luo, X.

Ma, X.

Maier, S. A.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater.9(9), 707–715 (2010).
[CrossRef] [PubMed]

Mainguy, S.

J.-J. Greffet, R. Carminati, K. Joulain, J.-P. Mulet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature416(6876), 61–64 (2002).
[CrossRef] [PubMed]

Martin, M.

J. Horng, C. F. Chen, B. Geng, C. Girit, Y. Zhang, Z. Hao, H. A. Bechtel, M. Martin, A. Zettl, M. F. Crommie, Y. R. Shen, and F. Wang, “Drude conductivity of Dirac fermions in graphene,” Phys. Rev. B83(16), 165113 (2011).
[CrossRef]

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol.6(10), 630–634 (2011).
[CrossRef] [PubMed]

Martin, M. C.

Y. Zhang, T. T. Tang, C. Girit, Z. Hao, M. C. Martin, A. Zettl, M. F. Crommie, Y. R. Shen, and F. Wang, “Direct observation of a widely tunable bandgap in bilayer graphene,” Nature459(7248), 820–823 (2009).
[CrossRef] [PubMed]

Martin-Moreno, L.

A. Y. Nikitin, F. Guinea, F. J. Garcia-Vidal, and L. Martin-Moreno, “Surface plasmon enhanced absorption and suppressed transmission in periodic arrays of graphene ribbons,” Phys. Rev. B85(8), 081405 (2012).
[CrossRef]

Mason, J. A.

J. A. Mason, S. Smith, and D. Wasserman, “Strong absorption and selective thermal emission from a midinfrared metamaterial,” Appl. Phys. Lett.98(24), 241105 (2011).
[CrossRef]

Miao, F.

A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, “Superior thermal conductivity of single-layer graphene,” Nano Lett.8(3), 902–907 (2008).
[CrossRef] [PubMed]

Miroshnichenko, A. E.

A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys.82(3), 2257–2298 (2010).
[CrossRef]

Mock, J. J.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett.100(20), 207402 (2008).
[CrossRef] [PubMed]

Morozov, S. V.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature438(7065), 197–200 (2005).
[CrossRef] [PubMed]

Mulet, J.-P.

J.-J. Greffet, R. Carminati, K. Joulain, J.-P. Mulet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature416(6876), 61–64 (2002).
[CrossRef] [PubMed]

Nair, R. R.

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science320(5881), 1308–1308 (2008).
[CrossRef] [PubMed]

Neto, A. H. C.

J. Nilsson, A. H. C. Neto, F. Guinea, and N. M. R. Peres, “Electronic properties of graphene multilayers,” Phys. Rev. Lett.97(26), 266801 (2006).
[CrossRef] [PubMed]

Nikitin, A. Y.

A. Y. Nikitin, F. Guinea, F. J. Garcia-Vidal, and L. Martin-Moreno, “Surface plasmon enhanced absorption and suppressed transmission in periodic arrays of graphene ribbons,” Phys. Rev. B85(8), 081405 (2012).
[CrossRef]

Nilsson, J.

J. Nilsson, A. H. C. Neto, F. Guinea, and N. M. R. Peres, “Electronic properties of graphene multilayers,” Phys. Rev. Lett.97(26), 266801 (2006).
[CrossRef] [PubMed]

Nordlander, P.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater.9(9), 707–715 (2010).
[CrossRef] [PubMed]

Novoselov, K. S.

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science320(5881), 1308–1308 (2008).
[CrossRef] [PubMed]

A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater.6(3), 183–191 (2007).
[CrossRef] [PubMed]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature438(7065), 197–200 (2005).
[CrossRef] [PubMed]

Padilla, W. J.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett.107(4), 045901 (2011).
[CrossRef] [PubMed]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett.100(20), 207402 (2008).
[CrossRef] [PubMed]

Pardo, F.

Pelouard, J.-L.

Perebeinos, V.

M. Freitag, H. Y. Chiu, M. Steiner, V. Perebeinos, and P. Avouris, “Thermal infrared emission from biased graphene,” Nat. Nanotechnol.5(7), 497–501 (2010).
[CrossRef] [PubMed]

Peres, N. M. R.

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science320(5881), 1308–1308 (2008).
[CrossRef] [PubMed]

J. Nilsson, A. H. C. Neto, F. Guinea, and N. M. R. Peres, “Electronic properties of graphene multilayers,” Phys. Rev. Lett.97(26), 266801 (2006).
[CrossRef] [PubMed]

Pu, M.

Regan, W.

K. Kim, W. Regan, B. Geng, B. Alemán, B. M. Kessler, F. Wang, M. F. Crommie, and A. Zettl, “High-temperature stability of suspended single-layer graphene,” Phys. Status Solidi4(11), 302–304 (2010) (RRL).
[CrossRef]

Rockstuhl, C.

Sajuyigbe, S.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett.100(20), 207402 (2008).
[CrossRef] [PubMed]

Schliesser, A.

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature450(7173), 1214–1217 (2007).
[CrossRef] [PubMed]

Shen, Y. R.

J. Horng, C. F. Chen, B. Geng, C. Girit, Y. Zhang, Z. Hao, H. A. Bechtel, M. Martin, A. Zettl, M. F. Crommie, Y. R. Shen, and F. Wang, “Drude conductivity of Dirac fermions in graphene,” Phys. Rev. B83(16), 165113 (2011).
[CrossRef]

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol.6(10), 630–634 (2011).
[CrossRef] [PubMed]

Y. Zhang, T. T. Tang, C. Girit, Z. Hao, M. C. Martin, A. Zettl, M. F. Crommie, Y. R. Shen, and F. Wang, “Direct observation of a widely tunable bandgap in bilayer graphene,” Nature459(7248), 820–823 (2009).
[CrossRef] [PubMed]

F. Wang, Y. Zhang, C. Tian, C. Girit, A. Zettl, M. Crommie, and Y. R. Shen, “Gate-variable optical transitions in graphene,” Science320(5873), 206–209 (2008).
[CrossRef] [PubMed]

Smith, D. R.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett.100(20), 207402 (2008).
[CrossRef] [PubMed]

Smith, S.

J. A. Mason, S. Smith, and D. Wasserman, “Strong absorption and selective thermal emission from a midinfrared metamaterial,” Appl. Phys. Lett.98(24), 241105 (2011).
[CrossRef]

Soukoulis, C. M.

M. Diem, T. Koschny, and C. M. Soukoulis, “Wide-angle perfect absorber/thermal emitter in the terahertz regime,” Phys. Rev. B79(3), 033101 (2009).
[CrossRef]

Starr, A. F.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett.107(4), 045901 (2011).
[CrossRef] [PubMed]

Starr, T.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett.107(4), 045901 (2011).
[CrossRef] [PubMed]

Stauber, T.

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science320(5881), 1308–1308 (2008).
[CrossRef] [PubMed]

Steiner, M.

M. Freitag, H. Y. Chiu, M. Steiner, V. Perebeinos, and P. Avouris, “Thermal infrared emission from biased graphene,” Nat. Nanotechnol.5(7), 497–501 (2010).
[CrossRef] [PubMed]

Stormer, H. L.

Y. Zhang, Y. W. Tan, H. L. Stormer, and P. Kim, “Experimental observation of the quantum Hall effect and Berry’s phase in graphene,” Nature438(7065), 201–204 (2005).
[CrossRef] [PubMed]

Tan, Y. W.

Y. Zhang, Y. W. Tan, H. L. Stormer, and P. Kim, “Experimental observation of the quantum Hall effect and Berry’s phase in graphene,” Nature438(7065), 201–204 (2005).
[CrossRef] [PubMed]

Tang, T. T.

Y. Zhang, T. T. Tang, C. Girit, Z. Hao, M. C. Martin, A. Zettl, M. F. Crommie, Y. R. Shen, and F. Wang, “Direct observation of a widely tunable bandgap in bilayer graphene,” Nature459(7248), 820–823 (2009).
[CrossRef] [PubMed]

Teweldebrhan, D.

A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, “Superior thermal conductivity of single-layer graphene,” Nano Lett.8(3), 902–907 (2008).
[CrossRef] [PubMed]

Thongrattanasiri, S.

S. Thongrattanasiri, F. H. L. Koppens, and F. J. García de Abajo, “Complete optical absorption in periodically patterned graphene,” Phys. Rev. Lett.108(4), 047401 (2012).
[CrossRef] [PubMed]

Tian, C.

F. Wang, Y. Zhang, C. Tian, C. Girit, A. Zettl, M. Crommie, and Y. R. Shen, “Gate-variable optical transitions in graphene,” Science320(5873), 206–209 (2008).
[CrossRef] [PubMed]

Tulevski, G.

H. Yan, X. Li, B. Chandra, G. Tulevski, Y. Wu, M. Freitag, W. Zhu, P. Avouris, and F. Xia, “Tunable infrared plasmonic devices using graphene/insulator stacks,” Nat. Nanotechnol.7(5), 330–334 (2012).
[CrossRef] [PubMed]

Tyler, T.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett.107(4), 045901 (2011).
[CrossRef] [PubMed]

Vakil, A.

A. Vakil and N. Engheta, “Transformation optics using graphene,” Science332(6035), 1291–1294 (2011).
[CrossRef] [PubMed]

van der Marel, D.

A. B. Kuzmenko, E. van Heumen, F. Carbone, and D. van der Marel, “Universal optical conductance of graphite,” Phys. Rev. Lett.100(11), 117401 (2008).
[CrossRef] [PubMed]

van Heumen, E.

A. B. Kuzmenko, E. van Heumen, F. Carbone, and D. van der Marel, “Universal optical conductance of graphite,” Phys. Rev. Lett.100(11), 117401 (2008).
[CrossRef] [PubMed]

Wang, C.

Wang, F.

J. Horng, C. F. Chen, B. Geng, C. Girit, Y. Zhang, Z. Hao, H. A. Bechtel, M. Martin, A. Zettl, M. F. Crommie, Y. R. Shen, and F. Wang, “Drude conductivity of Dirac fermions in graphene,” Phys. Rev. B83(16), 165113 (2011).
[CrossRef]

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol.6(10), 630–634 (2011).
[CrossRef] [PubMed]

K. Kim, W. Regan, B. Geng, B. Alemán, B. M. Kessler, F. Wang, M. F. Crommie, and A. Zettl, “High-temperature stability of suspended single-layer graphene,” Phys. Status Solidi4(11), 302–304 (2010) (RRL).
[CrossRef]

Y. Zhang, T. T. Tang, C. Girit, Z. Hao, M. C. Martin, A. Zettl, M. F. Crommie, Y. R. Shen, and F. Wang, “Direct observation of a widely tunable bandgap in bilayer graphene,” Nature459(7248), 820–823 (2009).
[CrossRef] [PubMed]

F. Wang, Y. Zhang, C. Tian, C. Girit, A. Zettl, M. Crommie, and Y. R. Shen, “Gate-variable optical transitions in graphene,” Science320(5873), 206–209 (2008).
[CrossRef] [PubMed]

Wang, M.

Wang, Y.

Wasserman, D.

J. A. Mason, S. Smith, and D. Wasserman, “Strong absorption and selective thermal emission from a midinfrared metamaterial,” Appl. Phys. Lett.98(24), 241105 (2011).
[CrossRef]

Wilken, T.

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature450(7173), 1214–1217 (2007).
[CrossRef] [PubMed]

Wu, Y.

H. Yan, X. Li, B. Chandra, G. Tulevski, Y. Wu, M. Freitag, W. Zhu, P. Avouris, and F. Xia, “Tunable infrared plasmonic devices using graphene/insulator stacks,” Nat. Nanotechnol.7(5), 330–334 (2012).
[CrossRef] [PubMed]

Xia, F.

H. Yan, X. Li, B. Chandra, G. Tulevski, Y. Wu, M. Freitag, W. Zhu, P. Avouris, and F. Xia, “Tunable infrared plasmonic devices using graphene/insulator stacks,” Nat. Nanotechnol.7(5), 330–334 (2012).
[CrossRef] [PubMed]

Yan, H.

H. Yan, X. Li, B. Chandra, G. Tulevski, Y. Wu, M. Freitag, W. Zhu, P. Avouris, and F. Xia, “Tunable infrared plasmonic devices using graphene/insulator stacks,” Nat. Nanotechnol.7(5), 330–334 (2012).
[CrossRef] [PubMed]

Zettl, A.

J. Horng, C. F. Chen, B. Geng, C. Girit, Y. Zhang, Z. Hao, H. A. Bechtel, M. Martin, A. Zettl, M. F. Crommie, Y. R. Shen, and F. Wang, “Drude conductivity of Dirac fermions in graphene,” Phys. Rev. B83(16), 165113 (2011).
[CrossRef]

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol.6(10), 630–634 (2011).
[CrossRef] [PubMed]

K. Kim, W. Regan, B. Geng, B. Alemán, B. M. Kessler, F. Wang, M. F. Crommie, and A. Zettl, “High-temperature stability of suspended single-layer graphene,” Phys. Status Solidi4(11), 302–304 (2010) (RRL).
[CrossRef]

Y. Zhang, T. T. Tang, C. Girit, Z. Hao, M. C. Martin, A. Zettl, M. F. Crommie, Y. R. Shen, and F. Wang, “Direct observation of a widely tunable bandgap in bilayer graphene,” Nature459(7248), 820–823 (2009).
[CrossRef] [PubMed]

F. Wang, Y. Zhang, C. Tian, C. Girit, A. Zettl, M. Crommie, and Y. R. Shen, “Gate-variable optical transitions in graphene,” Science320(5873), 206–209 (2008).
[CrossRef] [PubMed]

Zhang, Y.

J. Horng, C. F. Chen, B. Geng, C. Girit, Y. Zhang, Z. Hao, H. A. Bechtel, M. Martin, A. Zettl, M. F. Crommie, Y. R. Shen, and F. Wang, “Drude conductivity of Dirac fermions in graphene,” Phys. Rev. B83(16), 165113 (2011).
[CrossRef]

Y. Zhang, T. T. Tang, C. Girit, Z. Hao, M. C. Martin, A. Zettl, M. F. Crommie, Y. R. Shen, and F. Wang, “Direct observation of a widely tunable bandgap in bilayer graphene,” Nature459(7248), 820–823 (2009).
[CrossRef] [PubMed]

F. Wang, Y. Zhang, C. Tian, C. Girit, A. Zettl, M. Crommie, and Y. R. Shen, “Gate-variable optical transitions in graphene,” Science320(5873), 206–209 (2008).
[CrossRef] [PubMed]

Y. Zhang, Y. W. Tan, H. L. Stormer, and P. Kim, “Experimental observation of the quantum Hall effect and Berry’s phase in graphene,” Nature438(7065), 201–204 (2005).
[CrossRef] [PubMed]

Zhao, Z.

Zheludev, N. I.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater.9(9), 707–715 (2010).
[CrossRef] [PubMed]

Zhu, W.

H. Yan, X. Li, B. Chandra, G. Tulevski, Y. Wu, M. Freitag, W. Zhu, P. Avouris, and F. Xia, “Tunable infrared plasmonic devices using graphene/insulator stacks,” Nat. Nanotechnol.7(5), 330–334 (2012).
[CrossRef] [PubMed]

ACS Nano (1)

S. De and J. N. Coleman, “Are there fundamental limitations on the sheet resistance and transmittance of thin graphene films?” ACS Nano4(5), 2713–2720 (2010).
[CrossRef] [PubMed]

Appl. Phys. Lett. (1)

J. A. Mason, S. Smith, and D. Wasserman, “Strong absorption and selective thermal emission from a midinfrared metamaterial,” Appl. Phys. Lett.98(24), 241105 (2011).
[CrossRef]

Nano Lett. (1)

A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, “Superior thermal conductivity of single-layer graphene,” Nano Lett.8(3), 902–907 (2008).
[CrossRef] [PubMed]

Nat. Mater. (2)

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater.9(9), 707–715 (2010).
[CrossRef] [PubMed]

A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater.6(3), 183–191 (2007).
[CrossRef] [PubMed]

Nat. Nanotechnol. (3)

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol.6(10), 630–634 (2011).
[CrossRef] [PubMed]

H. Yan, X. Li, B. Chandra, G. Tulevski, Y. Wu, M. Freitag, W. Zhu, P. Avouris, and F. Xia, “Tunable infrared plasmonic devices using graphene/insulator stacks,” Nat. Nanotechnol.7(5), 330–334 (2012).
[CrossRef] [PubMed]

M. Freitag, H. Y. Chiu, M. Steiner, V. Perebeinos, and P. Avouris, “Thermal infrared emission from biased graphene,” Nat. Nanotechnol.5(7), 497–501 (2010).
[CrossRef] [PubMed]

Nature (5)

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature450(7173), 1214–1217 (2007).
[CrossRef] [PubMed]

J.-J. Greffet, R. Carminati, K. Joulain, J.-P. Mulet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature416(6876), 61–64 (2002).
[CrossRef] [PubMed]

Y. Zhang, T. T. Tang, C. Girit, Z. Hao, M. C. Martin, A. Zettl, M. F. Crommie, Y. R. Shen, and F. Wang, “Direct observation of a widely tunable bandgap in bilayer graphene,” Nature459(7248), 820–823 (2009).
[CrossRef] [PubMed]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature438(7065), 197–200 (2005).
[CrossRef] [PubMed]

Y. Zhang, Y. W. Tan, H. L. Stormer, and P. Kim, “Experimental observation of the quantum Hall effect and Berry’s phase in graphene,” Nature438(7065), 201–204 (2005).
[CrossRef] [PubMed]

Opt. Express (4)

Opt. Lett. (2)

Phys. Rev. B (3)

M. Diem, T. Koschny, and C. M. Soukoulis, “Wide-angle perfect absorber/thermal emitter in the terahertz regime,” Phys. Rev. B79(3), 033101 (2009).
[CrossRef]

A. Y. Nikitin, F. Guinea, F. J. Garcia-Vidal, and L. Martin-Moreno, “Surface plasmon enhanced absorption and suppressed transmission in periodic arrays of graphene ribbons,” Phys. Rev. B85(8), 081405 (2012).
[CrossRef]

J. Horng, C. F. Chen, B. Geng, C. Girit, Y. Zhang, Z. Hao, H. A. Bechtel, M. Martin, A. Zettl, M. F. Crommie, Y. R. Shen, and F. Wang, “Drude conductivity of Dirac fermions in graphene,” Phys. Rev. B83(16), 165113 (2011).
[CrossRef]

Phys. Rev. Lett. (5)

S. Thongrattanasiri, F. H. L. Koppens, and F. J. García de Abajo, “Complete optical absorption in periodically patterned graphene,” Phys. Rev. Lett.108(4), 047401 (2012).
[CrossRef] [PubMed]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett.100(20), 207402 (2008).
[CrossRef] [PubMed]

J. Nilsson, A. H. C. Neto, F. Guinea, and N. M. R. Peres, “Electronic properties of graphene multilayers,” Phys. Rev. Lett.97(26), 266801 (2006).
[CrossRef] [PubMed]

A. B. Kuzmenko, E. van Heumen, F. Carbone, and D. van der Marel, “Universal optical conductance of graphite,” Phys. Rev. Lett.100(11), 117401 (2008).
[CrossRef] [PubMed]

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett.107(4), 045901 (2011).
[CrossRef] [PubMed]

Phys. Status Solidi (1)

K. Kim, W. Regan, B. Geng, B. Alemán, B. M. Kessler, F. Wang, M. F. Crommie, and A. Zettl, “High-temperature stability of suspended single-layer graphene,” Phys. Status Solidi4(11), 302–304 (2010) (RRL).
[CrossRef]

Plasmonics (1)

M. Pu, Q. Feng, C. Hu, and X. Luo, “Perfect absorption of light by coherently induced plasmon hybridization in ultrathin metamaterial film,” Plasmonics7(4), 733–738 (2012).
[CrossRef]

Rev. Mod. Phys. (1)

A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys.82(3), 2257–2298 (2010).
[CrossRef]

Science (3)

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science320(5881), 1308–1308 (2008).
[CrossRef] [PubMed]

F. Wang, Y. Zhang, C. Tian, C. Girit, A. Zettl, M. Crommie, and Y. R. Shen, “Gate-variable optical transitions in graphene,” Science320(5873), 206–209 (2008).
[CrossRef] [PubMed]

A. Vakil and N. Engheta, “Transformation optics using graphene,” Science332(6035), 1291–1294 (2011).
[CrossRef] [PubMed]

Other (1)

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Schematic of the biased graphene. The bottom gold layer is used as both the back-gate and reflecting plane to prevent transmission. Inset depicts the optical transitions between hole and electron bands in monolayer graphene.

Fig. 2
Fig. 2

Schematic of (a) multiple interference theory and (b) transfer matrix theory.

Fig. 3
Fig. 3

(a) The real and (b) imaginary parts of graphene conductivity in units of e 2 /4 . (c) Absorbance at normal incidence for various chemical potentials.

Fig. 4
Fig. 4

Absorption as a function of the thickness of dielectric spacer and frequency for (a) μc = 100 meV and (b) μc = 500 meV.

Fig. 5
Fig. 5

(a) TE and (b) TM absorbance for different angles and frequencies. The thickness of dielectric layer is kept as 70 μm.

Fig. 6
Fig. 6

(a) TE and (b) TM absorbance for single layer graphene with an additional cover layer. The thickness of dielectric layer is 70 μm.

Fig. 7
Fig. 7

(a) TE-polarized thermal emission of the graphene structure at θ = 88.5° and T = 1500 K for d = 50 μm. Inset is the schematic of the radiation pattern. (b) TE-polarized emission spectra for d = 0.5 μm and 5 μm.

Fig. 8
Fig. 8

(a) (b) Conductivity and corresponding emission spectrum of graphene for μc = 200 meV and d = 10 μm. (c)(d) The conductivity and emission for μc = 300 meV.

Fig. 9
Fig. 9

Polar plot of the radiation pattern of graphene with 1, 5, and 10 layers. The sample is placed vertically and the radiation angles are ranging from 0° ~90° and 270° ~360°.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

σ 2D (ω) i e 2 4π ln[ 2| μ c |(ω+i2Γ) 2| μ c |+(ω+i2Γ) ]+ i e 2 k B T π 2 (ω+i2Γ) [ μ c k B T +2ln( e μ c / k B T +1) ],
Z s (ω)= 1 σ 2D (ω) ,
a+b= e i k x d e i k x d Y 00 (ab)= Y 1 ( e i k x d + e i k x d )+ Z 0 Z s ( e i k x d e i k x d ),
Y s = Z 0 Z s =cosθi ε sin 2 θ cot( ε sin 2 θ kd),
Z 0 Z s = 1 cosθ i ε ε sin 2 θ cot( ε sin 2 θ kd),
Z s = Z 0 1incot(nkd) ,
kd 1 ε sin 2 θ ( π 2 +mπ). m=0, 1, 2, 3...
θ=arccos( Z 0 Z s )=arccos(377 σ 2D ),
θ=arccos( Z s Z 0 ),
Δf= c 2d ε sin 2 θ .

Metrics