I. R. Capoglu, A. Taflove, and V. Backman, “A frequency-domain near-field-to-far-field transform for planar layered media,” IEEE Trans. Antennas Propag.60, 1878–1885 (2012).

[CrossRef]

T. Tan and M. Potter, “FDTD discrete planewave (FDTD-DPW) formulation for a perfectly matched source in TFSF simulations,” IEEE Trans. Antennas Propag.58, 2641–2648 (2010).

[CrossRef]

L. Jia and E. L. Thomas, “Radiation forces on dielectric and absorbing particles studied via the finite-difference time-domain method,” J. Opt. Soc. Am. B Opt. Phys.26, 1882–1891 (2009).

[CrossRef]

J. Lin, F. Lu, H. Wang, W. Zheng, C. J. R. Sheppard, and Z. Huang, “Improved contrast radially polarized coherent anti-Stokes Raman scattering microscopy using annular aperture detection,” Appl. Phys. Lett.95 (2009).

[PubMed]

W. Sun, S. Pan, and Y. Jiang, “Computation of the optical trapping force on small particles illuminated with a focused light beam using a FDTD method,” J. Mod. Opt.2691–2700 (2006).

[CrossRef]

L. E. R. Petersson and G. S. Smith, “On the use of a Gaussian beam to isolate the edge scattering from a plate of finite size,” IEEE Trans. Antennas Propag.52, 505–512 (2004).

[CrossRef]

R. Cools, “An encyclopaedia of cubature formulas,” J. Complexity19, 445–453 (2003).

[CrossRef]

R. Cools and K. Kim, “A survey of known and new cubature formulas for the unit disk,” J. Appl. Math. Comput.7, 477–485 (2000).

J. A. Roden and S. D. Gedney, “Convolution PML (CPML): an efficient FDTD implementation of the CFD-PML for arbitrary media,” Microw. Opt. Technol. Lett.27, 334–9 (2000).

[CrossRef]

R. Cools, “Monomial cubature rules since Stroud: A compilation - part 2,” J. Comput. Appl. Math.112, 21–27 (1999).

[CrossRef]

R. Cools and P. Rabinowitz, “Monomial cubature rules since Stroud: A compilation,” J. Comput. Appl. Math.48, 309–326 (1993).

[CrossRef]

B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanatic system,” Proc. R. Soc. Lond. A Math. Phys. Sci.253, 358–379 (1959).

[CrossRef]

E. Wolf, “Electromagnetic diffraction in optical systems. I. An integral representation of the image field,” Proc. R. Soc. Lond. A Math. Phys. Sci.253, 349–357 (1959).

[CrossRef]

I. R. Capoglu, A. Taflove, and V. Backman, “A frequency-domain near-field-to-far-field transform for planar layered media,” IEEE Trans. Antennas Propag.60, 1878–1885 (2012).

[CrossRef]

I. R. Capoglu, A. Taflove, and V. Backman, “Generation of an incident focused light pulse in FDTD,” Opt. Express16, 19208–19220 (2008).

[CrossRef]

I. R. Capoglu, A. Taflove, and V. Backman, “Angora: A free software package for finite-difference time-domain electromagnetic simulation,” accepted for publication in the IEEE Antennas and Propagation Magazine.

I. R. Capoglu, J. D. Rogers, A. Taflove, and V. Backman, “Chapter 1 - The Microscope in a Computer: Image Synthesis from Three-Dimensional Full-Vector Solutions of Maxwell’s Equations at the Nanometer Scale,” in Progress in Optics, E. Wolf, ed. (Elsevier, 2012), 57, 1–91.

M. Born and E. Wolf, Principles of Optics (Cambridge University Press, Cambridge, 1999), 7th ed.

M. Born and E. Wolf, Principles of Optics : Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Cambridge University Press, Cambridge, 1999), 7th ed.

I. R. Capoglu, A. Taflove, and V. Backman, “A frequency-domain near-field-to-far-field transform for planar layered media,” IEEE Trans. Antennas Propag.60, 1878–1885 (2012).

[CrossRef]

I. R. Capoglu, A. Taflove, and V. Backman, “Generation of an incident focused light pulse in FDTD,” Opt. Express16, 19208–19220 (2008).

[CrossRef]

I. R. Capoglu and G. S. Smith, “A total-field/scattered-field plane-wave source for the FDTD analysis of layered media,” IEEE Trans. Antennas Propag.56, 158–169 (2008).

[CrossRef]

I. R. Capoglu, A. Taflove, and V. Backman, “Angora: A free software package for finite-difference time-domain electromagnetic simulation,” accepted for publication in the IEEE Antennas and Propagation Magazine.

I. R. Capoglu, J. D. Rogers, A. Taflove, and V. Backman, “Chapter 1 - The Microscope in a Computer: Image Synthesis from Three-Dimensional Full-Vector Solutions of Maxwell’s Equations at the Nanometer Scale,” in Progress in Optics, E. Wolf, ed. (Elsevier, 2012), 57, 1–91.

R. Cools, “An encyclopaedia of cubature formulas,” J. Complexity19, 445–453 (2003).

[CrossRef]

R. Cools and K. Kim, “A survey of known and new cubature formulas for the unit disk,” J. Appl. Math. Comput.7, 477–485 (2000).

R. Cools, “Monomial cubature rules since Stroud: A compilation - part 2,” J. Comput. Appl. Math.112, 21–27 (1999).

[CrossRef]

R. Cools and P. Rabinowitz, “Monomial cubature rules since Stroud: A compilation,” J. Comput. Appl. Math.48, 309–326 (1993).

[CrossRef]

W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical Recipes: The Art of Scientific Computing (Cambridge University Press, Cambridge, 1986).

J. A. Roden and S. D. Gedney, “Convolution PML (CPML): an efficient FDTD implementation of the CFD-PML for arbitrary media,” Microw. Opt. Technol. Lett.27, 334–9 (2000).

[CrossRef]

J. W. Goodman, Statistical Optics (Wiley, New York, NY, 2000).

C. Guiffaut and K. Mahdjoubi, “A perfect wideband plane wave injector for FDTD method,” in “Antennas and Propagation Society International Symposium, 2000. IEEE,”, (Salt Lake City, UT, USA, 2000), 1, 236–239.

A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, Boston, 2005), 3rd ed.

L. Novotny and B. Hecht, Principles of Nano-optics (Cambridge University Press, 2006).

J. Lin, F. Lu, H. Wang, W. Zheng, C. J. R. Sheppard, and Z. Huang, “Improved contrast radially polarized coherent anti-Stokes Raman scattering microscopy using annular aperture detection,” Appl. Phys. Lett.95 (2009).

[PubMed]

L. Jia and E. L. Thomas, “Radiation forces on dielectric and absorbing particles studied via the finite-difference time-domain method,” J. Opt. Soc. Am. B Opt. Phys.26, 1882–1891 (2009).

[CrossRef]

W. Sun, S. Pan, and Y. Jiang, “Computation of the optical trapping force on small particles illuminated with a focused light beam using a FDTD method,” J. Mod. Opt.2691–2700 (2006).

[CrossRef]

R. Cools and K. Kim, “A survey of known and new cubature formulas for the unit disk,” J. Appl. Math. Comput.7, 477–485 (2000).

J. Lin, F. Lu, H. Wang, W. Zheng, C. J. R. Sheppard, and Z. Huang, “Improved contrast radially polarized coherent anti-Stokes Raman scattering microscopy using annular aperture detection,” Appl. Phys. Lett.95 (2009).

[PubMed]

J. Lin, F. Lu, H. Wang, W. Zheng, C. J. R. Sheppard, and Z. Huang, “Improved contrast radially polarized coherent anti-Stokes Raman scattering microscopy using annular aperture detection,” Appl. Phys. Lett.95 (2009).

[PubMed]

C. Guiffaut and K. Mahdjoubi, “A perfect wideband plane wave injector for FDTD method,” in “Antennas and Propagation Society International Symposium, 2000. IEEE,”, (Salt Lake City, UT, USA, 2000), 1, 236–239.

L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University Press, 1995).

L. Novotny, Private communication.

L. Novotny and B. Hecht, Principles of Nano-optics (Cambridge University Press, 2006).

W. Sun, S. Pan, and Y. Jiang, “Computation of the optical trapping force on small particles illuminated with a focused light beam using a FDTD method,” J. Mod. Opt.2691–2700 (2006).

[CrossRef]

L. E. R. Petersson and G. S. Smith, “On the use of a Gaussian beam to isolate the edge scattering from a plate of finite size,” IEEE Trans. Antennas Propag.52, 505–512 (2004).

[CrossRef]

T. Tan and M. Potter, “FDTD discrete planewave (FDTD-DPW) formulation for a perfectly matched source in TFSF simulations,” IEEE Trans. Antennas Propag.58, 2641–2648 (2010).

[CrossRef]

W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical Recipes: The Art of Scientific Computing (Cambridge University Press, Cambridge, 1986).

R. Cools and P. Rabinowitz, “Monomial cubature rules since Stroud: A compilation,” J. Comput. Appl. Math.48, 309–326 (1993).

[CrossRef]

B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanatic system,” Proc. R. Soc. Lond. A Math. Phys. Sci.253, 358–379 (1959).

[CrossRef]

J. A. Roden and S. D. Gedney, “Convolution PML (CPML): an efficient FDTD implementation of the CFD-PML for arbitrary media,” Microw. Opt. Technol. Lett.27, 334–9 (2000).

[CrossRef]

I. R. Capoglu, J. D. Rogers, A. Taflove, and V. Backman, “Chapter 1 - The Microscope in a Computer: Image Synthesis from Three-Dimensional Full-Vector Solutions of Maxwell’s Equations at the Nanometer Scale,” in Progress in Optics, E. Wolf, ed. (Elsevier, 2012), 57, 1–91.

J. Lin, F. Lu, H. Wang, W. Zheng, C. J. R. Sheppard, and Z. Huang, “Improved contrast radially polarized coherent anti-Stokes Raman scattering microscopy using annular aperture detection,” Appl. Phys. Lett.95 (2009).

[PubMed]

I. R. Capoglu and G. S. Smith, “A total-field/scattered-field plane-wave source for the FDTD analysis of layered media,” IEEE Trans. Antennas Propag.56, 158–169 (2008).

[CrossRef]

L. E. R. Petersson and G. S. Smith, “On the use of a Gaussian beam to isolate the edge scattering from a plate of finite size,” IEEE Trans. Antennas Propag.52, 505–512 (2004).

[CrossRef]

W. Sun, S. Pan, and Y. Jiang, “Computation of the optical trapping force on small particles illuminated with a focused light beam using a FDTD method,” J. Mod. Opt.2691–2700 (2006).

[CrossRef]

I. R. Capoglu, A. Taflove, and V. Backman, “A frequency-domain near-field-to-far-field transform for planar layered media,” IEEE Trans. Antennas Propag.60, 1878–1885 (2012).

[CrossRef]

I. R. Capoglu, A. Taflove, and V. Backman, “Generation of an incident focused light pulse in FDTD,” Opt. Express16, 19208–19220 (2008).

[CrossRef]

I. R. Capoglu, J. D. Rogers, A. Taflove, and V. Backman, “Chapter 1 - The Microscope in a Computer: Image Synthesis from Three-Dimensional Full-Vector Solutions of Maxwell’s Equations at the Nanometer Scale,” in Progress in Optics, E. Wolf, ed. (Elsevier, 2012), 57, 1–91.

I. R. Capoglu, A. Taflove, and V. Backman, “Angora: A free software package for finite-difference time-domain electromagnetic simulation,” accepted for publication in the IEEE Antennas and Propagation Magazine.

A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, Boston, 2005), 3rd ed.

T. Tan and M. Potter, “FDTD discrete planewave (FDTD-DPW) formulation for a perfectly matched source in TFSF simulations,” IEEE Trans. Antennas Propag.58, 2641–2648 (2010).

[CrossRef]

W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical Recipes: The Art of Scientific Computing (Cambridge University Press, Cambridge, 1986).

L. Jia and E. L. Thomas, “Radiation forces on dielectric and absorbing particles studied via the finite-difference time-domain method,” J. Opt. Soc. Am. B Opt. Phys.26, 1882–1891 (2009).

[CrossRef]

W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical Recipes: The Art of Scientific Computing (Cambridge University Press, Cambridge, 1986).

J. Lin, F. Lu, H. Wang, W. Zheng, C. J. R. Sheppard, and Z. Huang, “Improved contrast radially polarized coherent anti-Stokes Raman scattering microscopy using annular aperture detection,” Appl. Phys. Lett.95 (2009).

[PubMed]

B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanatic system,” Proc. R. Soc. Lond. A Math. Phys. Sci.253, 358–379 (1959).

[CrossRef]

E. Wolf, “Electromagnetic diffraction in optical systems. I. An integral representation of the image field,” Proc. R. Soc. Lond. A Math. Phys. Sci.253, 349–357 (1959).

[CrossRef]

L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University Press, 1995).

M. Born and E. Wolf, Principles of Optics : Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Cambridge University Press, Cambridge, 1999), 7th ed.

M. Born and E. Wolf, Principles of Optics (Cambridge University Press, Cambridge, 1999), 7th ed.

J. Lin, F. Lu, H. Wang, W. Zheng, C. J. R. Sheppard, and Z. Huang, “Improved contrast radially polarized coherent anti-Stokes Raman scattering microscopy using annular aperture detection,” Appl. Phys. Lett.95 (2009).

[PubMed]

J. Lin, F. Lu, H. Wang, W. Zheng, C. J. R. Sheppard, and Z. Huang, “Improved contrast radially polarized coherent anti-Stokes Raman scattering microscopy using annular aperture detection,” Appl. Phys. Lett.95 (2009).

[PubMed]

T. Tan and M. Potter, “FDTD discrete planewave (FDTD-DPW) formulation for a perfectly matched source in TFSF simulations,” IEEE Trans. Antennas Propag.58, 2641–2648 (2010).

[CrossRef]

L. E. R. Petersson and G. S. Smith, “On the use of a Gaussian beam to isolate the edge scattering from a plate of finite size,” IEEE Trans. Antennas Propag.52, 505–512 (2004).

[CrossRef]

I. R. Capoglu and G. S. Smith, “A total-field/scattered-field plane-wave source for the FDTD analysis of layered media,” IEEE Trans. Antennas Propag.56, 158–169 (2008).

[CrossRef]

I. R. Capoglu, A. Taflove, and V. Backman, “A frequency-domain near-field-to-far-field transform for planar layered media,” IEEE Trans. Antennas Propag.60, 1878–1885 (2012).

[CrossRef]

R. Cools and K. Kim, “A survey of known and new cubature formulas for the unit disk,” J. Appl. Math. Comput.7, 477–485 (2000).

R. Cools, “An encyclopaedia of cubature formulas,” J. Complexity19, 445–453 (2003).

[CrossRef]

R. Cools and P. Rabinowitz, “Monomial cubature rules since Stroud: A compilation,” J. Comput. Appl. Math.48, 309–326 (1993).

[CrossRef]

R. Cools, “Monomial cubature rules since Stroud: A compilation - part 2,” J. Comput. Appl. Math.112, 21–27 (1999).

[CrossRef]

W. Sun, S. Pan, and Y. Jiang, “Computation of the optical trapping force on small particles illuminated with a focused light beam using a FDTD method,” J. Mod. Opt.2691–2700 (2006).

[CrossRef]

L. Jia and E. L. Thomas, “Radiation forces on dielectric and absorbing particles studied via the finite-difference time-domain method,” J. Opt. Soc. Am. B Opt. Phys.26, 1882–1891 (2009).

[CrossRef]

J. A. Roden and S. D. Gedney, “Convolution PML (CPML): an efficient FDTD implementation of the CFD-PML for arbitrary media,” Microw. Opt. Technol. Lett.27, 334–9 (2000).

[CrossRef]

B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanatic system,” Proc. R. Soc. Lond. A Math. Phys. Sci.253, 358–379 (1959).

[CrossRef]

E. Wolf, “Electromagnetic diffraction in optical systems. I. An integral representation of the image field,” Proc. R. Soc. Lond. A Math. Phys. Sci.253, 349–357 (1959).

[CrossRef]

M. Born and E. Wolf, Principles of Optics (Cambridge University Press, Cambridge, 1999), 7th ed.

C. Guiffaut and K. Mahdjoubi, “A perfect wideband plane wave injector for FDTD method,” in “Antennas and Propagation Society International Symposium, 2000. IEEE,”, (Salt Lake City, UT, USA, 2000), 1, 236–239.

L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University Press, 1995).

M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables (U.S. Govt. Print. Off., 1964).

J. W. Goodman, Statistical Optics (Wiley, New York, NY, 2000).

M. Born and E. Wolf, Principles of Optics : Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Cambridge University Press, Cambridge, 1999), 7th ed.

L. Novotny and B. Hecht, Principles of Nano-optics (Cambridge University Press, 2006).

W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical Recipes: The Art of Scientific Computing (Cambridge University Press, Cambridge, 1986).

R. Cools, “Encyclopaedia of Cubature Formulas,” (2012). http://nines.cs.kuleuven.be/ecf .

L. Novotny, Private communication.

I. R. Capoglu, J. D. Rogers, A. Taflove, and V. Backman, “Chapter 1 - The Microscope in a Computer: Image Synthesis from Three-Dimensional Full-Vector Solutions of Maxwell’s Equations at the Nanometer Scale,” in Progress in Optics, E. Wolf, ed. (Elsevier, 2012), 57, 1–91.

I. R. Capoglu, “Angora: A free software package for finite-difference time-domain (FDTD) electromagnetic simulation,” (2012). http://www.angorafdtd.org .

I. R. Capoglu, A. Taflove, and V. Backman, “Angora: A free software package for finite-difference time-domain electromagnetic simulation,” accepted for publication in the IEEE Antennas and Propagation Magazine.

I. R. Capoglu, “Binaries and configuration files used for the manuscript “Computation of tightly-focused laser beams in the FDTD method”,” (2012). http://www.angorafdtd.org/ext/tflb/ .

A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, Boston, 2005), 3rd ed.