Abstract

A multilayer structure of ITO/SiNx/Ag/p/p+-Si/Au was fabricated to improve the extraction of the orange-yellow electroluminescence from SiNx-based light-emitting devices (LEDs), and an about 5 times enhancement of external quantum efficiency (EQE) was obtained. This improved light-extraction is mainly originated from the increase of root-mean-square roughness of ITO electrode and reflectivity at longer wavelength via the addition of elongated Ag nanostructures. For the structure with the dipolar resonance peak of Ag nanostructures far from the emission wavelength of SiNx matrix, the increased surface roughness of ITO electrode has a dominant effect on the improvement of the light-extraction. Moreover, the decrease of on-series resistance by the addition of Ag nanostructures due to its enhanced local electrical fields also has a benignant contribution to the improved EQE. Our work may provide a promising approach to improve the EQE of LEDs, which is not limited to SiNx matrix.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzò, and F. Priolo, “Optical gain in silicon nanocrystals,” Nature408(6811), 440–444 (2000).
    [CrossRef] [PubMed]
  2. R. Soref, “Mid-infrared photonics in silicon and germanium,” Nat. Photonics4(8), 495–497 (2010).
    [CrossRef]
  3. J. Leuthold, C. Koos, and W. Freude, “Nonlinear silicon photonics,” Nat. Photonics4(8), 535–544 (2010).
    [CrossRef]
  4. M. Paniccia, “Integrating silicon photonics,” Nat. Photonics4(8), 498–499 (2010).
    [CrossRef]
  5. N.-M. Park, C.-J. Choi, T.-Y. Seong, and S.-J. Park, “Quantum confinement in amorphous silicon quantum dots embedded in silicon nitride,” Phys. Rev. Lett.86(7), 1355–1357 (2001).
    [CrossRef] [PubMed]
  6. R. J. Walters, G. I. Bourianoff, and H. A. Atwater, “Field-effect electroluminescence in silicon nanocrystals,” Nat. Mater.4(2), 143–146 (2005).
    [CrossRef] [PubMed]
  7. A. Anopchenko, A. Marconi, M. Wang, G. Pucker, P. Bellutti, and L. Pavesi, “Graded-size Si quantum dot ensembles for efficient light-emitting diodes,” Appl. Phys. Lett.99(18), 181108 (2011).
    [CrossRef]
  8. M. Wang, D. Yang, D. Li, Z. Yuan, and D. Que, “Correlation between luminescence and structural evolution of Si-rich silicon oxide film annealed at different temperatures,” J. Appl. Phys.101(10), 103504 (2007).
    [CrossRef]
  9. Y. Berencén, O. Jambois, J. M. Ramírez, J. M. Rebled, S. Estradé, F. Peiró, C. Domínguez, J. A. Rodríguez, and B. Garrido, “Blue-green to near-IR switching electroluminescence from Si-rich silicon oxide/nitride bilayer structures,” Opt. Lett.36(14), 2617–2619 (2011).
    [CrossRef] [PubMed]
  10. S. Minissale, S. Yerci, and L. Dal Negro, “Nonlinear optical properties of low temperature annealed silicon-rich oxide and silicon-rich nitride materials for silicon photonics,” Appl. Phys. Lett.100(2), 021109 (2012).
    [CrossRef]
  11. M. Wang, D. Li, Z. Yuan, D. Yang, and D. Que, “Photoluminescence of Si-rich silicon nitride: Defect-related states and silicon nanoclusters,” Appl. Phys. Lett.90(13), 131903 (2007).
    [CrossRef]
  12. M. Wang, J. Huang, Z. Yuan, A. Anopchenko, D. Li, D. Yang, and L. Pavesi, “Light emission properties and mechanism of low-temperature prepared amorphous SiNx film. II. Defect states electroluminescence,” J. Appl. Phys.104(8), 083505 (2008).
    [CrossRef]
  13. Z. H. Cen, T. P. Chen, Z. Liu, Y. Liu, L. Ding, M. Yang, J. I. Wong, S. F. Yu, and W. P. Goh, “Electrically tunable white-color electroluminescence from Si-implanted silicon nitride thin film,” Opt. Express18(19), 20439–20444 (2010).
    [CrossRef] [PubMed]
  14. F. Iacona, D. Pacifici, A. Irrera, M. Miritello, G. Franzò, F. Priolo, D. Sanfilippo, G. Di Stefano, and P. G. Fallica, “Electroluminescence at 1.54 µm in Er-doped Si nanocluster-based devices,” Appl. Phys. Lett.81(17), 3242–3244 (2002).
    [CrossRef]
  15. D. Li, X. Zhang, L. Jin, and D. Yang, “Structure and luminescence evolution of annealed Europium-doped silicon oxides films,” Opt. Express18(26), 27191–27196 (2010).
    [CrossRef] [PubMed]
  16. N. N. Ha, S. Cueff, K. Dohnalová, M. T. Trinh, C. Labbé, R. Rizk, I. N. Yassievich, and T. Gregorkiewicz, “Photon cutting for excitation of Er3+ ions in SiO2 sensitized by Si quantum dots,” Phys. Rev. B84(24), 241308 (2011).
    [CrossRef]
  17. M. Cazzanelli, F. Bianco, E. Borga, G. Pucker, M. Ghulinyan, E. Degoli, E. Luppi, V. Véniard, S. Ossicini, D. Modotto, S. Wabnitz, R. Pierobon, and L. Pavesi, “Second-harmonic generation in silicon waveguides strained by silicon nitride,” Nat. Mater.11(2), 148–154 (2011).
    [CrossRef] [PubMed]
  18. F. Wang, D. Li, D. Yang, and D. Que, “Enhancement of light-extraction efficiency of SiNx light emitting devices through a rough Ag island film,” Appl. Phys. Lett.100(3), 031113 (2012).
    [CrossRef]
  19. C.-D. Lin, C.-H. Cheng, Y.-H. Lin, C.-L. Wu, Y.-H. Pai, and G.-R. Lin, “Comparing retention and recombination of electrically injected carriers in Si quantum dots embedded in Si-rich SiNx films,” Appl. Phys. Lett.99(24), 243501 (2011).
    [CrossRef]
  20. W. L. Barnes, “Light-emitting devices: turning the tables on surface plasmons,” Nat. Mater.3(9), 588–589 (2004).
    [CrossRef] [PubMed]
  21. M.-K. Kwon, J.-Y. Kim, B.-H. Kim, I.-K. Park, C.-Y. Cho, C. C. Byeon, and S.-J. Park, “Surface-plasmon-enhanced light-emitting diodes,” Adv. Mater. (Deerfield Beach Fla.)20(7), 1253–1257 (2008).
    [CrossRef]
  22. C. Huh, C.-J. Choi, W. Kim, B. K. Kim, B.-J. Park, E.-H. Jang, S.-H. Kim, and G. Y. Sung, “Enhancement in light emission efficiency of Si nanocrystal light-emitting diodes by a surface plasmon coupling,” Appl. Phys. Lett.100(18), 181108 (2012).
    [CrossRef]
  23. K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater.3(9), 601–605 (2004).
    [CrossRef] [PubMed]
  24. K. R. Catchpole and A. Polman, “Design principles for particle plasmon enhanced solar cells,” Appl. Phys. Lett.93(19), 191113 (2008).
    [CrossRef]
  25. F. Wang, M. Wang, D. Li, and D. Yang, “Localized surface plasmon resonance enhanced photoluminescence from SiNx with different N/Si ratios,” Opt. Mater. Express2(10), 1437–1448 (2012).
    [CrossRef]
  26. D. P. Perez, Silver Nanoparticles (In-Tech, Vukovar: Croatia, 2010), pp. 93–119.
  27. C. Noguez, “Surface plasmons on metal nanoparticles: The influence of shape and physical environment,” J. Phys. Chem. C111(10), 3806–3819 (2007).
    [CrossRef]
  28. Y. Zhang, Z. Ouyang, N. Stokes, B. Jia, Z. Shi, and M. Gu, “Low cost and high performance Al nanoparticles for broadband light trapping in Si wafer solar cells,” Appl. Phys. Lett.100(15), 151101 (2012).
    [CrossRef]
  29. E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev.69, 681 (1946).
  30. P. Cheng, D. Li, M. Xie, D. Yang, and J. Bao, “Enhancing the photoluminescence intensity of silicon-rich nitride film by localized surface plasmon enhanced photo-excitation,” Opt. Commun.285(7), 1864–1867 (2012).
    [CrossRef]
  31. A. I. Zhmakin, “Enhancement of light extraction from light emitting diodes,” Phys. Rep.498(4–5), 189–241 (2011).
    [CrossRef]
  32. T. L. Temple, G. D. K. Mahanama, H. S. Reehal, and D. M. Bagnall, “Influence of localized surface plasmon excitation in silver nanoparticles on the performance of silicon solar cells,” Sol. Energy Mater. Sol. Cells93(11), 1978–1985 (2009).
    [CrossRef]
  33. H. R. Stuart and D. G. Hall, “Island size effects in nanoparticle-enhanced photodetectors,” Appl. Phys. Lett.73(26), 3815–3817 (1998).
    [CrossRef]
  34. N. C. Dyck, R. C. Denomme, and P. M. Nieva, “Effective medium properties of arbitrary nanoparticle shapes in a localized surface plasmon resonance sensing layer,” J. Phys. Chem. C115(31), 15225–15233 (2011).
    [CrossRef]
  35. D. Li, F. Wang, D. Yang, and D. Que, “Electrically tunable electroluminescence from SiNx-based light-emitting devices,” Opt. Express20(16), 17359–17366 (2012).
    [CrossRef] [PubMed]
  36. B.-J. Ahn, T.-S. Kim, Y. Dong, M.-T. Hong, J.-H. Song, J.-H. Song, H.-K. Yuh, S.-C. Choi, D.-K. Bae, and Y. Moon, “Experimental determination of current spill-over and its effect on the efficiency droop in InGaN/GaN blue-light-emitting-diodes,” Appl. Phys. Lett.100(3), 031905 (2012).
    [CrossRef]
  37. D. K. Schroder, Semiconductor Material and Device Characterization (Wiley, 1990), pp. 147–149.
  38. A. Marconi, A. Anopchenko, G. Pucker, and L. Pavesi, “Power efficiency estimation of silicon nanocrystals based light emitting devices in alternating current regime,” Appl. Phys. Lett.98(20), 201103 (2011).
    [CrossRef]

2012 (8)

S. Minissale, S. Yerci, and L. Dal Negro, “Nonlinear optical properties of low temperature annealed silicon-rich oxide and silicon-rich nitride materials for silicon photonics,” Appl. Phys. Lett.100(2), 021109 (2012).
[CrossRef]

F. Wang, D. Li, D. Yang, and D. Que, “Enhancement of light-extraction efficiency of SiNx light emitting devices through a rough Ag island film,” Appl. Phys. Lett.100(3), 031113 (2012).
[CrossRef]

C. Huh, C.-J. Choi, W. Kim, B. K. Kim, B.-J. Park, E.-H. Jang, S.-H. Kim, and G. Y. Sung, “Enhancement in light emission efficiency of Si nanocrystal light-emitting diodes by a surface plasmon coupling,” Appl. Phys. Lett.100(18), 181108 (2012).
[CrossRef]

F. Wang, M. Wang, D. Li, and D. Yang, “Localized surface plasmon resonance enhanced photoluminescence from SiNx with different N/Si ratios,” Opt. Mater. Express2(10), 1437–1448 (2012).
[CrossRef]

P. Cheng, D. Li, M. Xie, D. Yang, and J. Bao, “Enhancing the photoluminescence intensity of silicon-rich nitride film by localized surface plasmon enhanced photo-excitation,” Opt. Commun.285(7), 1864–1867 (2012).
[CrossRef]

Y. Zhang, Z. Ouyang, N. Stokes, B. Jia, Z. Shi, and M. Gu, “Low cost and high performance Al nanoparticles for broadband light trapping in Si wafer solar cells,” Appl. Phys. Lett.100(15), 151101 (2012).
[CrossRef]

D. Li, F. Wang, D. Yang, and D. Que, “Electrically tunable electroluminescence from SiNx-based light-emitting devices,” Opt. Express20(16), 17359–17366 (2012).
[CrossRef] [PubMed]

B.-J. Ahn, T.-S. Kim, Y. Dong, M.-T. Hong, J.-H. Song, J.-H. Song, H.-K. Yuh, S.-C. Choi, D.-K. Bae, and Y. Moon, “Experimental determination of current spill-over and its effect on the efficiency droop in InGaN/GaN blue-light-emitting-diodes,” Appl. Phys. Lett.100(3), 031905 (2012).
[CrossRef]

2011 (8)

A. Marconi, A. Anopchenko, G. Pucker, and L. Pavesi, “Power efficiency estimation of silicon nanocrystals based light emitting devices in alternating current regime,” Appl. Phys. Lett.98(20), 201103 (2011).
[CrossRef]

N. C. Dyck, R. C. Denomme, and P. M. Nieva, “Effective medium properties of arbitrary nanoparticle shapes in a localized surface plasmon resonance sensing layer,” J. Phys. Chem. C115(31), 15225–15233 (2011).
[CrossRef]

A. I. Zhmakin, “Enhancement of light extraction from light emitting diodes,” Phys. Rep.498(4–5), 189–241 (2011).
[CrossRef]

C.-D. Lin, C.-H. Cheng, Y.-H. Lin, C.-L. Wu, Y.-H. Pai, and G.-R. Lin, “Comparing retention and recombination of electrically injected carriers in Si quantum dots embedded in Si-rich SiNx films,” Appl. Phys. Lett.99(24), 243501 (2011).
[CrossRef]

Y. Berencén, O. Jambois, J. M. Ramírez, J. M. Rebled, S. Estradé, F. Peiró, C. Domínguez, J. A. Rodríguez, and B. Garrido, “Blue-green to near-IR switching electroluminescence from Si-rich silicon oxide/nitride bilayer structures,” Opt. Lett.36(14), 2617–2619 (2011).
[CrossRef] [PubMed]

N. N. Ha, S. Cueff, K. Dohnalová, M. T. Trinh, C. Labbé, R. Rizk, I. N. Yassievich, and T. Gregorkiewicz, “Photon cutting for excitation of Er3+ ions in SiO2 sensitized by Si quantum dots,” Phys. Rev. B84(24), 241308 (2011).
[CrossRef]

M. Cazzanelli, F. Bianco, E. Borga, G. Pucker, M. Ghulinyan, E. Degoli, E. Luppi, V. Véniard, S. Ossicini, D. Modotto, S. Wabnitz, R. Pierobon, and L. Pavesi, “Second-harmonic generation in silicon waveguides strained by silicon nitride,” Nat. Mater.11(2), 148–154 (2011).
[CrossRef] [PubMed]

A. Anopchenko, A. Marconi, M. Wang, G. Pucker, P. Bellutti, and L. Pavesi, “Graded-size Si quantum dot ensembles for efficient light-emitting diodes,” Appl. Phys. Lett.99(18), 181108 (2011).
[CrossRef]

2010 (5)

2009 (1)

T. L. Temple, G. D. K. Mahanama, H. S. Reehal, and D. M. Bagnall, “Influence of localized surface plasmon excitation in silver nanoparticles on the performance of silicon solar cells,” Sol. Energy Mater. Sol. Cells93(11), 1978–1985 (2009).
[CrossRef]

2008 (3)

K. R. Catchpole and A. Polman, “Design principles for particle plasmon enhanced solar cells,” Appl. Phys. Lett.93(19), 191113 (2008).
[CrossRef]

M.-K. Kwon, J.-Y. Kim, B.-H. Kim, I.-K. Park, C.-Y. Cho, C. C. Byeon, and S.-J. Park, “Surface-plasmon-enhanced light-emitting diodes,” Adv. Mater. (Deerfield Beach Fla.)20(7), 1253–1257 (2008).
[CrossRef]

M. Wang, J. Huang, Z. Yuan, A. Anopchenko, D. Li, D. Yang, and L. Pavesi, “Light emission properties and mechanism of low-temperature prepared amorphous SiNx film. II. Defect states electroluminescence,” J. Appl. Phys.104(8), 083505 (2008).
[CrossRef]

2007 (3)

M. Wang, D. Li, Z. Yuan, D. Yang, and D. Que, “Photoluminescence of Si-rich silicon nitride: Defect-related states and silicon nanoclusters,” Appl. Phys. Lett.90(13), 131903 (2007).
[CrossRef]

M. Wang, D. Yang, D. Li, Z. Yuan, and D. Que, “Correlation between luminescence and structural evolution of Si-rich silicon oxide film annealed at different temperatures,” J. Appl. Phys.101(10), 103504 (2007).
[CrossRef]

C. Noguez, “Surface plasmons on metal nanoparticles: The influence of shape and physical environment,” J. Phys. Chem. C111(10), 3806–3819 (2007).
[CrossRef]

2005 (1)

R. J. Walters, G. I. Bourianoff, and H. A. Atwater, “Field-effect electroluminescence in silicon nanocrystals,” Nat. Mater.4(2), 143–146 (2005).
[CrossRef] [PubMed]

2004 (2)

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater.3(9), 601–605 (2004).
[CrossRef] [PubMed]

W. L. Barnes, “Light-emitting devices: turning the tables on surface plasmons,” Nat. Mater.3(9), 588–589 (2004).
[CrossRef] [PubMed]

2002 (1)

F. Iacona, D. Pacifici, A. Irrera, M. Miritello, G. Franzò, F. Priolo, D. Sanfilippo, G. Di Stefano, and P. G. Fallica, “Electroluminescence at 1.54 µm in Er-doped Si nanocluster-based devices,” Appl. Phys. Lett.81(17), 3242–3244 (2002).
[CrossRef]

2001 (1)

N.-M. Park, C.-J. Choi, T.-Y. Seong, and S.-J. Park, “Quantum confinement in amorphous silicon quantum dots embedded in silicon nitride,” Phys. Rev. Lett.86(7), 1355–1357 (2001).
[CrossRef] [PubMed]

2000 (1)

L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzò, and F. Priolo, “Optical gain in silicon nanocrystals,” Nature408(6811), 440–444 (2000).
[CrossRef] [PubMed]

1998 (1)

H. R. Stuart and D. G. Hall, “Island size effects in nanoparticle-enhanced photodetectors,” Appl. Phys. Lett.73(26), 3815–3817 (1998).
[CrossRef]

1946 (1)

E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev.69, 681 (1946).

Ahn, B.-J.

B.-J. Ahn, T.-S. Kim, Y. Dong, M.-T. Hong, J.-H. Song, J.-H. Song, H.-K. Yuh, S.-C. Choi, D.-K. Bae, and Y. Moon, “Experimental determination of current spill-over and its effect on the efficiency droop in InGaN/GaN blue-light-emitting-diodes,” Appl. Phys. Lett.100(3), 031905 (2012).
[CrossRef]

Anopchenko, A.

A. Anopchenko, A. Marconi, M. Wang, G. Pucker, P. Bellutti, and L. Pavesi, “Graded-size Si quantum dot ensembles for efficient light-emitting diodes,” Appl. Phys. Lett.99(18), 181108 (2011).
[CrossRef]

A. Marconi, A. Anopchenko, G. Pucker, and L. Pavesi, “Power efficiency estimation of silicon nanocrystals based light emitting devices in alternating current regime,” Appl. Phys. Lett.98(20), 201103 (2011).
[CrossRef]

M. Wang, J. Huang, Z. Yuan, A. Anopchenko, D. Li, D. Yang, and L. Pavesi, “Light emission properties and mechanism of low-temperature prepared amorphous SiNx film. II. Defect states electroluminescence,” J. Appl. Phys.104(8), 083505 (2008).
[CrossRef]

Atwater, H. A.

R. J. Walters, G. I. Bourianoff, and H. A. Atwater, “Field-effect electroluminescence in silicon nanocrystals,” Nat. Mater.4(2), 143–146 (2005).
[CrossRef] [PubMed]

Bae, D.-K.

B.-J. Ahn, T.-S. Kim, Y. Dong, M.-T. Hong, J.-H. Song, J.-H. Song, H.-K. Yuh, S.-C. Choi, D.-K. Bae, and Y. Moon, “Experimental determination of current spill-over and its effect on the efficiency droop in InGaN/GaN blue-light-emitting-diodes,” Appl. Phys. Lett.100(3), 031905 (2012).
[CrossRef]

Bagnall, D. M.

T. L. Temple, G. D. K. Mahanama, H. S. Reehal, and D. M. Bagnall, “Influence of localized surface plasmon excitation in silver nanoparticles on the performance of silicon solar cells,” Sol. Energy Mater. Sol. Cells93(11), 1978–1985 (2009).
[CrossRef]

Bao, J.

P. Cheng, D. Li, M. Xie, D. Yang, and J. Bao, “Enhancing the photoluminescence intensity of silicon-rich nitride film by localized surface plasmon enhanced photo-excitation,” Opt. Commun.285(7), 1864–1867 (2012).
[CrossRef]

Barnes, W. L.

W. L. Barnes, “Light-emitting devices: turning the tables on surface plasmons,” Nat. Mater.3(9), 588–589 (2004).
[CrossRef] [PubMed]

Bellutti, P.

A. Anopchenko, A. Marconi, M. Wang, G. Pucker, P. Bellutti, and L. Pavesi, “Graded-size Si quantum dot ensembles for efficient light-emitting diodes,” Appl. Phys. Lett.99(18), 181108 (2011).
[CrossRef]

Berencén, Y.

Bianco, F.

M. Cazzanelli, F. Bianco, E. Borga, G. Pucker, M. Ghulinyan, E. Degoli, E. Luppi, V. Véniard, S. Ossicini, D. Modotto, S. Wabnitz, R. Pierobon, and L. Pavesi, “Second-harmonic generation in silicon waveguides strained by silicon nitride,” Nat. Mater.11(2), 148–154 (2011).
[CrossRef] [PubMed]

Borga, E.

M. Cazzanelli, F. Bianco, E. Borga, G. Pucker, M. Ghulinyan, E. Degoli, E. Luppi, V. Véniard, S. Ossicini, D. Modotto, S. Wabnitz, R. Pierobon, and L. Pavesi, “Second-harmonic generation in silicon waveguides strained by silicon nitride,” Nat. Mater.11(2), 148–154 (2011).
[CrossRef] [PubMed]

Bourianoff, G. I.

R. J. Walters, G. I. Bourianoff, and H. A. Atwater, “Field-effect electroluminescence in silicon nanocrystals,” Nat. Mater.4(2), 143–146 (2005).
[CrossRef] [PubMed]

Byeon, C. C.

M.-K. Kwon, J.-Y. Kim, B.-H. Kim, I.-K. Park, C.-Y. Cho, C. C. Byeon, and S.-J. Park, “Surface-plasmon-enhanced light-emitting diodes,” Adv. Mater. (Deerfield Beach Fla.)20(7), 1253–1257 (2008).
[CrossRef]

Catchpole, K. R.

K. R. Catchpole and A. Polman, “Design principles for particle plasmon enhanced solar cells,” Appl. Phys. Lett.93(19), 191113 (2008).
[CrossRef]

Cazzanelli, M.

M. Cazzanelli, F. Bianco, E. Borga, G. Pucker, M. Ghulinyan, E. Degoli, E. Luppi, V. Véniard, S. Ossicini, D. Modotto, S. Wabnitz, R. Pierobon, and L. Pavesi, “Second-harmonic generation in silicon waveguides strained by silicon nitride,” Nat. Mater.11(2), 148–154 (2011).
[CrossRef] [PubMed]

Cen, Z. H.

Chen, T. P.

Cheng, C.-H.

C.-D. Lin, C.-H. Cheng, Y.-H. Lin, C.-L. Wu, Y.-H. Pai, and G.-R. Lin, “Comparing retention and recombination of electrically injected carriers in Si quantum dots embedded in Si-rich SiNx films,” Appl. Phys. Lett.99(24), 243501 (2011).
[CrossRef]

Cheng, P.

P. Cheng, D. Li, M. Xie, D. Yang, and J. Bao, “Enhancing the photoluminescence intensity of silicon-rich nitride film by localized surface plasmon enhanced photo-excitation,” Opt. Commun.285(7), 1864–1867 (2012).
[CrossRef]

Cho, C.-Y.

M.-K. Kwon, J.-Y. Kim, B.-H. Kim, I.-K. Park, C.-Y. Cho, C. C. Byeon, and S.-J. Park, “Surface-plasmon-enhanced light-emitting diodes,” Adv. Mater. (Deerfield Beach Fla.)20(7), 1253–1257 (2008).
[CrossRef]

Choi, C.-J.

C. Huh, C.-J. Choi, W. Kim, B. K. Kim, B.-J. Park, E.-H. Jang, S.-H. Kim, and G. Y. Sung, “Enhancement in light emission efficiency of Si nanocrystal light-emitting diodes by a surface plasmon coupling,” Appl. Phys. Lett.100(18), 181108 (2012).
[CrossRef]

N.-M. Park, C.-J. Choi, T.-Y. Seong, and S.-J. Park, “Quantum confinement in amorphous silicon quantum dots embedded in silicon nitride,” Phys. Rev. Lett.86(7), 1355–1357 (2001).
[CrossRef] [PubMed]

Choi, S.-C.

B.-J. Ahn, T.-S. Kim, Y. Dong, M.-T. Hong, J.-H. Song, J.-H. Song, H.-K. Yuh, S.-C. Choi, D.-K. Bae, and Y. Moon, “Experimental determination of current spill-over and its effect on the efficiency droop in InGaN/GaN blue-light-emitting-diodes,” Appl. Phys. Lett.100(3), 031905 (2012).
[CrossRef]

Cueff, S.

N. N. Ha, S. Cueff, K. Dohnalová, M. T. Trinh, C. Labbé, R. Rizk, I. N. Yassievich, and T. Gregorkiewicz, “Photon cutting for excitation of Er3+ ions in SiO2 sensitized by Si quantum dots,” Phys. Rev. B84(24), 241308 (2011).
[CrossRef]

Dal Negro, L.

S. Minissale, S. Yerci, and L. Dal Negro, “Nonlinear optical properties of low temperature annealed silicon-rich oxide and silicon-rich nitride materials for silicon photonics,” Appl. Phys. Lett.100(2), 021109 (2012).
[CrossRef]

L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzò, and F. Priolo, “Optical gain in silicon nanocrystals,” Nature408(6811), 440–444 (2000).
[CrossRef] [PubMed]

Degoli, E.

M. Cazzanelli, F. Bianco, E. Borga, G. Pucker, M. Ghulinyan, E. Degoli, E. Luppi, V. Véniard, S. Ossicini, D. Modotto, S. Wabnitz, R. Pierobon, and L. Pavesi, “Second-harmonic generation in silicon waveguides strained by silicon nitride,” Nat. Mater.11(2), 148–154 (2011).
[CrossRef] [PubMed]

Denomme, R. C.

N. C. Dyck, R. C. Denomme, and P. M. Nieva, “Effective medium properties of arbitrary nanoparticle shapes in a localized surface plasmon resonance sensing layer,” J. Phys. Chem. C115(31), 15225–15233 (2011).
[CrossRef]

Di Stefano, G.

F. Iacona, D. Pacifici, A. Irrera, M. Miritello, G. Franzò, F. Priolo, D. Sanfilippo, G. Di Stefano, and P. G. Fallica, “Electroluminescence at 1.54 µm in Er-doped Si nanocluster-based devices,” Appl. Phys. Lett.81(17), 3242–3244 (2002).
[CrossRef]

Ding, L.

Dohnalová, K.

N. N. Ha, S. Cueff, K. Dohnalová, M. T. Trinh, C. Labbé, R. Rizk, I. N. Yassievich, and T. Gregorkiewicz, “Photon cutting for excitation of Er3+ ions in SiO2 sensitized by Si quantum dots,” Phys. Rev. B84(24), 241308 (2011).
[CrossRef]

Domínguez, C.

Dong, Y.

B.-J. Ahn, T.-S. Kim, Y. Dong, M.-T. Hong, J.-H. Song, J.-H. Song, H.-K. Yuh, S.-C. Choi, D.-K. Bae, and Y. Moon, “Experimental determination of current spill-over and its effect on the efficiency droop in InGaN/GaN blue-light-emitting-diodes,” Appl. Phys. Lett.100(3), 031905 (2012).
[CrossRef]

Dyck, N. C.

N. C. Dyck, R. C. Denomme, and P. M. Nieva, “Effective medium properties of arbitrary nanoparticle shapes in a localized surface plasmon resonance sensing layer,” J. Phys. Chem. C115(31), 15225–15233 (2011).
[CrossRef]

Estradé, S.

Fallica, P. G.

F. Iacona, D. Pacifici, A. Irrera, M. Miritello, G. Franzò, F. Priolo, D. Sanfilippo, G. Di Stefano, and P. G. Fallica, “Electroluminescence at 1.54 µm in Er-doped Si nanocluster-based devices,” Appl. Phys. Lett.81(17), 3242–3244 (2002).
[CrossRef]

Franzò, G.

F. Iacona, D. Pacifici, A. Irrera, M. Miritello, G. Franzò, F. Priolo, D. Sanfilippo, G. Di Stefano, and P. G. Fallica, “Electroluminescence at 1.54 µm in Er-doped Si nanocluster-based devices,” Appl. Phys. Lett.81(17), 3242–3244 (2002).
[CrossRef]

L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzò, and F. Priolo, “Optical gain in silicon nanocrystals,” Nature408(6811), 440–444 (2000).
[CrossRef] [PubMed]

Freude, W.

J. Leuthold, C. Koos, and W. Freude, “Nonlinear silicon photonics,” Nat. Photonics4(8), 535–544 (2010).
[CrossRef]

Garrido, B.

Ghulinyan, M.

M. Cazzanelli, F. Bianco, E. Borga, G. Pucker, M. Ghulinyan, E. Degoli, E. Luppi, V. Véniard, S. Ossicini, D. Modotto, S. Wabnitz, R. Pierobon, and L. Pavesi, “Second-harmonic generation in silicon waveguides strained by silicon nitride,” Nat. Mater.11(2), 148–154 (2011).
[CrossRef] [PubMed]

Goh, W. P.

Gregorkiewicz, T.

N. N. Ha, S. Cueff, K. Dohnalová, M. T. Trinh, C. Labbé, R. Rizk, I. N. Yassievich, and T. Gregorkiewicz, “Photon cutting for excitation of Er3+ ions in SiO2 sensitized by Si quantum dots,” Phys. Rev. B84(24), 241308 (2011).
[CrossRef]

Gu, M.

Y. Zhang, Z. Ouyang, N. Stokes, B. Jia, Z. Shi, and M. Gu, “Low cost and high performance Al nanoparticles for broadband light trapping in Si wafer solar cells,” Appl. Phys. Lett.100(15), 151101 (2012).
[CrossRef]

Ha, N. N.

N. N. Ha, S. Cueff, K. Dohnalová, M. T. Trinh, C. Labbé, R. Rizk, I. N. Yassievich, and T. Gregorkiewicz, “Photon cutting for excitation of Er3+ ions in SiO2 sensitized by Si quantum dots,” Phys. Rev. B84(24), 241308 (2011).
[CrossRef]

Hall, D. G.

H. R. Stuart and D. G. Hall, “Island size effects in nanoparticle-enhanced photodetectors,” Appl. Phys. Lett.73(26), 3815–3817 (1998).
[CrossRef]

Hong, M.-T.

B.-J. Ahn, T.-S. Kim, Y. Dong, M.-T. Hong, J.-H. Song, J.-H. Song, H.-K. Yuh, S.-C. Choi, D.-K. Bae, and Y. Moon, “Experimental determination of current spill-over and its effect on the efficiency droop in InGaN/GaN blue-light-emitting-diodes,” Appl. Phys. Lett.100(3), 031905 (2012).
[CrossRef]

Huang, J.

M. Wang, J. Huang, Z. Yuan, A. Anopchenko, D. Li, D. Yang, and L. Pavesi, “Light emission properties and mechanism of low-temperature prepared amorphous SiNx film. II. Defect states electroluminescence,” J. Appl. Phys.104(8), 083505 (2008).
[CrossRef]

Huh, C.

C. Huh, C.-J. Choi, W. Kim, B. K. Kim, B.-J. Park, E.-H. Jang, S.-H. Kim, and G. Y. Sung, “Enhancement in light emission efficiency of Si nanocrystal light-emitting diodes by a surface plasmon coupling,” Appl. Phys. Lett.100(18), 181108 (2012).
[CrossRef]

Iacona, F.

F. Iacona, D. Pacifici, A. Irrera, M. Miritello, G. Franzò, F. Priolo, D. Sanfilippo, G. Di Stefano, and P. G. Fallica, “Electroluminescence at 1.54 µm in Er-doped Si nanocluster-based devices,” Appl. Phys. Lett.81(17), 3242–3244 (2002).
[CrossRef]

Irrera, A.

F. Iacona, D. Pacifici, A. Irrera, M. Miritello, G. Franzò, F. Priolo, D. Sanfilippo, G. Di Stefano, and P. G. Fallica, “Electroluminescence at 1.54 µm in Er-doped Si nanocluster-based devices,” Appl. Phys. Lett.81(17), 3242–3244 (2002).
[CrossRef]

Jambois, O.

Jang, E.-H.

C. Huh, C.-J. Choi, W. Kim, B. K. Kim, B.-J. Park, E.-H. Jang, S.-H. Kim, and G. Y. Sung, “Enhancement in light emission efficiency of Si nanocrystal light-emitting diodes by a surface plasmon coupling,” Appl. Phys. Lett.100(18), 181108 (2012).
[CrossRef]

Jia, B.

Y. Zhang, Z. Ouyang, N. Stokes, B. Jia, Z. Shi, and M. Gu, “Low cost and high performance Al nanoparticles for broadband light trapping in Si wafer solar cells,” Appl. Phys. Lett.100(15), 151101 (2012).
[CrossRef]

Jin, L.

Kim, B. K.

C. Huh, C.-J. Choi, W. Kim, B. K. Kim, B.-J. Park, E.-H. Jang, S.-H. Kim, and G. Y. Sung, “Enhancement in light emission efficiency of Si nanocrystal light-emitting diodes by a surface plasmon coupling,” Appl. Phys. Lett.100(18), 181108 (2012).
[CrossRef]

Kim, B.-H.

M.-K. Kwon, J.-Y. Kim, B.-H. Kim, I.-K. Park, C.-Y. Cho, C. C. Byeon, and S.-J. Park, “Surface-plasmon-enhanced light-emitting diodes,” Adv. Mater. (Deerfield Beach Fla.)20(7), 1253–1257 (2008).
[CrossRef]

Kim, J.-Y.

M.-K. Kwon, J.-Y. Kim, B.-H. Kim, I.-K. Park, C.-Y. Cho, C. C. Byeon, and S.-J. Park, “Surface-plasmon-enhanced light-emitting diodes,” Adv. Mater. (Deerfield Beach Fla.)20(7), 1253–1257 (2008).
[CrossRef]

Kim, S.-H.

C. Huh, C.-J. Choi, W. Kim, B. K. Kim, B.-J. Park, E.-H. Jang, S.-H. Kim, and G. Y. Sung, “Enhancement in light emission efficiency of Si nanocrystal light-emitting diodes by a surface plasmon coupling,” Appl. Phys. Lett.100(18), 181108 (2012).
[CrossRef]

Kim, T.-S.

B.-J. Ahn, T.-S. Kim, Y. Dong, M.-T. Hong, J.-H. Song, J.-H. Song, H.-K. Yuh, S.-C. Choi, D.-K. Bae, and Y. Moon, “Experimental determination of current spill-over and its effect on the efficiency droop in InGaN/GaN blue-light-emitting-diodes,” Appl. Phys. Lett.100(3), 031905 (2012).
[CrossRef]

Kim, W.

C. Huh, C.-J. Choi, W. Kim, B. K. Kim, B.-J. Park, E.-H. Jang, S.-H. Kim, and G. Y. Sung, “Enhancement in light emission efficiency of Si nanocrystal light-emitting diodes by a surface plasmon coupling,” Appl. Phys. Lett.100(18), 181108 (2012).
[CrossRef]

Koos, C.

J. Leuthold, C. Koos, and W. Freude, “Nonlinear silicon photonics,” Nat. Photonics4(8), 535–544 (2010).
[CrossRef]

Kwon, M.-K.

M.-K. Kwon, J.-Y. Kim, B.-H. Kim, I.-K. Park, C.-Y. Cho, C. C. Byeon, and S.-J. Park, “Surface-plasmon-enhanced light-emitting diodes,” Adv. Mater. (Deerfield Beach Fla.)20(7), 1253–1257 (2008).
[CrossRef]

Labbé, C.

N. N. Ha, S. Cueff, K. Dohnalová, M. T. Trinh, C. Labbé, R. Rizk, I. N. Yassievich, and T. Gregorkiewicz, “Photon cutting for excitation of Er3+ ions in SiO2 sensitized by Si quantum dots,” Phys. Rev. B84(24), 241308 (2011).
[CrossRef]

Leuthold, J.

J. Leuthold, C. Koos, and W. Freude, “Nonlinear silicon photonics,” Nat. Photonics4(8), 535–544 (2010).
[CrossRef]

Li, D.

F. Wang, D. Li, D. Yang, and D. Que, “Enhancement of light-extraction efficiency of SiNx light emitting devices through a rough Ag island film,” Appl. Phys. Lett.100(3), 031113 (2012).
[CrossRef]

P. Cheng, D. Li, M. Xie, D. Yang, and J. Bao, “Enhancing the photoluminescence intensity of silicon-rich nitride film by localized surface plasmon enhanced photo-excitation,” Opt. Commun.285(7), 1864–1867 (2012).
[CrossRef]

D. Li, F. Wang, D. Yang, and D. Que, “Electrically tunable electroluminescence from SiNx-based light-emitting devices,” Opt. Express20(16), 17359–17366 (2012).
[CrossRef] [PubMed]

F. Wang, M. Wang, D. Li, and D. Yang, “Localized surface plasmon resonance enhanced photoluminescence from SiNx with different N/Si ratios,” Opt. Mater. Express2(10), 1437–1448 (2012).
[CrossRef]

D. Li, X. Zhang, L. Jin, and D. Yang, “Structure and luminescence evolution of annealed Europium-doped silicon oxides films,” Opt. Express18(26), 27191–27196 (2010).
[CrossRef] [PubMed]

M. Wang, J. Huang, Z. Yuan, A. Anopchenko, D. Li, D. Yang, and L. Pavesi, “Light emission properties and mechanism of low-temperature prepared amorphous SiNx film. II. Defect states electroluminescence,” J. Appl. Phys.104(8), 083505 (2008).
[CrossRef]

M. Wang, D. Li, Z. Yuan, D. Yang, and D. Que, “Photoluminescence of Si-rich silicon nitride: Defect-related states and silicon nanoclusters,” Appl. Phys. Lett.90(13), 131903 (2007).
[CrossRef]

M. Wang, D. Yang, D. Li, Z. Yuan, and D. Que, “Correlation between luminescence and structural evolution of Si-rich silicon oxide film annealed at different temperatures,” J. Appl. Phys.101(10), 103504 (2007).
[CrossRef]

Lin, C.-D.

C.-D. Lin, C.-H. Cheng, Y.-H. Lin, C.-L. Wu, Y.-H. Pai, and G.-R. Lin, “Comparing retention and recombination of electrically injected carriers in Si quantum dots embedded in Si-rich SiNx films,” Appl. Phys. Lett.99(24), 243501 (2011).
[CrossRef]

Lin, G.-R.

C.-D. Lin, C.-H. Cheng, Y.-H. Lin, C.-L. Wu, Y.-H. Pai, and G.-R. Lin, “Comparing retention and recombination of electrically injected carriers in Si quantum dots embedded in Si-rich SiNx films,” Appl. Phys. Lett.99(24), 243501 (2011).
[CrossRef]

Lin, Y.-H.

C.-D. Lin, C.-H. Cheng, Y.-H. Lin, C.-L. Wu, Y.-H. Pai, and G.-R. Lin, “Comparing retention and recombination of electrically injected carriers in Si quantum dots embedded in Si-rich SiNx films,” Appl. Phys. Lett.99(24), 243501 (2011).
[CrossRef]

Liu, Y.

Liu, Z.

Luppi, E.

M. Cazzanelli, F. Bianco, E. Borga, G. Pucker, M. Ghulinyan, E. Degoli, E. Luppi, V. Véniard, S. Ossicini, D. Modotto, S. Wabnitz, R. Pierobon, and L. Pavesi, “Second-harmonic generation in silicon waveguides strained by silicon nitride,” Nat. Mater.11(2), 148–154 (2011).
[CrossRef] [PubMed]

Mahanama, G. D. K.

T. L. Temple, G. D. K. Mahanama, H. S. Reehal, and D. M. Bagnall, “Influence of localized surface plasmon excitation in silver nanoparticles on the performance of silicon solar cells,” Sol. Energy Mater. Sol. Cells93(11), 1978–1985 (2009).
[CrossRef]

Marconi, A.

A. Anopchenko, A. Marconi, M. Wang, G. Pucker, P. Bellutti, and L. Pavesi, “Graded-size Si quantum dot ensembles for efficient light-emitting diodes,” Appl. Phys. Lett.99(18), 181108 (2011).
[CrossRef]

A. Marconi, A. Anopchenko, G. Pucker, and L. Pavesi, “Power efficiency estimation of silicon nanocrystals based light emitting devices in alternating current regime,” Appl. Phys. Lett.98(20), 201103 (2011).
[CrossRef]

Mazzoleni, C.

L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzò, and F. Priolo, “Optical gain in silicon nanocrystals,” Nature408(6811), 440–444 (2000).
[CrossRef] [PubMed]

Minissale, S.

S. Minissale, S. Yerci, and L. Dal Negro, “Nonlinear optical properties of low temperature annealed silicon-rich oxide and silicon-rich nitride materials for silicon photonics,” Appl. Phys. Lett.100(2), 021109 (2012).
[CrossRef]

Miritello, M.

F. Iacona, D. Pacifici, A. Irrera, M. Miritello, G. Franzò, F. Priolo, D. Sanfilippo, G. Di Stefano, and P. G. Fallica, “Electroluminescence at 1.54 µm in Er-doped Si nanocluster-based devices,” Appl. Phys. Lett.81(17), 3242–3244 (2002).
[CrossRef]

Modotto, D.

M. Cazzanelli, F. Bianco, E. Borga, G. Pucker, M. Ghulinyan, E. Degoli, E. Luppi, V. Véniard, S. Ossicini, D. Modotto, S. Wabnitz, R. Pierobon, and L. Pavesi, “Second-harmonic generation in silicon waveguides strained by silicon nitride,” Nat. Mater.11(2), 148–154 (2011).
[CrossRef] [PubMed]

Moon, Y.

B.-J. Ahn, T.-S. Kim, Y. Dong, M.-T. Hong, J.-H. Song, J.-H. Song, H.-K. Yuh, S.-C. Choi, D.-K. Bae, and Y. Moon, “Experimental determination of current spill-over and its effect on the efficiency droop in InGaN/GaN blue-light-emitting-diodes,” Appl. Phys. Lett.100(3), 031905 (2012).
[CrossRef]

Mukai, T.

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater.3(9), 601–605 (2004).
[CrossRef] [PubMed]

Narukawa, Y.

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater.3(9), 601–605 (2004).
[CrossRef] [PubMed]

Nieva, P. M.

N. C. Dyck, R. C. Denomme, and P. M. Nieva, “Effective medium properties of arbitrary nanoparticle shapes in a localized surface plasmon resonance sensing layer,” J. Phys. Chem. C115(31), 15225–15233 (2011).
[CrossRef]

Niki, I.

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater.3(9), 601–605 (2004).
[CrossRef] [PubMed]

Noguez, C.

C. Noguez, “Surface plasmons on metal nanoparticles: The influence of shape and physical environment,” J. Phys. Chem. C111(10), 3806–3819 (2007).
[CrossRef]

Okamoto, K.

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater.3(9), 601–605 (2004).
[CrossRef] [PubMed]

Ossicini, S.

M. Cazzanelli, F. Bianco, E. Borga, G. Pucker, M. Ghulinyan, E. Degoli, E. Luppi, V. Véniard, S. Ossicini, D. Modotto, S. Wabnitz, R. Pierobon, and L. Pavesi, “Second-harmonic generation in silicon waveguides strained by silicon nitride,” Nat. Mater.11(2), 148–154 (2011).
[CrossRef] [PubMed]

Ouyang, Z.

Y. Zhang, Z. Ouyang, N. Stokes, B. Jia, Z. Shi, and M. Gu, “Low cost and high performance Al nanoparticles for broadband light trapping in Si wafer solar cells,” Appl. Phys. Lett.100(15), 151101 (2012).
[CrossRef]

Pacifici, D.

F. Iacona, D. Pacifici, A. Irrera, M. Miritello, G. Franzò, F. Priolo, D. Sanfilippo, G. Di Stefano, and P. G. Fallica, “Electroluminescence at 1.54 µm in Er-doped Si nanocluster-based devices,” Appl. Phys. Lett.81(17), 3242–3244 (2002).
[CrossRef]

Pai, Y.-H.

C.-D. Lin, C.-H. Cheng, Y.-H. Lin, C.-L. Wu, Y.-H. Pai, and G.-R. Lin, “Comparing retention and recombination of electrically injected carriers in Si quantum dots embedded in Si-rich SiNx films,” Appl. Phys. Lett.99(24), 243501 (2011).
[CrossRef]

Paniccia, M.

M. Paniccia, “Integrating silicon photonics,” Nat. Photonics4(8), 498–499 (2010).
[CrossRef]

Park, B.-J.

C. Huh, C.-J. Choi, W. Kim, B. K. Kim, B.-J. Park, E.-H. Jang, S.-H. Kim, and G. Y. Sung, “Enhancement in light emission efficiency of Si nanocrystal light-emitting diodes by a surface plasmon coupling,” Appl. Phys. Lett.100(18), 181108 (2012).
[CrossRef]

Park, I.-K.

M.-K. Kwon, J.-Y. Kim, B.-H. Kim, I.-K. Park, C.-Y. Cho, C. C. Byeon, and S.-J. Park, “Surface-plasmon-enhanced light-emitting diodes,” Adv. Mater. (Deerfield Beach Fla.)20(7), 1253–1257 (2008).
[CrossRef]

Park, N.-M.

N.-M. Park, C.-J. Choi, T.-Y. Seong, and S.-J. Park, “Quantum confinement in amorphous silicon quantum dots embedded in silicon nitride,” Phys. Rev. Lett.86(7), 1355–1357 (2001).
[CrossRef] [PubMed]

Park, S.-J.

M.-K. Kwon, J.-Y. Kim, B.-H. Kim, I.-K. Park, C.-Y. Cho, C. C. Byeon, and S.-J. Park, “Surface-plasmon-enhanced light-emitting diodes,” Adv. Mater. (Deerfield Beach Fla.)20(7), 1253–1257 (2008).
[CrossRef]

N.-M. Park, C.-J. Choi, T.-Y. Seong, and S.-J. Park, “Quantum confinement in amorphous silicon quantum dots embedded in silicon nitride,” Phys. Rev. Lett.86(7), 1355–1357 (2001).
[CrossRef] [PubMed]

Pavesi, L.

A. Anopchenko, A. Marconi, M. Wang, G. Pucker, P. Bellutti, and L. Pavesi, “Graded-size Si quantum dot ensembles for efficient light-emitting diodes,” Appl. Phys. Lett.99(18), 181108 (2011).
[CrossRef]

M. Cazzanelli, F. Bianco, E. Borga, G. Pucker, M. Ghulinyan, E. Degoli, E. Luppi, V. Véniard, S. Ossicini, D. Modotto, S. Wabnitz, R. Pierobon, and L. Pavesi, “Second-harmonic generation in silicon waveguides strained by silicon nitride,” Nat. Mater.11(2), 148–154 (2011).
[CrossRef] [PubMed]

A. Marconi, A. Anopchenko, G. Pucker, and L. Pavesi, “Power efficiency estimation of silicon nanocrystals based light emitting devices in alternating current regime,” Appl. Phys. Lett.98(20), 201103 (2011).
[CrossRef]

M. Wang, J. Huang, Z. Yuan, A. Anopchenko, D. Li, D. Yang, and L. Pavesi, “Light emission properties and mechanism of low-temperature prepared amorphous SiNx film. II. Defect states electroluminescence,” J. Appl. Phys.104(8), 083505 (2008).
[CrossRef]

L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzò, and F. Priolo, “Optical gain in silicon nanocrystals,” Nature408(6811), 440–444 (2000).
[CrossRef] [PubMed]

Peiró, F.

Pierobon, R.

M. Cazzanelli, F. Bianco, E. Borga, G. Pucker, M. Ghulinyan, E. Degoli, E. Luppi, V. Véniard, S. Ossicini, D. Modotto, S. Wabnitz, R. Pierobon, and L. Pavesi, “Second-harmonic generation in silicon waveguides strained by silicon nitride,” Nat. Mater.11(2), 148–154 (2011).
[CrossRef] [PubMed]

Polman, A.

K. R. Catchpole and A. Polman, “Design principles for particle plasmon enhanced solar cells,” Appl. Phys. Lett.93(19), 191113 (2008).
[CrossRef]

Priolo, F.

F. Iacona, D. Pacifici, A. Irrera, M. Miritello, G. Franzò, F. Priolo, D. Sanfilippo, G. Di Stefano, and P. G. Fallica, “Electroluminescence at 1.54 µm in Er-doped Si nanocluster-based devices,” Appl. Phys. Lett.81(17), 3242–3244 (2002).
[CrossRef]

L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzò, and F. Priolo, “Optical gain in silicon nanocrystals,” Nature408(6811), 440–444 (2000).
[CrossRef] [PubMed]

Pucker, G.

A. Anopchenko, A. Marconi, M. Wang, G. Pucker, P. Bellutti, and L. Pavesi, “Graded-size Si quantum dot ensembles for efficient light-emitting diodes,” Appl. Phys. Lett.99(18), 181108 (2011).
[CrossRef]

M. Cazzanelli, F. Bianco, E. Borga, G. Pucker, M. Ghulinyan, E. Degoli, E. Luppi, V. Véniard, S. Ossicini, D. Modotto, S. Wabnitz, R. Pierobon, and L. Pavesi, “Second-harmonic generation in silicon waveguides strained by silicon nitride,” Nat. Mater.11(2), 148–154 (2011).
[CrossRef] [PubMed]

A. Marconi, A. Anopchenko, G. Pucker, and L. Pavesi, “Power efficiency estimation of silicon nanocrystals based light emitting devices in alternating current regime,” Appl. Phys. Lett.98(20), 201103 (2011).
[CrossRef]

Purcell, E. M.

E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev.69, 681 (1946).

Que, D.

F. Wang, D. Li, D. Yang, and D. Que, “Enhancement of light-extraction efficiency of SiNx light emitting devices through a rough Ag island film,” Appl. Phys. Lett.100(3), 031113 (2012).
[CrossRef]

D. Li, F. Wang, D. Yang, and D. Que, “Electrically tunable electroluminescence from SiNx-based light-emitting devices,” Opt. Express20(16), 17359–17366 (2012).
[CrossRef] [PubMed]

M. Wang, D. Yang, D. Li, Z. Yuan, and D. Que, “Correlation between luminescence and structural evolution of Si-rich silicon oxide film annealed at different temperatures,” J. Appl. Phys.101(10), 103504 (2007).
[CrossRef]

M. Wang, D. Li, Z. Yuan, D. Yang, and D. Que, “Photoluminescence of Si-rich silicon nitride: Defect-related states and silicon nanoclusters,” Appl. Phys. Lett.90(13), 131903 (2007).
[CrossRef]

Ramírez, J. M.

Rebled, J. M.

Reehal, H. S.

T. L. Temple, G. D. K. Mahanama, H. S. Reehal, and D. M. Bagnall, “Influence of localized surface plasmon excitation in silver nanoparticles on the performance of silicon solar cells,” Sol. Energy Mater. Sol. Cells93(11), 1978–1985 (2009).
[CrossRef]

Rizk, R.

N. N. Ha, S. Cueff, K. Dohnalová, M. T. Trinh, C. Labbé, R. Rizk, I. N. Yassievich, and T. Gregorkiewicz, “Photon cutting for excitation of Er3+ ions in SiO2 sensitized by Si quantum dots,” Phys. Rev. B84(24), 241308 (2011).
[CrossRef]

Rodríguez, J. A.

Sanfilippo, D.

F. Iacona, D. Pacifici, A. Irrera, M. Miritello, G. Franzò, F. Priolo, D. Sanfilippo, G. Di Stefano, and P. G. Fallica, “Electroluminescence at 1.54 µm in Er-doped Si nanocluster-based devices,” Appl. Phys. Lett.81(17), 3242–3244 (2002).
[CrossRef]

Scherer, A.

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater.3(9), 601–605 (2004).
[CrossRef] [PubMed]

Seong, T.-Y.

N.-M. Park, C.-J. Choi, T.-Y. Seong, and S.-J. Park, “Quantum confinement in amorphous silicon quantum dots embedded in silicon nitride,” Phys. Rev. Lett.86(7), 1355–1357 (2001).
[CrossRef] [PubMed]

Shi, Z.

Y. Zhang, Z. Ouyang, N. Stokes, B. Jia, Z. Shi, and M. Gu, “Low cost and high performance Al nanoparticles for broadband light trapping in Si wafer solar cells,” Appl. Phys. Lett.100(15), 151101 (2012).
[CrossRef]

Shvartser, A.

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater.3(9), 601–605 (2004).
[CrossRef] [PubMed]

Song, J.-H.

B.-J. Ahn, T.-S. Kim, Y. Dong, M.-T. Hong, J.-H. Song, J.-H. Song, H.-K. Yuh, S.-C. Choi, D.-K. Bae, and Y. Moon, “Experimental determination of current spill-over and its effect on the efficiency droop in InGaN/GaN blue-light-emitting-diodes,” Appl. Phys. Lett.100(3), 031905 (2012).
[CrossRef]

B.-J. Ahn, T.-S. Kim, Y. Dong, M.-T. Hong, J.-H. Song, J.-H. Song, H.-K. Yuh, S.-C. Choi, D.-K. Bae, and Y. Moon, “Experimental determination of current spill-over and its effect on the efficiency droop in InGaN/GaN blue-light-emitting-diodes,” Appl. Phys. Lett.100(3), 031905 (2012).
[CrossRef]

Soref, R.

R. Soref, “Mid-infrared photonics in silicon and germanium,” Nat. Photonics4(8), 495–497 (2010).
[CrossRef]

Stokes, N.

Y. Zhang, Z. Ouyang, N. Stokes, B. Jia, Z. Shi, and M. Gu, “Low cost and high performance Al nanoparticles for broadband light trapping in Si wafer solar cells,” Appl. Phys. Lett.100(15), 151101 (2012).
[CrossRef]

Stuart, H. R.

H. R. Stuart and D. G. Hall, “Island size effects in nanoparticle-enhanced photodetectors,” Appl. Phys. Lett.73(26), 3815–3817 (1998).
[CrossRef]

Sung, G. Y.

C. Huh, C.-J. Choi, W. Kim, B. K. Kim, B.-J. Park, E.-H. Jang, S.-H. Kim, and G. Y. Sung, “Enhancement in light emission efficiency of Si nanocrystal light-emitting diodes by a surface plasmon coupling,” Appl. Phys. Lett.100(18), 181108 (2012).
[CrossRef]

Temple, T. L.

T. L. Temple, G. D. K. Mahanama, H. S. Reehal, and D. M. Bagnall, “Influence of localized surface plasmon excitation in silver nanoparticles on the performance of silicon solar cells,” Sol. Energy Mater. Sol. Cells93(11), 1978–1985 (2009).
[CrossRef]

Trinh, M. T.

N. N. Ha, S. Cueff, K. Dohnalová, M. T. Trinh, C. Labbé, R. Rizk, I. N. Yassievich, and T. Gregorkiewicz, “Photon cutting for excitation of Er3+ ions in SiO2 sensitized by Si quantum dots,” Phys. Rev. B84(24), 241308 (2011).
[CrossRef]

Véniard, V.

M. Cazzanelli, F. Bianco, E. Borga, G. Pucker, M. Ghulinyan, E. Degoli, E. Luppi, V. Véniard, S. Ossicini, D. Modotto, S. Wabnitz, R. Pierobon, and L. Pavesi, “Second-harmonic generation in silicon waveguides strained by silicon nitride,” Nat. Mater.11(2), 148–154 (2011).
[CrossRef] [PubMed]

Wabnitz, S.

M. Cazzanelli, F. Bianco, E. Borga, G. Pucker, M. Ghulinyan, E. Degoli, E. Luppi, V. Véniard, S. Ossicini, D. Modotto, S. Wabnitz, R. Pierobon, and L. Pavesi, “Second-harmonic generation in silicon waveguides strained by silicon nitride,” Nat. Mater.11(2), 148–154 (2011).
[CrossRef] [PubMed]

Walters, R. J.

R. J. Walters, G. I. Bourianoff, and H. A. Atwater, “Field-effect electroluminescence in silicon nanocrystals,” Nat. Mater.4(2), 143–146 (2005).
[CrossRef] [PubMed]

Wang, F.

Wang, M.

F. Wang, M. Wang, D. Li, and D. Yang, “Localized surface plasmon resonance enhanced photoluminescence from SiNx with different N/Si ratios,” Opt. Mater. Express2(10), 1437–1448 (2012).
[CrossRef]

A. Anopchenko, A. Marconi, M. Wang, G. Pucker, P. Bellutti, and L. Pavesi, “Graded-size Si quantum dot ensembles for efficient light-emitting diodes,” Appl. Phys. Lett.99(18), 181108 (2011).
[CrossRef]

M. Wang, J. Huang, Z. Yuan, A. Anopchenko, D. Li, D. Yang, and L. Pavesi, “Light emission properties and mechanism of low-temperature prepared amorphous SiNx film. II. Defect states electroluminescence,” J. Appl. Phys.104(8), 083505 (2008).
[CrossRef]

M. Wang, D. Li, Z. Yuan, D. Yang, and D. Que, “Photoluminescence of Si-rich silicon nitride: Defect-related states and silicon nanoclusters,” Appl. Phys. Lett.90(13), 131903 (2007).
[CrossRef]

M. Wang, D. Yang, D. Li, Z. Yuan, and D. Que, “Correlation between luminescence and structural evolution of Si-rich silicon oxide film annealed at different temperatures,” J. Appl. Phys.101(10), 103504 (2007).
[CrossRef]

Wong, J. I.

Wu, C.-L.

C.-D. Lin, C.-H. Cheng, Y.-H. Lin, C.-L. Wu, Y.-H. Pai, and G.-R. Lin, “Comparing retention and recombination of electrically injected carriers in Si quantum dots embedded in Si-rich SiNx films,” Appl. Phys. Lett.99(24), 243501 (2011).
[CrossRef]

Xie, M.

P. Cheng, D. Li, M. Xie, D. Yang, and J. Bao, “Enhancing the photoluminescence intensity of silicon-rich nitride film by localized surface plasmon enhanced photo-excitation,” Opt. Commun.285(7), 1864–1867 (2012).
[CrossRef]

Yang, D.

P. Cheng, D. Li, M. Xie, D. Yang, and J. Bao, “Enhancing the photoluminescence intensity of silicon-rich nitride film by localized surface plasmon enhanced photo-excitation,” Opt. Commun.285(7), 1864–1867 (2012).
[CrossRef]

F. Wang, D. Li, D. Yang, and D. Que, “Enhancement of light-extraction efficiency of SiNx light emitting devices through a rough Ag island film,” Appl. Phys. Lett.100(3), 031113 (2012).
[CrossRef]

F. Wang, M. Wang, D. Li, and D. Yang, “Localized surface plasmon resonance enhanced photoluminescence from SiNx with different N/Si ratios,” Opt. Mater. Express2(10), 1437–1448 (2012).
[CrossRef]

D. Li, F. Wang, D. Yang, and D. Que, “Electrically tunable electroluminescence from SiNx-based light-emitting devices,” Opt. Express20(16), 17359–17366 (2012).
[CrossRef] [PubMed]

D. Li, X. Zhang, L. Jin, and D. Yang, “Structure and luminescence evolution of annealed Europium-doped silicon oxides films,” Opt. Express18(26), 27191–27196 (2010).
[CrossRef] [PubMed]

M. Wang, J. Huang, Z. Yuan, A. Anopchenko, D. Li, D. Yang, and L. Pavesi, “Light emission properties and mechanism of low-temperature prepared amorphous SiNx film. II. Defect states electroluminescence,” J. Appl. Phys.104(8), 083505 (2008).
[CrossRef]

M. Wang, D. Li, Z. Yuan, D. Yang, and D. Que, “Photoluminescence of Si-rich silicon nitride: Defect-related states and silicon nanoclusters,” Appl. Phys. Lett.90(13), 131903 (2007).
[CrossRef]

M. Wang, D. Yang, D. Li, Z. Yuan, and D. Que, “Correlation between luminescence and structural evolution of Si-rich silicon oxide film annealed at different temperatures,” J. Appl. Phys.101(10), 103504 (2007).
[CrossRef]

Yang, M.

Yassievich, I. N.

N. N. Ha, S. Cueff, K. Dohnalová, M. T. Trinh, C. Labbé, R. Rizk, I. N. Yassievich, and T. Gregorkiewicz, “Photon cutting for excitation of Er3+ ions in SiO2 sensitized by Si quantum dots,” Phys. Rev. B84(24), 241308 (2011).
[CrossRef]

Yerci, S.

S. Minissale, S. Yerci, and L. Dal Negro, “Nonlinear optical properties of low temperature annealed silicon-rich oxide and silicon-rich nitride materials for silicon photonics,” Appl. Phys. Lett.100(2), 021109 (2012).
[CrossRef]

Yu, S. F.

Yuan, Z.

M. Wang, J. Huang, Z. Yuan, A. Anopchenko, D. Li, D. Yang, and L. Pavesi, “Light emission properties and mechanism of low-temperature prepared amorphous SiNx film. II. Defect states electroluminescence,” J. Appl. Phys.104(8), 083505 (2008).
[CrossRef]

M. Wang, D. Li, Z. Yuan, D. Yang, and D. Que, “Photoluminescence of Si-rich silicon nitride: Defect-related states and silicon nanoclusters,” Appl. Phys. Lett.90(13), 131903 (2007).
[CrossRef]

M. Wang, D. Yang, D. Li, Z. Yuan, and D. Que, “Correlation between luminescence and structural evolution of Si-rich silicon oxide film annealed at different temperatures,” J. Appl. Phys.101(10), 103504 (2007).
[CrossRef]

Yuh, H.-K.

B.-J. Ahn, T.-S. Kim, Y. Dong, M.-T. Hong, J.-H. Song, J.-H. Song, H.-K. Yuh, S.-C. Choi, D.-K. Bae, and Y. Moon, “Experimental determination of current spill-over and its effect on the efficiency droop in InGaN/GaN blue-light-emitting-diodes,” Appl. Phys. Lett.100(3), 031905 (2012).
[CrossRef]

Zhang, X.

Zhang, Y.

Y. Zhang, Z. Ouyang, N. Stokes, B. Jia, Z. Shi, and M. Gu, “Low cost and high performance Al nanoparticles for broadband light trapping in Si wafer solar cells,” Appl. Phys. Lett.100(15), 151101 (2012).
[CrossRef]

Zhmakin, A. I.

A. I. Zhmakin, “Enhancement of light extraction from light emitting diodes,” Phys. Rep.498(4–5), 189–241 (2011).
[CrossRef]

Adv. Mater. (Deerfield Beach Fla.) (1)

M.-K. Kwon, J.-Y. Kim, B.-H. Kim, I.-K. Park, C.-Y. Cho, C. C. Byeon, and S.-J. Park, “Surface-plasmon-enhanced light-emitting diodes,” Adv. Mater. (Deerfield Beach Fla.)20(7), 1253–1257 (2008).
[CrossRef]

Appl. Phys. Lett. (12)

C. Huh, C.-J. Choi, W. Kim, B. K. Kim, B.-J. Park, E.-H. Jang, S.-H. Kim, and G. Y. Sung, “Enhancement in light emission efficiency of Si nanocrystal light-emitting diodes by a surface plasmon coupling,” Appl. Phys. Lett.100(18), 181108 (2012).
[CrossRef]

K. R. Catchpole and A. Polman, “Design principles for particle plasmon enhanced solar cells,” Appl. Phys. Lett.93(19), 191113 (2008).
[CrossRef]

Y. Zhang, Z. Ouyang, N. Stokes, B. Jia, Z. Shi, and M. Gu, “Low cost and high performance Al nanoparticles for broadband light trapping in Si wafer solar cells,” Appl. Phys. Lett.100(15), 151101 (2012).
[CrossRef]

H. R. Stuart and D. G. Hall, “Island size effects in nanoparticle-enhanced photodetectors,” Appl. Phys. Lett.73(26), 3815–3817 (1998).
[CrossRef]

B.-J. Ahn, T.-S. Kim, Y. Dong, M.-T. Hong, J.-H. Song, J.-H. Song, H.-K. Yuh, S.-C. Choi, D.-K. Bae, and Y. Moon, “Experimental determination of current spill-over and its effect on the efficiency droop in InGaN/GaN blue-light-emitting-diodes,” Appl. Phys. Lett.100(3), 031905 (2012).
[CrossRef]

A. Marconi, A. Anopchenko, G. Pucker, and L. Pavesi, “Power efficiency estimation of silicon nanocrystals based light emitting devices in alternating current regime,” Appl. Phys. Lett.98(20), 201103 (2011).
[CrossRef]

A. Anopchenko, A. Marconi, M. Wang, G. Pucker, P. Bellutti, and L. Pavesi, “Graded-size Si quantum dot ensembles for efficient light-emitting diodes,” Appl. Phys. Lett.99(18), 181108 (2011).
[CrossRef]

S. Minissale, S. Yerci, and L. Dal Negro, “Nonlinear optical properties of low temperature annealed silicon-rich oxide and silicon-rich nitride materials for silicon photonics,” Appl. Phys. Lett.100(2), 021109 (2012).
[CrossRef]

M. Wang, D. Li, Z. Yuan, D. Yang, and D. Que, “Photoluminescence of Si-rich silicon nitride: Defect-related states and silicon nanoclusters,” Appl. Phys. Lett.90(13), 131903 (2007).
[CrossRef]

F. Iacona, D. Pacifici, A. Irrera, M. Miritello, G. Franzò, F. Priolo, D. Sanfilippo, G. Di Stefano, and P. G. Fallica, “Electroluminescence at 1.54 µm in Er-doped Si nanocluster-based devices,” Appl. Phys. Lett.81(17), 3242–3244 (2002).
[CrossRef]

F. Wang, D. Li, D. Yang, and D. Que, “Enhancement of light-extraction efficiency of SiNx light emitting devices through a rough Ag island film,” Appl. Phys. Lett.100(3), 031113 (2012).
[CrossRef]

C.-D. Lin, C.-H. Cheng, Y.-H. Lin, C.-L. Wu, Y.-H. Pai, and G.-R. Lin, “Comparing retention and recombination of electrically injected carriers in Si quantum dots embedded in Si-rich SiNx films,” Appl. Phys. Lett.99(24), 243501 (2011).
[CrossRef]

J. Appl. Phys. (2)

M. Wang, J. Huang, Z. Yuan, A. Anopchenko, D. Li, D. Yang, and L. Pavesi, “Light emission properties and mechanism of low-temperature prepared amorphous SiNx film. II. Defect states electroluminescence,” J. Appl. Phys.104(8), 083505 (2008).
[CrossRef]

M. Wang, D. Yang, D. Li, Z. Yuan, and D. Que, “Correlation between luminescence and structural evolution of Si-rich silicon oxide film annealed at different temperatures,” J. Appl. Phys.101(10), 103504 (2007).
[CrossRef]

J. Phys. Chem. C (2)

N. C. Dyck, R. C. Denomme, and P. M. Nieva, “Effective medium properties of arbitrary nanoparticle shapes in a localized surface plasmon resonance sensing layer,” J. Phys. Chem. C115(31), 15225–15233 (2011).
[CrossRef]

C. Noguez, “Surface plasmons on metal nanoparticles: The influence of shape and physical environment,” J. Phys. Chem. C111(10), 3806–3819 (2007).
[CrossRef]

Nat. Mater. (4)

M. Cazzanelli, F. Bianco, E. Borga, G. Pucker, M. Ghulinyan, E. Degoli, E. Luppi, V. Véniard, S. Ossicini, D. Modotto, S. Wabnitz, R. Pierobon, and L. Pavesi, “Second-harmonic generation in silicon waveguides strained by silicon nitride,” Nat. Mater.11(2), 148–154 (2011).
[CrossRef] [PubMed]

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater.3(9), 601–605 (2004).
[CrossRef] [PubMed]

R. J. Walters, G. I. Bourianoff, and H. A. Atwater, “Field-effect electroluminescence in silicon nanocrystals,” Nat. Mater.4(2), 143–146 (2005).
[CrossRef] [PubMed]

W. L. Barnes, “Light-emitting devices: turning the tables on surface plasmons,” Nat. Mater.3(9), 588–589 (2004).
[CrossRef] [PubMed]

Nat. Photonics (3)

R. Soref, “Mid-infrared photonics in silicon and germanium,” Nat. Photonics4(8), 495–497 (2010).
[CrossRef]

J. Leuthold, C. Koos, and W. Freude, “Nonlinear silicon photonics,” Nat. Photonics4(8), 535–544 (2010).
[CrossRef]

M. Paniccia, “Integrating silicon photonics,” Nat. Photonics4(8), 498–499 (2010).
[CrossRef]

Nature (1)

L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzò, and F. Priolo, “Optical gain in silicon nanocrystals,” Nature408(6811), 440–444 (2000).
[CrossRef] [PubMed]

Opt. Commun. (1)

P. Cheng, D. Li, M. Xie, D. Yang, and J. Bao, “Enhancing the photoluminescence intensity of silicon-rich nitride film by localized surface plasmon enhanced photo-excitation,” Opt. Commun.285(7), 1864–1867 (2012).
[CrossRef]

Opt. Express (3)

Opt. Lett. (1)

Opt. Mater. Express (1)

Phys. Rep. (1)

A. I. Zhmakin, “Enhancement of light extraction from light emitting diodes,” Phys. Rep.498(4–5), 189–241 (2011).
[CrossRef]

Phys. Rev. (1)

E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev.69, 681 (1946).

Phys. Rev. B (1)

N. N. Ha, S. Cueff, K. Dohnalová, M. T. Trinh, C. Labbé, R. Rizk, I. N. Yassievich, and T. Gregorkiewicz, “Photon cutting for excitation of Er3+ ions in SiO2 sensitized by Si quantum dots,” Phys. Rev. B84(24), 241308 (2011).
[CrossRef]

Phys. Rev. Lett. (1)

N.-M. Park, C.-J. Choi, T.-Y. Seong, and S.-J. Park, “Quantum confinement in amorphous silicon quantum dots embedded in silicon nitride,” Phys. Rev. Lett.86(7), 1355–1357 (2001).
[CrossRef] [PubMed]

Sol. Energy Mater. Sol. Cells (1)

T. L. Temple, G. D. K. Mahanama, H. S. Reehal, and D. M. Bagnall, “Influence of localized surface plasmon excitation in silver nanoparticles on the performance of silicon solar cells,” Sol. Energy Mater. Sol. Cells93(11), 1978–1985 (2009).
[CrossRef]

Other (2)

D. K. Schroder, Semiconductor Material and Device Characterization (Wiley, 1990), pp. 147–149.

D. P. Perez, Silver Nanoparticles (In-Tech, Vukovar: Croatia, 2010), pp. 93–119.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) The schematic of SiNx-based LEDs we fabricated. (b) Scanning electron microscopy (SEM) and (c) atomic force microscopy (AFM) images of Ag nanostructures. (d) Extinction spectra of SiNx films (labeled as the black circles), Ag nanostructures (labeled as the red triangles), and Ag nanostructures with overcoated SiNx film (labeled as the green diamonds).

Fig. 2
Fig. 2

(a) Effects of surface roughening and reflectivity by the addition of Ag nanostructures on light extraction. Atomic force microscopy (AFM) images of the structure surface of (b) Si/SiNx; (c) Si/Ag/ SiNx; (d) Si/SiNx/ITO; and (e) Si/Ag/SiNx/ITO.

Fig. 3
Fig. 3

Enhancement factor of reflectivity by dividing the reflectivity intensity of the structure with Ag nanostructures to that of the reference structure, where the reflectivity spectra of them were shown in the inset.

Fig. 4
Fig. 4

(a) EL spectra of the SiNx-based LEDs with and without Ag nanostructures. (b) Charge-coupled device (CCD) pictures for the device with Ag nanostructures under different injected currents. (c) Ratio of the integrated EL intensity to the injected current (I) as a function of the input power for the devices with and without Ag nanostructures.

Fig. 5
Fig. 5

Current-voltage (I-V) curves of the devices with and without Ag nanostructures. Inset is the linear fitting of on-series resistance (RS) for these two devices. The values of I for the reference device are multiplied by 50 times.

Metrics