Abstract

The far-field spatial distributions of higher order electro-magnetic mode supercontinua were resolved spectrally and recorded. The supercontinua were created by precise control and direction of input pump energy offset axially from the photonic crystal fiber core. By processing the measured spectra, the spatial mode shape at each wavelength was determined. Discrete spectral features are associated with symmetrical spatial patterns arising from the host fiber geometry and suggest the electromagnetic mode pairing between the longer wavelength solitons and associated visible dispersive waves. Clear differences between supercontinua generated in fundamental and higher order electromagnetic modes exist. These data should inform theoretical studies as the solitons and the dispersive wave generated by fission may be matched by spatial orientation of the electromagnetic mode that both occupy.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys.78(4), 1135–1184 (2006).
    [CrossRef]
  2. G. P. Agrawal, “Nonlinear fiber optics: its history and recent progress (invited),” J. Opt. Soc. Am. B28(12), A1–A10 (2011).
    [CrossRef]
  3. S. Konorov, E. Serebryannikov, A. Zheltikov, P. Zhou, A. Tarasevitch, and D. von der Linde, “Mode-controlled colors from microstructure fibers,” Opt. Express12(5), 730–735 (2004).
    [CrossRef] [PubMed]
  4. A. Efimov, A. Taylor, F. Omenetto, J. Knight, W. Wadsworth, and P. Russell, “Nonlinear generation of very high-order UV modes in microstructured fibers,” Opt. Express11(8), 910–918 (2003).
    [CrossRef] [PubMed]
  5. Y. Vidne and M. Rosenbluh, “Spatial modes in a PCF fiber generated continuum,” Opt. Express13(24), 9721–9728 (2005).
    [CrossRef] [PubMed]
  6. R. Cherif, M. Zghal, L. Tartara, and V. Degiorgio, “Supercontinuum generation by higher-order mode excitation in a photonic crystal fiber,” Opt. Express16(3), 2147–2152 (2008).
    [CrossRef] [PubMed]
  7. N. Karasawa and K. Tada, “The generation of dispersive waves from a photonic crystal fiber by higher-order mode excitation,” Opt. Express18(5), 5338–5343 (2010).
    [CrossRef] [PubMed]
  8. S. Legge, J. Holdsworth, and B. Zwan, “Supercontinuum generation in higher order modes of photonic crystal fibre,” Proc. SPIE8011, 801146, 801146-6 (2011).
    [CrossRef]
  9. J. Cheng, M. E. Pedersen, K. Charan, K. Wang, C. Xu, L. Grüner-Nielsen, and D. Jakobsen, “Intermodal Čerenkov radiation in a higher-order-mode fiber,” Opt. Lett.37(21), 4410–4412 (2012).
    [CrossRef] [PubMed]
  10. B. Kulmey, “CUDOS MOF Utilities,” (2012). http://sydney.edu.au/science/physics/cudos/research/mofsoftware.shtml
  11. J. M. Stone and J. C. Knight, “From zero dispersion to group index matching: How tapering fibers offers the best of both worlds for visible supercontinuum generation,” Opt. Fiber Technol.18(5), 315–321 (2012).
    [CrossRef]
  12. S. Grafstrom, U. Harbarth, J. Kowalski, R. Neumann, and S. Noehte, “Fast laser beam position control with submicroradian precision,” Opt. Comms.65(2), 121–126 (1988).
    [CrossRef]
  13. I. Cristiani, R. Tediosi, L. Tartara, and V. Degiorgio, “Dispersive wave generation by solitons in microstructured optical fibers,” Opt. Express12(1), 124–135 (2004).
    [CrossRef] [PubMed]

2012 (2)

J. M. Stone and J. C. Knight, “From zero dispersion to group index matching: How tapering fibers offers the best of both worlds for visible supercontinuum generation,” Opt. Fiber Technol.18(5), 315–321 (2012).
[CrossRef]

J. Cheng, M. E. Pedersen, K. Charan, K. Wang, C. Xu, L. Grüner-Nielsen, and D. Jakobsen, “Intermodal Čerenkov radiation in a higher-order-mode fiber,” Opt. Lett.37(21), 4410–4412 (2012).
[CrossRef] [PubMed]

2011 (2)

G. P. Agrawal, “Nonlinear fiber optics: its history and recent progress (invited),” J. Opt. Soc. Am. B28(12), A1–A10 (2011).
[CrossRef]

S. Legge, J. Holdsworth, and B. Zwan, “Supercontinuum generation in higher order modes of photonic crystal fibre,” Proc. SPIE8011, 801146, 801146-6 (2011).
[CrossRef]

2010 (1)

2008 (1)

2006 (1)

J. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys.78(4), 1135–1184 (2006).
[CrossRef]

2005 (1)

2004 (2)

2003 (1)

1988 (1)

S. Grafstrom, U. Harbarth, J. Kowalski, R. Neumann, and S. Noehte, “Fast laser beam position control with submicroradian precision,” Opt. Comms.65(2), 121–126 (1988).
[CrossRef]

Agrawal, G. P.

Charan, K.

Cheng, J.

Cherif, R.

Coen, S.

J. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys.78(4), 1135–1184 (2006).
[CrossRef]

Cristiani, I.

Degiorgio, V.

Dudley, J.

J. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys.78(4), 1135–1184 (2006).
[CrossRef]

Efimov, A.

Genty, G.

J. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys.78(4), 1135–1184 (2006).
[CrossRef]

Grafstrom, S.

S. Grafstrom, U. Harbarth, J. Kowalski, R. Neumann, and S. Noehte, “Fast laser beam position control with submicroradian precision,” Opt. Comms.65(2), 121–126 (1988).
[CrossRef]

Grüner-Nielsen, L.

Harbarth, U.

S. Grafstrom, U. Harbarth, J. Kowalski, R. Neumann, and S. Noehte, “Fast laser beam position control with submicroradian precision,” Opt. Comms.65(2), 121–126 (1988).
[CrossRef]

Holdsworth, J.

S. Legge, J. Holdsworth, and B. Zwan, “Supercontinuum generation in higher order modes of photonic crystal fibre,” Proc. SPIE8011, 801146, 801146-6 (2011).
[CrossRef]

Jakobsen, D.

Karasawa, N.

Knight, J.

Knight, J. C.

J. M. Stone and J. C. Knight, “From zero dispersion to group index matching: How tapering fibers offers the best of both worlds for visible supercontinuum generation,” Opt. Fiber Technol.18(5), 315–321 (2012).
[CrossRef]

Konorov, S.

Kowalski, J.

S. Grafstrom, U. Harbarth, J. Kowalski, R. Neumann, and S. Noehte, “Fast laser beam position control with submicroradian precision,” Opt. Comms.65(2), 121–126 (1988).
[CrossRef]

Legge, S.

S. Legge, J. Holdsworth, and B. Zwan, “Supercontinuum generation in higher order modes of photonic crystal fibre,” Proc. SPIE8011, 801146, 801146-6 (2011).
[CrossRef]

Neumann, R.

S. Grafstrom, U. Harbarth, J. Kowalski, R. Neumann, and S. Noehte, “Fast laser beam position control with submicroradian precision,” Opt. Comms.65(2), 121–126 (1988).
[CrossRef]

Noehte, S.

S. Grafstrom, U. Harbarth, J. Kowalski, R. Neumann, and S. Noehte, “Fast laser beam position control with submicroradian precision,” Opt. Comms.65(2), 121–126 (1988).
[CrossRef]

Omenetto, F.

Pedersen, M. E.

Rosenbluh, M.

Russell, P.

Serebryannikov, E.

Stone, J. M.

J. M. Stone and J. C. Knight, “From zero dispersion to group index matching: How tapering fibers offers the best of both worlds for visible supercontinuum generation,” Opt. Fiber Technol.18(5), 315–321 (2012).
[CrossRef]

Tada, K.

Tarasevitch, A.

Tartara, L.

Taylor, A.

Tediosi, R.

Vidne, Y.

von der Linde, D.

Wadsworth, W.

Wang, K.

Xu, C.

Zghal, M.

Zheltikov, A.

Zhou, P.

Zwan, B.

S. Legge, J. Holdsworth, and B. Zwan, “Supercontinuum generation in higher order modes of photonic crystal fibre,” Proc. SPIE8011, 801146, 801146-6 (2011).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Comms. (1)

S. Grafstrom, U. Harbarth, J. Kowalski, R. Neumann, and S. Noehte, “Fast laser beam position control with submicroradian precision,” Opt. Comms.65(2), 121–126 (1988).
[CrossRef]

Opt. Express (6)

Opt. Fiber Technol. (1)

J. M. Stone and J. C. Knight, “From zero dispersion to group index matching: How tapering fibers offers the best of both worlds for visible supercontinuum generation,” Opt. Fiber Technol.18(5), 315–321 (2012).
[CrossRef]

Opt. Lett. (1)

Proc. SPIE (1)

S. Legge, J. Holdsworth, and B. Zwan, “Supercontinuum generation in higher order modes of photonic crystal fibre,” Proc. SPIE8011, 801146, 801146-6 (2011).
[CrossRef]

Rev. Mod. Phys. (1)

J. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys.78(4), 1135–1184 (2006).
[CrossRef]

Other (1)

B. Kulmey, “CUDOS MOF Utilities,” (2012). http://sydney.edu.au/science/physics/cudos/research/mofsoftware.shtml

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Modeled PCF dispersion and group index.

Fig. 2
Fig. 2

Experimental arrangement for spatio-spectral measurement of supercontinuum.

Fig. 3
Fig. 3

Variation of integrated supercontinuum electromagnetic mode structures imaged with schematic of laser beam position on photonic crystal fiber core face. Higher order modes (e) and (f) result from offset fiber inputs (b) and (c).

Fig. 4
Fig. 4

Spectral variation of output supercontinuum and electromagnetic mode structures with position for identical input pulse duration, power and wavelength.

Fig. 5
Fig. 5

Measured spectrum and spatial mode properties of a SC generated in the fundamental mode of Thorlabs NL-2.8-850-02 PCF using a 15nJ, 210 fs input pulse at 860nm, 10nm above the zero GVD wavelength. Inset is a visible camera image. The spectrum is representative of the broad continuous spectra characteristic of a fundamental EM mode generated SC in PCF.

Fig. 6
Fig. 6

Measured spectrum and spatial mode properties of a SC generated in the higher EM modes of Thorlabs NL-2.8-850-02 PCF using a 15nJ, 210 fs input pulse at 784nm, 66 nm below the fundamental EM mode zero GVD wavelength. Inset is a visible camera image.

Fig. 7
Fig. 7

Measured dispersive wave spectrum with peaks (a)-(e), measured spatial mode of each identified peak and postulated orientation of mode within the PCF core.

Metrics