Abstract

A class of nano-scale wavelength-selective optical filters is proposed where the core of a metal-insulator-metal square ring is replaced with a split-ring core (SRC). The proposed resonator supports split-ring-resonator-like (SRR-like) resonant modes that are characteristics of the structure. These resonant modes are highly adjustable, via the gap size of the split-ring core, over a range of hundreds of nanometers. The proposed resonator can also incorporate tunable materials localized in the gap of the SRC or placed throughout the resonating path. By varying the refractive index (1 to 2) of the material in the gap of the SRC, first and second SRR-like modes can be tuned over ~200 and 300 nm, respectively. A circuit model based on transmission-line theory is proposed for the structure and used to derive the resonance conditions of the split-ring-resonator-like modes; the model compares favorably to the numerical results. The proposed resonator has the potential to be utilized effectively in integrated nano-scale optical switches and tunable filters.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. I. Bozhevolnyi, Plasmonic Nanoguides and Circuits (Pan Stanford Publishing Pte. Ltd., 2009).
  2. D. F. P. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi, and M. Fukui, “Two-dimensionally localized modes of a nanoscalegap plasmon waveguide,” Appl. Phys. Lett.87(26), 261114 (2005).
    [CrossRef]
  3. G. Veronis and S. Fan, “Bends and splitters in metal-dielectric-metalsubwavelength plasmonic waveguides,” Appl. Phys. Lett.87(13), 131102 (2005).
    [CrossRef]
  4. P. Berini, “Figures of merit for surface plasmon waveguides,” Opt. Express14(26), 13030–13042 (2006).
    [CrossRef] [PubMed]
  5. A. Hosseini and Y. Massoud, “Nanoscale surface plasmon based resonator using rectangular geometry,” Appl. Phys. Lett.90(18), 181102 (2007).
    [CrossRef]
  6. S. S. Xiao, L. Liu, and M. Qiu, “Resonator channel drop filters in a plasmon-polaritons metal,” Opt. Express14(7), 2932–2937 (2006).
    [CrossRef] [PubMed]
  7. Z. Han, V. Van, W. N. Herman, and P. T. Ho, “Aperture-coupled MIM plasmonic ring resonators with sub-diffraction modal volumes,” Opt. Express17(15), 12678–12684 (2009).
    [CrossRef] [PubMed]
  8. T. B. Wang, X. W. Wen, C. P. Yin, and H. Z. Wang, “The transmission characteristics of surface plasmon polaritons in ring resonator,” Opt. Express17(26), 24096–24101 (2009).
    [CrossRef] [PubMed]
  9. B. Yun, G. Hu, and Y. Cui, “Theoretical analysis of a nanoscale plasmonic filter based on a rectangular metal-insulator-metal waveguide,” J. Phys. D Appl. Phys.43(38), 385102 (2010).
    [CrossRef]
  10. J. Liu, G. Fang, H. Zhao, Y. Zhang, and S. Liu, “Plasmon flow control at gap waveguide junctions using square ring resonators,” J. Phys. D Appl. Phys.43(5), 055103 (2010).
    [CrossRef]
  11. J. Tao, Q. J. Wang, and X. G. Huang, “All-Optical plasmonic switches based on coupled nano-disk cavity structures containing nonlinear material,” Plasmonics6(4), 753–759 (2011).
    [CrossRef]
  12. I. Zand, A. Mahigir, T. Pakizeh, and M. S. Abrishamian, “Selective-mode optical nanofilters based on plasmonic complementary split-ring resonators,” Opt. Express20(7), 7516–7525 (2012).
    [CrossRef] [PubMed]
  13. Y. Matsuzaki, T. Okamoto, M. Haraguchi, M. Fukui, and M. Nakagaki, “Characteristics of gap plasmon waveguide with stub structures,” Opt. Express16(21), 16314–16325 (2008).
    [CrossRef] [PubMed]
  14. X. S. Lin and X. G. Huang, “Tooth-shaped plasmonic waveguide filters with nanometeric sizes,” Opt. Lett.33(23), 2874–2876 (2008).
    [CrossRef] [PubMed]
  15. A. Pannipitiya, I. D. Rukhlenko, M. Premaratne, H. T. Hattori, and G. P. Agrawal, “Improved transmission model for metal-dielectric-metal plasmonic waveguides with stub structure,” Opt. Express18(6), 6191–6204 (2010).
    [CrossRef] [PubMed]
  16. C. Minand and G. Veronis, “Absorption switches in metal-dielectric-metalplasmonic waveguides,” Opt. Express19, 10757–10766 (2009).
  17. I. Zand, M. Bahramipanah, M. S. Abrishamian, and J. M. Liu, “Metal-Insulator-Metal loop-stub structures,” IEEE Photonics4(6), 2136–2142 (2012).
    [CrossRef]
  18. Z.-J. Zhong, Y. Xu, S. Lan, Q.-F. Dai, and L.-J. Wu, “Sharp and asymmetric transmission response in metal-dielectric-metal plasmonic waveguides containing Kerr nonlinear media,” Opt. Express18(1), 79–86 (2010).
    [CrossRef] [PubMed]
  19. H. Lu, X. Liu, D. Mao, and G. Wang, “Plasmonic nanosensor based on Fano resonance in waveguide-coupled resonators,” Opt. Lett.37(18), 3780–3782 (2012).
    [PubMed]
  20. A. Noual, A. Akjouj, Y. Pennec, J.-N. Gillet, and B. Djafari-Rouhani, “Modeling of two-dimensional nanoscale Y-bent plasmonic waveguides with cavities for demultiplexing of the telecommunication wavelengths,” New J. Phys.11(10), 103020 (2009).
    [CrossRef]
  21. F. Hu, H. Yi, and Z. Zhou, “Wavelength demultiplexing structure based on arrayed plasmonic slot cavities,” Opt. Lett.36(8), 1500–1502 (2011).
    [CrossRef] [PubMed]
  22. I. Zand, M. S. Abrishamian, and T. Pakizeh, “Nanoplasmonic loaded slot cavities for wavelength filtering and demultiplexing,” IEEE J. Sel. Topics Quantum Electron. (Under Publication 10.1109/JSTQE.2012.2224645).
    [CrossRef]
  23. Q. Huang, R. Liang, P. Chen, S. Wang, and Y. Xu, “High resonant transmission contrast filter based on the dual side-coupled cavities plasmonic structure,” J. Opt. Soc. Am. B28(8), 1851–1853 (2011).
    [CrossRef]
  24. J. Tao, X. G. Huang, and J. H. Zhu, “A wavelength demultiplexing structure based on metal-dielectric-metal plasmonic nano-capillary resonators,” Opt. Express18(11), 11111–11116 (2010).
    [CrossRef] [PubMed]
  25. C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, Th. Koschny, and C. M. Soukoulis, “Magnetic metamaterials at telecommunication and visible frequencies,” Phys. Rev. Lett.95(20), 203901 (2005).
    [CrossRef] [PubMed]
  26. H. T. Chen, W. J. Padilla1, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature444, 597–600 (2006).
  27. T. D. Corrigan, P. W. Kolb, A. B. Sushkov, H. D. Drew, D. C. Schmadel, and R. J. Phaneuf, “Optical plasmonic resonances in split-ring resonator structures: an improved LC model,” Opt. Express16(24), 19850–19864 (2008).
    [CrossRef] [PubMed]
  28. J. Zhou, Th. Koschny, M. Kafesaki, E. N. Economou, J. B. Pendry, and C. M. Soukoulis, “Saturation of the Magnetic Response of Split-Ring Resonators at Optical Frequencies,” Phys. Rev. Lett.95(22), 223902 (2005).
    [CrossRef] [PubMed]
  29. D. M. Pozar, Microwave Engineering 2nd ed. (Wiley, New York, 1998).
  30. Z. H. Han, E. Forsberg, and S. He, “Surface plasmon bragg gratings formed in metal-insulator-metal waveguides,” IEEE Photon. Technol. Lett.19(2), 91–93 (2007).
    [CrossRef]
  31. J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B73(3), 035407 (2006).
    [CrossRef]
  32. S. F. A. Kettle, Symmetry and Structure: Readable Group Theory for Chemists, 3rd ed. (Wiley, 2007).
  33. A. Alù, M. Young, and N. Engheta, “Design of nanofilters for optical nanocircuits,” Phys. Rev. B77(14), 144107 (2008).
    [CrossRef]
  34. C. Manolatou, M. J. Khan, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, “Coupling of modes analysis of resonant channel add–drop filters,” IEEE J. Quantum Electron.35(9), 1322–1331 (1999).
    [CrossRef]

2012 (3)

2011 (3)

2010 (5)

2009 (4)

A. Noual, A. Akjouj, Y. Pennec, J.-N. Gillet, and B. Djafari-Rouhani, “Modeling of two-dimensional nanoscale Y-bent plasmonic waveguides with cavities for demultiplexing of the telecommunication wavelengths,” New J. Phys.11(10), 103020 (2009).
[CrossRef]

Z. Han, V. Van, W. N. Herman, and P. T. Ho, “Aperture-coupled MIM plasmonic ring resonators with sub-diffraction modal volumes,” Opt. Express17(15), 12678–12684 (2009).
[CrossRef] [PubMed]

T. B. Wang, X. W. Wen, C. P. Yin, and H. Z. Wang, “The transmission characteristics of surface plasmon polaritons in ring resonator,” Opt. Express17(26), 24096–24101 (2009).
[CrossRef] [PubMed]

C. Minand and G. Veronis, “Absorption switches in metal-dielectric-metalplasmonic waveguides,” Opt. Express19, 10757–10766 (2009).

2008 (4)

2007 (2)

Z. H. Han, E. Forsberg, and S. He, “Surface plasmon bragg gratings formed in metal-insulator-metal waveguides,” IEEE Photon. Technol. Lett.19(2), 91–93 (2007).
[CrossRef]

A. Hosseini and Y. Massoud, “Nanoscale surface plasmon based resonator using rectangular geometry,” Appl. Phys. Lett.90(18), 181102 (2007).
[CrossRef]

2006 (4)

S. S. Xiao, L. Liu, and M. Qiu, “Resonator channel drop filters in a plasmon-polaritons metal,” Opt. Express14(7), 2932–2937 (2006).
[CrossRef] [PubMed]

P. Berini, “Figures of merit for surface plasmon waveguides,” Opt. Express14(26), 13030–13042 (2006).
[CrossRef] [PubMed]

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B73(3), 035407 (2006).
[CrossRef]

H. T. Chen, W. J. Padilla1, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature444, 597–600 (2006).

2005 (4)

J. Zhou, Th. Koschny, M. Kafesaki, E. N. Economou, J. B. Pendry, and C. M. Soukoulis, “Saturation of the Magnetic Response of Split-Ring Resonators at Optical Frequencies,” Phys. Rev. Lett.95(22), 223902 (2005).
[CrossRef] [PubMed]

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, Th. Koschny, and C. M. Soukoulis, “Magnetic metamaterials at telecommunication and visible frequencies,” Phys. Rev. Lett.95(20), 203901 (2005).
[CrossRef] [PubMed]

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi, and M. Fukui, “Two-dimensionally localized modes of a nanoscalegap plasmon waveguide,” Appl. Phys. Lett.87(26), 261114 (2005).
[CrossRef]

G. Veronis and S. Fan, “Bends and splitters in metal-dielectric-metalsubwavelength plasmonic waveguides,” Appl. Phys. Lett.87(13), 131102 (2005).
[CrossRef]

1999 (1)

C. Manolatou, M. J. Khan, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, “Coupling of modes analysis of resonant channel add–drop filters,” IEEE J. Quantum Electron.35(9), 1322–1331 (1999).
[CrossRef]

Abrishamian, M. S.

I. Zand, A. Mahigir, T. Pakizeh, and M. S. Abrishamian, “Selective-mode optical nanofilters based on plasmonic complementary split-ring resonators,” Opt. Express20(7), 7516–7525 (2012).
[CrossRef] [PubMed]

I. Zand, M. Bahramipanah, M. S. Abrishamian, and J. M. Liu, “Metal-Insulator-Metal loop-stub structures,” IEEE Photonics4(6), 2136–2142 (2012).
[CrossRef]

Agrawal, G. P.

Akjouj, A.

A. Noual, A. Akjouj, Y. Pennec, J.-N. Gillet, and B. Djafari-Rouhani, “Modeling of two-dimensional nanoscale Y-bent plasmonic waveguides with cavities for demultiplexing of the telecommunication wavelengths,” New J. Phys.11(10), 103020 (2009).
[CrossRef]

Alù, A.

A. Alù, M. Young, and N. Engheta, “Design of nanofilters for optical nanocircuits,” Phys. Rev. B77(14), 144107 (2008).
[CrossRef]

Atwater, H. A.

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B73(3), 035407 (2006).
[CrossRef]

Averitt, R. D.

H. T. Chen, W. J. Padilla1, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature444, 597–600 (2006).

Bahramipanah, M.

I. Zand, M. Bahramipanah, M. S. Abrishamian, and J. M. Liu, “Metal-Insulator-Metal loop-stub structures,” IEEE Photonics4(6), 2136–2142 (2012).
[CrossRef]

Berini, P.

Burger, S.

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, Th. Koschny, and C. M. Soukoulis, “Magnetic metamaterials at telecommunication and visible frequencies,” Phys. Rev. Lett.95(20), 203901 (2005).
[CrossRef] [PubMed]

Chen, H. T.

H. T. Chen, W. J. Padilla1, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature444, 597–600 (2006).

Chen, P.

Corrigan, T. D.

Cui, Y.

B. Yun, G. Hu, and Y. Cui, “Theoretical analysis of a nanoscale plasmonic filter based on a rectangular metal-insulator-metal waveguide,” J. Phys. D Appl. Phys.43(38), 385102 (2010).
[CrossRef]

Dai, Q.-F.

Dionne, J. A.

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B73(3), 035407 (2006).
[CrossRef]

Djafari-Rouhani, B.

A. Noual, A. Akjouj, Y. Pennec, J.-N. Gillet, and B. Djafari-Rouhani, “Modeling of two-dimensional nanoscale Y-bent plasmonic waveguides with cavities for demultiplexing of the telecommunication wavelengths,” New J. Phys.11(10), 103020 (2009).
[CrossRef]

Drew, H. D.

Economou, E. N.

J. Zhou, Th. Koschny, M. Kafesaki, E. N. Economou, J. B. Pendry, and C. M. Soukoulis, “Saturation of the Magnetic Response of Split-Ring Resonators at Optical Frequencies,” Phys. Rev. Lett.95(22), 223902 (2005).
[CrossRef] [PubMed]

Engheta, N.

A. Alù, M. Young, and N. Engheta, “Design of nanofilters for optical nanocircuits,” Phys. Rev. B77(14), 144107 (2008).
[CrossRef]

Enkrich, C.

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, Th. Koschny, and C. M. Soukoulis, “Magnetic metamaterials at telecommunication and visible frequencies,” Phys. Rev. Lett.95(20), 203901 (2005).
[CrossRef] [PubMed]

Fan, S.

G. Veronis and S. Fan, “Bends and splitters in metal-dielectric-metalsubwavelength plasmonic waveguides,” Appl. Phys. Lett.87(13), 131102 (2005).
[CrossRef]

C. Manolatou, M. J. Khan, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, “Coupling of modes analysis of resonant channel add–drop filters,” IEEE J. Quantum Electron.35(9), 1322–1331 (1999).
[CrossRef]

Fang, G.

J. Liu, G. Fang, H. Zhao, Y. Zhang, and S. Liu, “Plasmon flow control at gap waveguide junctions using square ring resonators,” J. Phys. D Appl. Phys.43(5), 055103 (2010).
[CrossRef]

Forsberg, E.

Z. H. Han, E. Forsberg, and S. He, “Surface plasmon bragg gratings formed in metal-insulator-metal waveguides,” IEEE Photon. Technol. Lett.19(2), 91–93 (2007).
[CrossRef]

Fukui, M.

Y. Matsuzaki, T. Okamoto, M. Haraguchi, M. Fukui, and M. Nakagaki, “Characteristics of gap plasmon waveguide with stub structures,” Opt. Express16(21), 16314–16325 (2008).
[CrossRef] [PubMed]

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi, and M. Fukui, “Two-dimensionally localized modes of a nanoscalegap plasmon waveguide,” Appl. Phys. Lett.87(26), 261114 (2005).
[CrossRef]

Gillet, J.-N.

A. Noual, A. Akjouj, Y. Pennec, J.-N. Gillet, and B. Djafari-Rouhani, “Modeling of two-dimensional nanoscale Y-bent plasmonic waveguides with cavities for demultiplexing of the telecommunication wavelengths,” New J. Phys.11(10), 103020 (2009).
[CrossRef]

Gossard, A. C.

H. T. Chen, W. J. Padilla1, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature444, 597–600 (2006).

Gramotnev, D. K.

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi, and M. Fukui, “Two-dimensionally localized modes of a nanoscalegap plasmon waveguide,” Appl. Phys. Lett.87(26), 261114 (2005).
[CrossRef]

Han, Z.

Han, Z. H.

Z. H. Han, E. Forsberg, and S. He, “Surface plasmon bragg gratings formed in metal-insulator-metal waveguides,” IEEE Photon. Technol. Lett.19(2), 91–93 (2007).
[CrossRef]

Haraguchi, M.

Y. Matsuzaki, T. Okamoto, M. Haraguchi, M. Fukui, and M. Nakagaki, “Characteristics of gap plasmon waveguide with stub structures,” Opt. Express16(21), 16314–16325 (2008).
[CrossRef] [PubMed]

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi, and M. Fukui, “Two-dimensionally localized modes of a nanoscalegap plasmon waveguide,” Appl. Phys. Lett.87(26), 261114 (2005).
[CrossRef]

Hattori, H. T.

Haus, H. A.

C. Manolatou, M. J. Khan, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, “Coupling of modes analysis of resonant channel add–drop filters,” IEEE J. Quantum Electron.35(9), 1322–1331 (1999).
[CrossRef]

He, S.

Z. H. Han, E. Forsberg, and S. He, “Surface plasmon bragg gratings formed in metal-insulator-metal waveguides,” IEEE Photon. Technol. Lett.19(2), 91–93 (2007).
[CrossRef]

Herman, W. N.

Ho, P. T.

Hosseini, A.

A. Hosseini and Y. Massoud, “Nanoscale surface plasmon based resonator using rectangular geometry,” Appl. Phys. Lett.90(18), 181102 (2007).
[CrossRef]

Hu, F.

Hu, G.

B. Yun, G. Hu, and Y. Cui, “Theoretical analysis of a nanoscale plasmonic filter based on a rectangular metal-insulator-metal waveguide,” J. Phys. D Appl. Phys.43(38), 385102 (2010).
[CrossRef]

Huang, Q.

Huang, X. G.

Joannopoulos, J. D.

C. Manolatou, M. J. Khan, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, “Coupling of modes analysis of resonant channel add–drop filters,” IEEE J. Quantum Electron.35(9), 1322–1331 (1999).
[CrossRef]

Kafesaki, M.

J. Zhou, Th. Koschny, M. Kafesaki, E. N. Economou, J. B. Pendry, and C. M. Soukoulis, “Saturation of the Magnetic Response of Split-Ring Resonators at Optical Frequencies,” Phys. Rev. Lett.95(22), 223902 (2005).
[CrossRef] [PubMed]

Khan, M. J.

C. Manolatou, M. J. Khan, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, “Coupling of modes analysis of resonant channel add–drop filters,” IEEE J. Quantum Electron.35(9), 1322–1331 (1999).
[CrossRef]

Kolb, P. W.

Koschny, Th.

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, Th. Koschny, and C. M. Soukoulis, “Magnetic metamaterials at telecommunication and visible frequencies,” Phys. Rev. Lett.95(20), 203901 (2005).
[CrossRef] [PubMed]

J. Zhou, Th. Koschny, M. Kafesaki, E. N. Economou, J. B. Pendry, and C. M. Soukoulis, “Saturation of the Magnetic Response of Split-Ring Resonators at Optical Frequencies,” Phys. Rev. Lett.95(22), 223902 (2005).
[CrossRef] [PubMed]

Lan, S.

Liang, R.

Lin, X. S.

Linden, S.

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, Th. Koschny, and C. M. Soukoulis, “Magnetic metamaterials at telecommunication and visible frequencies,” Phys. Rev. Lett.95(20), 203901 (2005).
[CrossRef] [PubMed]

Liu, J.

J. Liu, G. Fang, H. Zhao, Y. Zhang, and S. Liu, “Plasmon flow control at gap waveguide junctions using square ring resonators,” J. Phys. D Appl. Phys.43(5), 055103 (2010).
[CrossRef]

Liu, J. M.

I. Zand, M. Bahramipanah, M. S. Abrishamian, and J. M. Liu, “Metal-Insulator-Metal loop-stub structures,” IEEE Photonics4(6), 2136–2142 (2012).
[CrossRef]

Liu, L.

Liu, S.

J. Liu, G. Fang, H. Zhao, Y. Zhang, and S. Liu, “Plasmon flow control at gap waveguide junctions using square ring resonators,” J. Phys. D Appl. Phys.43(5), 055103 (2010).
[CrossRef]

Liu, X.

Lu, H.

Mahigir, A.

Manolatou, C.

C. Manolatou, M. J. Khan, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, “Coupling of modes analysis of resonant channel add–drop filters,” IEEE J. Quantum Electron.35(9), 1322–1331 (1999).
[CrossRef]

Mao, D.

Massoud, Y.

A. Hosseini and Y. Massoud, “Nanoscale surface plasmon based resonator using rectangular geometry,” Appl. Phys. Lett.90(18), 181102 (2007).
[CrossRef]

Matsuzaki, Y.

Y. Matsuzaki, T. Okamoto, M. Haraguchi, M. Fukui, and M. Nakagaki, “Characteristics of gap plasmon waveguide with stub structures,” Opt. Express16(21), 16314–16325 (2008).
[CrossRef] [PubMed]

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi, and M. Fukui, “Two-dimensionally localized modes of a nanoscalegap plasmon waveguide,” Appl. Phys. Lett.87(26), 261114 (2005).
[CrossRef]

Minand, C.

C. Minand and G. Veronis, “Absorption switches in metal-dielectric-metalplasmonic waveguides,” Opt. Express19, 10757–10766 (2009).

Nakagaki, M.

Noual, A.

A. Noual, A. Akjouj, Y. Pennec, J.-N. Gillet, and B. Djafari-Rouhani, “Modeling of two-dimensional nanoscale Y-bent plasmonic waveguides with cavities for demultiplexing of the telecommunication wavelengths,” New J. Phys.11(10), 103020 (2009).
[CrossRef]

Ogawa, T.

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi, and M. Fukui, “Two-dimensionally localized modes of a nanoscalegap plasmon waveguide,” Appl. Phys. Lett.87(26), 261114 (2005).
[CrossRef]

Okamoto, T.

Y. Matsuzaki, T. Okamoto, M. Haraguchi, M. Fukui, and M. Nakagaki, “Characteristics of gap plasmon waveguide with stub structures,” Opt. Express16(21), 16314–16325 (2008).
[CrossRef] [PubMed]

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi, and M. Fukui, “Two-dimensionally localized modes of a nanoscalegap plasmon waveguide,” Appl. Phys. Lett.87(26), 261114 (2005).
[CrossRef]

Padilla1, W. J.

H. T. Chen, W. J. Padilla1, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature444, 597–600 (2006).

Pakizeh, T.

Pannipitiya, A.

Pendry, J. B.

J. Zhou, Th. Koschny, M. Kafesaki, E. N. Economou, J. B. Pendry, and C. M. Soukoulis, “Saturation of the Magnetic Response of Split-Ring Resonators at Optical Frequencies,” Phys. Rev. Lett.95(22), 223902 (2005).
[CrossRef] [PubMed]

Pennec, Y.

A. Noual, A. Akjouj, Y. Pennec, J.-N. Gillet, and B. Djafari-Rouhani, “Modeling of two-dimensional nanoscale Y-bent plasmonic waveguides with cavities for demultiplexing of the telecommunication wavelengths,” New J. Phys.11(10), 103020 (2009).
[CrossRef]

Phaneuf, R. J.

Pile, D. F. P.

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi, and M. Fukui, “Two-dimensionally localized modes of a nanoscalegap plasmon waveguide,” Appl. Phys. Lett.87(26), 261114 (2005).
[CrossRef]

Polman, A.

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B73(3), 035407 (2006).
[CrossRef]

Premaratne, M.

Qiu, M.

Rukhlenko, I. D.

Schmadel, D. C.

Schmidt, F.

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, Th. Koschny, and C. M. Soukoulis, “Magnetic metamaterials at telecommunication and visible frequencies,” Phys. Rev. Lett.95(20), 203901 (2005).
[CrossRef] [PubMed]

Soukoulis, C. M.

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, Th. Koschny, and C. M. Soukoulis, “Magnetic metamaterials at telecommunication and visible frequencies,” Phys. Rev. Lett.95(20), 203901 (2005).
[CrossRef] [PubMed]

J. Zhou, Th. Koschny, M. Kafesaki, E. N. Economou, J. B. Pendry, and C. M. Soukoulis, “Saturation of the Magnetic Response of Split-Ring Resonators at Optical Frequencies,” Phys. Rev. Lett.95(22), 223902 (2005).
[CrossRef] [PubMed]

Sushkov, A. B.

Sweatlock, L. A.

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B73(3), 035407 (2006).
[CrossRef]

Tao, J.

J. Tao, Q. J. Wang, and X. G. Huang, “All-Optical plasmonic switches based on coupled nano-disk cavity structures containing nonlinear material,” Plasmonics6(4), 753–759 (2011).
[CrossRef]

J. Tao, X. G. Huang, and J. H. Zhu, “A wavelength demultiplexing structure based on metal-dielectric-metal plasmonic nano-capillary resonators,” Opt. Express18(11), 11111–11116 (2010).
[CrossRef] [PubMed]

Taylor, A. J.

H. T. Chen, W. J. Padilla1, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature444, 597–600 (2006).

Van, V.

Vernon, K. C.

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi, and M. Fukui, “Two-dimensionally localized modes of a nanoscalegap plasmon waveguide,” Appl. Phys. Lett.87(26), 261114 (2005).
[CrossRef]

Veronis, G.

C. Minand and G. Veronis, “Absorption switches in metal-dielectric-metalplasmonic waveguides,” Opt. Express19, 10757–10766 (2009).

G. Veronis and S. Fan, “Bends and splitters in metal-dielectric-metalsubwavelength plasmonic waveguides,” Appl. Phys. Lett.87(13), 131102 (2005).
[CrossRef]

Villeneuve, P. R.

C. Manolatou, M. J. Khan, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, “Coupling of modes analysis of resonant channel add–drop filters,” IEEE J. Quantum Electron.35(9), 1322–1331 (1999).
[CrossRef]

Wang, G.

Wang, H. Z.

Wang, Q. J.

J. Tao, Q. J. Wang, and X. G. Huang, “All-Optical plasmonic switches based on coupled nano-disk cavity structures containing nonlinear material,” Plasmonics6(4), 753–759 (2011).
[CrossRef]

Wang, S.

Wang, T. B.

Wegener, M.

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, Th. Koschny, and C. M. Soukoulis, “Magnetic metamaterials at telecommunication and visible frequencies,” Phys. Rev. Lett.95(20), 203901 (2005).
[CrossRef] [PubMed]

Wen, X. W.

Wu, L.-J.

Xiao, S. S.

Xu, Y.

Yamaguchi, K.

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi, and M. Fukui, “Two-dimensionally localized modes of a nanoscalegap plasmon waveguide,” Appl. Phys. Lett.87(26), 261114 (2005).
[CrossRef]

Yi, H.

Yin, C. P.

Young, M.

A. Alù, M. Young, and N. Engheta, “Design of nanofilters for optical nanocircuits,” Phys. Rev. B77(14), 144107 (2008).
[CrossRef]

Yun, B.

B. Yun, G. Hu, and Y. Cui, “Theoretical analysis of a nanoscale plasmonic filter based on a rectangular metal-insulator-metal waveguide,” J. Phys. D Appl. Phys.43(38), 385102 (2010).
[CrossRef]

Zand, I.

I. Zand, M. Bahramipanah, M. S. Abrishamian, and J. M. Liu, “Metal-Insulator-Metal loop-stub structures,” IEEE Photonics4(6), 2136–2142 (2012).
[CrossRef]

I. Zand, A. Mahigir, T. Pakizeh, and M. S. Abrishamian, “Selective-mode optical nanofilters based on plasmonic complementary split-ring resonators,” Opt. Express20(7), 7516–7525 (2012).
[CrossRef] [PubMed]

Zhang, Y.

J. Liu, G. Fang, H. Zhao, Y. Zhang, and S. Liu, “Plasmon flow control at gap waveguide junctions using square ring resonators,” J. Phys. D Appl. Phys.43(5), 055103 (2010).
[CrossRef]

Zhao, H.

J. Liu, G. Fang, H. Zhao, Y. Zhang, and S. Liu, “Plasmon flow control at gap waveguide junctions using square ring resonators,” J. Phys. D Appl. Phys.43(5), 055103 (2010).
[CrossRef]

Zhong, Z.-J.

Zhou, J.

J. Zhou, Th. Koschny, M. Kafesaki, E. N. Economou, J. B. Pendry, and C. M. Soukoulis, “Saturation of the Magnetic Response of Split-Ring Resonators at Optical Frequencies,” Phys. Rev. Lett.95(22), 223902 (2005).
[CrossRef] [PubMed]

Zhou, J. F.

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, Th. Koschny, and C. M. Soukoulis, “Magnetic metamaterials at telecommunication and visible frequencies,” Phys. Rev. Lett.95(20), 203901 (2005).
[CrossRef] [PubMed]

Zhou, Z.

Zhu, J. H.

Zide, J. M. O.

H. T. Chen, W. J. Padilla1, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature444, 597–600 (2006).

Zschiedrich, L.

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, Th. Koschny, and C. M. Soukoulis, “Magnetic metamaterials at telecommunication and visible frequencies,” Phys. Rev. Lett.95(20), 203901 (2005).
[CrossRef] [PubMed]

Appl. Phys. Lett. (3)

A. Hosseini and Y. Massoud, “Nanoscale surface plasmon based resonator using rectangular geometry,” Appl. Phys. Lett.90(18), 181102 (2007).
[CrossRef]

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi, and M. Fukui, “Two-dimensionally localized modes of a nanoscalegap plasmon waveguide,” Appl. Phys. Lett.87(26), 261114 (2005).
[CrossRef]

G. Veronis and S. Fan, “Bends and splitters in metal-dielectric-metalsubwavelength plasmonic waveguides,” Appl. Phys. Lett.87(13), 131102 (2005).
[CrossRef]

IEEE J. Quantum Electron. (1)

C. Manolatou, M. J. Khan, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, “Coupling of modes analysis of resonant channel add–drop filters,” IEEE J. Quantum Electron.35(9), 1322–1331 (1999).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

Z. H. Han, E. Forsberg, and S. He, “Surface plasmon bragg gratings formed in metal-insulator-metal waveguides,” IEEE Photon. Technol. Lett.19(2), 91–93 (2007).
[CrossRef]

IEEE Photonics (1)

I. Zand, M. Bahramipanah, M. S. Abrishamian, and J. M. Liu, “Metal-Insulator-Metal loop-stub structures,” IEEE Photonics4(6), 2136–2142 (2012).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Phys. D Appl. Phys. (2)

B. Yun, G. Hu, and Y. Cui, “Theoretical analysis of a nanoscale plasmonic filter based on a rectangular metal-insulator-metal waveguide,” J. Phys. D Appl. Phys.43(38), 385102 (2010).
[CrossRef]

J. Liu, G. Fang, H. Zhao, Y. Zhang, and S. Liu, “Plasmon flow control at gap waveguide junctions using square ring resonators,” J. Phys. D Appl. Phys.43(5), 055103 (2010).
[CrossRef]

Nature (1)

H. T. Chen, W. J. Padilla1, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature444, 597–600 (2006).

New J. Phys. (1)

A. Noual, A. Akjouj, Y. Pennec, J.-N. Gillet, and B. Djafari-Rouhani, “Modeling of two-dimensional nanoscale Y-bent plasmonic waveguides with cavities for demultiplexing of the telecommunication wavelengths,” New J. Phys.11(10), 103020 (2009).
[CrossRef]

Opt. Express (11)

Z.-J. Zhong, Y. Xu, S. Lan, Q.-F. Dai, and L.-J. Wu, “Sharp and asymmetric transmission response in metal-dielectric-metal plasmonic waveguides containing Kerr nonlinear media,” Opt. Express18(1), 79–86 (2010).
[CrossRef] [PubMed]

I. Zand, A. Mahigir, T. Pakizeh, and M. S. Abrishamian, “Selective-mode optical nanofilters based on plasmonic complementary split-ring resonators,” Opt. Express20(7), 7516–7525 (2012).
[CrossRef] [PubMed]

Y. Matsuzaki, T. Okamoto, M. Haraguchi, M. Fukui, and M. Nakagaki, “Characteristics of gap plasmon waveguide with stub structures,” Opt. Express16(21), 16314–16325 (2008).
[CrossRef] [PubMed]

A. Pannipitiya, I. D. Rukhlenko, M. Premaratne, H. T. Hattori, and G. P. Agrawal, “Improved transmission model for metal-dielectric-metal plasmonic waveguides with stub structure,” Opt. Express18(6), 6191–6204 (2010).
[CrossRef] [PubMed]

C. Minand and G. Veronis, “Absorption switches in metal-dielectric-metalplasmonic waveguides,” Opt. Express19, 10757–10766 (2009).

P. Berini, “Figures of merit for surface plasmon waveguides,” Opt. Express14(26), 13030–13042 (2006).
[CrossRef] [PubMed]

S. S. Xiao, L. Liu, and M. Qiu, “Resonator channel drop filters in a plasmon-polaritons metal,” Opt. Express14(7), 2932–2937 (2006).
[CrossRef] [PubMed]

Z. Han, V. Van, W. N. Herman, and P. T. Ho, “Aperture-coupled MIM plasmonic ring resonators with sub-diffraction modal volumes,” Opt. Express17(15), 12678–12684 (2009).
[CrossRef] [PubMed]

T. B. Wang, X. W. Wen, C. P. Yin, and H. Z. Wang, “The transmission characteristics of surface plasmon polaritons in ring resonator,” Opt. Express17(26), 24096–24101 (2009).
[CrossRef] [PubMed]

T. D. Corrigan, P. W. Kolb, A. B. Sushkov, H. D. Drew, D. C. Schmadel, and R. J. Phaneuf, “Optical plasmonic resonances in split-ring resonator structures: an improved LC model,” Opt. Express16(24), 19850–19864 (2008).
[CrossRef] [PubMed]

J. Tao, X. G. Huang, and J. H. Zhu, “A wavelength demultiplexing structure based on metal-dielectric-metal plasmonic nano-capillary resonators,” Opt. Express18(11), 11111–11116 (2010).
[CrossRef] [PubMed]

Opt. Lett. (3)

Phys. Rev. B (2)

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B73(3), 035407 (2006).
[CrossRef]

A. Alù, M. Young, and N. Engheta, “Design of nanofilters for optical nanocircuits,” Phys. Rev. B77(14), 144107 (2008).
[CrossRef]

Phys. Rev. Lett. (2)

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, Th. Koschny, and C. M. Soukoulis, “Magnetic metamaterials at telecommunication and visible frequencies,” Phys. Rev. Lett.95(20), 203901 (2005).
[CrossRef] [PubMed]

J. Zhou, Th. Koschny, M. Kafesaki, E. N. Economou, J. B. Pendry, and C. M. Soukoulis, “Saturation of the Magnetic Response of Split-Ring Resonators at Optical Frequencies,” Phys. Rev. Lett.95(22), 223902 (2005).
[CrossRef] [PubMed]

Plasmonics (1)

J. Tao, Q. J. Wang, and X. G. Huang, “All-Optical plasmonic switches based on coupled nano-disk cavity structures containing nonlinear material,” Plasmonics6(4), 753–759 (2011).
[CrossRef]

Other (4)

I. Zand, M. S. Abrishamian, and T. Pakizeh, “Nanoplasmonic loaded slot cavities for wavelength filtering and demultiplexing,” IEEE J. Sel. Topics Quantum Electron. (Under Publication 10.1109/JSTQE.2012.2224645).
[CrossRef]

D. M. Pozar, Microwave Engineering 2nd ed. (Wiley, New York, 1998).

S. F. A. Kettle, Symmetry and Structure: Readable Group Theory for Chemists, 3rd ed. (Wiley, 2007).

S. I. Bozhevolnyi, Plasmonic Nanoguides and Circuits (Pan Stanford Publishing Pte. Ltd., 2009).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) Schematic of the proposed resonator based on a SRC. The blue region in the gap of the SRC represents a material that would be incorporated for tuning purposes. (b) Schematic of the magnetic field distribution and corresponding electric field vectors of the TM1, TM2c and TM2f modes of SRCRR; blue (red) circles indicate maxima (minima) in magnetic field, and the black vectors represent electric fields. (c) Equivalent circuit of the SRCRR based on the transmission-line model.

Fig. 2
Fig. 2

(a) Comparison of transmission spectra of the SRCRRh (solid blue curve) and SRCRRv (dashed red curve) structures for g = 40 nm. The magnetic field distributions on resonance are also shown. (b) Resonant modes of the square ring of the same dimensions as the SRCRR.

Fig. 3
Fig. 3

Resonant wavelength of the SRCRR modes as a function of (a) gap size of the SRC (g), and (b) the refractive index of the material in the gap of the SRC. The bulk sensitivity of the structure is also plotted in Fig. 3(b). The resonant wavelengths of the TMg1 and TMg2 modes calculated by the FDTD method (symbols) are compared with those calculated using the equivalent transmission-line model (solid lines).

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

Z SRC =R+iω( L m + L e )+1/iωC
Z= Z 0 ( Z SRC /2)+i Z 0 tan(β L eff /2) Z 0 +i( Z SRC /2)tan(β L eff /2)
| T |=| 1 (1/ τ e1 ) / (i(ω ω 0 )+1/ τ 0 +1/ τ e ) |
| T |=| (1/ τ 0 ) / (1/ τ 0 +1/ τ e ) |

Metrics