Abstract

A common problem of light sources emitting from an homogeneous high-refractive index medium into air is the loss of photons by total internal reflection. Bioluminescent organisms, as well as artificial devices, have to face this problem. It is expected that life, with its mechanisms for evolution, would have selected appropriate optical structures to get around this problem, at least partially. The morphology of the lantern of a specific firefly in the genus Photuris has been examined. The optical properties of the different parts of this lantern have been modelled, in order to determine their positive or adverse effect with regard to the global light extraction. We conclude that the most efficient pieces of the lantern structure are the misfit of the external scales (which produce abrupt roughness in air) and the lowering of the refractive index at the level of the cluster of photocytes, where the bioluminescent production takes place.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Vezzi, S. Campanaro, M. D’Angelo, F. Simonato, N. Vitulo, F. M. Lauro, A. Cestaro, G. Malacrida, B. Simionati, N. Cannata, C. Romualdi, D. H. Bartlett, and G. Valle, “Life at depth: Photobacterium profundum genome sequence and expression analysis,” Science 307(5714), 1459–1461 (2005).
    [CrossRef] [PubMed]
  2. H. Ghiradella, “The anatomy of light production : The fine structure of the firefly lantern,” In Microscopic Anatomy of Invertebrates11A : Insecta (Wiley-Liss, 1998) pp. 363–381.
  3. R.F. Chapman, The Insects. Structure and Function. 4th ed., (Cambridge University Press, Cambridge UK, 1998).
    [CrossRef]
  4. J.E. Lloyd, “Aggressive mimicry in Photuris : firefly femmes fatales,” Science 149, 653–654 (1965).
    [CrossRef] [PubMed]
  5. T. Eisner, M. A. Goetz, D. E. Hill, S. R. Smedley, and J. Meinwald, “Firefly “femmes fatales” acquire defensive steroids (lucibufagins) from their firefly prey,” Proc. Natl. Acad. Sci. USA 94, 9723–9728 (1997).
    [CrossRef] [PubMed]
  6. A. Bay and J. P. Vigneron, “Light extraction from the bioluminescent organs of fireflies,” Proc. SPIE 7401, Biomimetics and Bioinspiration 740108 (2009).
    [CrossRef]
  7. H. Benisty, “Physics of light extraction efficiency in planar microcavity light-emitting diodes,” in Lecture Notes in Physics: Confined Photon Systems (Springer, Berlin1999) vol. 531, pp. 393–405.
    [CrossRef]
  8. P. Vandersteegen, A. U. Nieto, C. Van Buggenhout, S. Verstuyft, P. Bienstman, P. Debackere, K. Neyts, and R. Baets, “Employing a 2D surface grating to improve light out coupling of a substrate emitting organic LED,” Proc. SPIE 6486, Light-Emitting Diodes: Research, Manufacturing, and Applications XI 64860H, DOI: (2007).
    [CrossRef]
  9. P. Vandersteegen, S. Mladenovski, V. Van Elsbergen, G. Gartner, P. Bienstman, K. Neyts, and R. Baets, “Light extraction for a doubly resonant cavity organic LED: the RC2LED,” Proc. SPIE 6655, Organic Light Emitting Materials and Devices XI 665513, DOI: (2007).
    [CrossRef]
  10. I. B. J. Sollas, “On the identification of chitin by its physical constants,” Proc. Roy. Soc. B - Biol. Sci. 79 (534), 474–481 (1907).
    [CrossRef]
  11. P. Vukusic, J.R. Sambles, C.R. Lawrence, and R.J. Wootton, “Quantified interference and diffraction in single Morpho butterfly scales,” P. Roy. Soc. B - Biol. Sci. 266, 1403–1411 (1999).
    [CrossRef]
  12. S. Yoshioka and S. Kinoshita, Phys. Rev. E, 83, 051917 (2011).
    [CrossRef]
  13. G. Forsythe, M. Malcolm, and C. Moler, Computer Methods for Mathematical Computations, (Prentice-Hall, Englewood Cliffs, NJ1977).
  14. C. de Duve, “The peroxisome: a new cytoplasmic organelle,” P. Roy. Soc. B - Biol. Sci. 173 (30), 71–83 (1969).
    [CrossRef]
  15. P. Vukusic and I. Hooper, “Directionally controlled fluorescence emission in butterflies,” Science 310(5751), 1151 (2005).
    [CrossRef] [PubMed]
  16. J.P. Vigneron and V. Lousse, “Variation of a photonic crystal color with the Miller indices of the exposed surface,” Proc. SPIE conference 6128: Photonic Crystal Materials and Devices IV 6128, 1G 1–10 (2006).
  17. V. Lousse, J.-P. Vigneron, X. Bouju, and J.-M. Vigoureux, “Atomic radiation rates in photonic crystals,” Phys. Rev. B 64(20), 201104(R) (2001).
    [CrossRef]
  18. L. De Vico, Y.-J. Liu, and R. Lindh, “Ab initio investigation on the chemical origin of the firefly bioluminescence,” J. Photoch. Photobio. A 194, 261–267 (2008).
    [CrossRef]
  19. J.P. Vigneron, J.-F. Colomer, N. Vigneron, and V. Lousse, “Natural layer-by-layer photonic structure in the squamae of Hoplia coerulea (Coleoptera),” Phys. Rev. E 72, 061904 (2005).
    [CrossRef]
  20. P. Cloetens, W. Ludwig, J. Baruchel, D. Van Dyck, J. Van Landuyt, J. P. Guigay, and M. Schlenker, “Holotomography: Quantitative phase tomography with micrometer resolution using hard synchrotron x rays,” Appl. Phys. Lett. 75 (19), 2912–2914 (1999)
    [CrossRef]
  21. M. G. Moharam and T. K. Gaylord, “Rigorous coupled-wave analysis of planar-grating diffraction,” J. Opt. Soc. Am. 71, 811–818 (1981)
    [CrossRef]

2011

S. Yoshioka and S. Kinoshita, Phys. Rev. E, 83, 051917 (2011).
[CrossRef]

2009

A. Bay and J. P. Vigneron, “Light extraction from the bioluminescent organs of fireflies,” Proc. SPIE 7401, Biomimetics and Bioinspiration 740108 (2009).
[CrossRef]

2008

L. De Vico, Y.-J. Liu, and R. Lindh, “Ab initio investigation on the chemical origin of the firefly bioluminescence,” J. Photoch. Photobio. A 194, 261–267 (2008).
[CrossRef]

2007

P. Vandersteegen, A. U. Nieto, C. Van Buggenhout, S. Verstuyft, P. Bienstman, P. Debackere, K. Neyts, and R. Baets, “Employing a 2D surface grating to improve light out coupling of a substrate emitting organic LED,” Proc. SPIE 6486, Light-Emitting Diodes: Research, Manufacturing, and Applications XI 64860H, DOI: (2007).
[CrossRef]

P. Vandersteegen, S. Mladenovski, V. Van Elsbergen, G. Gartner, P. Bienstman, K. Neyts, and R. Baets, “Light extraction for a doubly resonant cavity organic LED: the RC2LED,” Proc. SPIE 6655, Organic Light Emitting Materials and Devices XI 665513, DOI: (2007).
[CrossRef]

2006

J.P. Vigneron and V. Lousse, “Variation of a photonic crystal color with the Miller indices of the exposed surface,” Proc. SPIE conference 6128: Photonic Crystal Materials and Devices IV 6128, 1G 1–10 (2006).

2005

J.P. Vigneron, J.-F. Colomer, N. Vigneron, and V. Lousse, “Natural layer-by-layer photonic structure in the squamae of Hoplia coerulea (Coleoptera),” Phys. Rev. E 72, 061904 (2005).
[CrossRef]

A. Vezzi, S. Campanaro, M. D’Angelo, F. Simonato, N. Vitulo, F. M. Lauro, A. Cestaro, G. Malacrida, B. Simionati, N. Cannata, C. Romualdi, D. H. Bartlett, and G. Valle, “Life at depth: Photobacterium profundum genome sequence and expression analysis,” Science 307(5714), 1459–1461 (2005).
[CrossRef] [PubMed]

P. Vukusic and I. Hooper, “Directionally controlled fluorescence emission in butterflies,” Science 310(5751), 1151 (2005).
[CrossRef] [PubMed]

2001

V. Lousse, J.-P. Vigneron, X. Bouju, and J.-M. Vigoureux, “Atomic radiation rates in photonic crystals,” Phys. Rev. B 64(20), 201104(R) (2001).
[CrossRef]

1999

P. Cloetens, W. Ludwig, J. Baruchel, D. Van Dyck, J. Van Landuyt, J. P. Guigay, and M. Schlenker, “Holotomography: Quantitative phase tomography with micrometer resolution using hard synchrotron x rays,” Appl. Phys. Lett. 75 (19), 2912–2914 (1999)
[CrossRef]

P. Vukusic, J.R. Sambles, C.R. Lawrence, and R.J. Wootton, “Quantified interference and diffraction in single Morpho butterfly scales,” P. Roy. Soc. B - Biol. Sci. 266, 1403–1411 (1999).
[CrossRef]

1997

T. Eisner, M. A. Goetz, D. E. Hill, S. R. Smedley, and J. Meinwald, “Firefly “femmes fatales” acquire defensive steroids (lucibufagins) from their firefly prey,” Proc. Natl. Acad. Sci. USA 94, 9723–9728 (1997).
[CrossRef] [PubMed]

1981

1969

C. de Duve, “The peroxisome: a new cytoplasmic organelle,” P. Roy. Soc. B - Biol. Sci. 173 (30), 71–83 (1969).
[CrossRef]

1965

J.E. Lloyd, “Aggressive mimicry in Photuris : firefly femmes fatales,” Science 149, 653–654 (1965).
[CrossRef] [PubMed]

1907

I. B. J. Sollas, “On the identification of chitin by its physical constants,” Proc. Roy. Soc. B - Biol. Sci. 79 (534), 474–481 (1907).
[CrossRef]

Baets, R.

P. Vandersteegen, A. U. Nieto, C. Van Buggenhout, S. Verstuyft, P. Bienstman, P. Debackere, K. Neyts, and R. Baets, “Employing a 2D surface grating to improve light out coupling of a substrate emitting organic LED,” Proc. SPIE 6486, Light-Emitting Diodes: Research, Manufacturing, and Applications XI 64860H, DOI: (2007).
[CrossRef]

P. Vandersteegen, S. Mladenovski, V. Van Elsbergen, G. Gartner, P. Bienstman, K. Neyts, and R. Baets, “Light extraction for a doubly resonant cavity organic LED: the RC2LED,” Proc. SPIE 6655, Organic Light Emitting Materials and Devices XI 665513, DOI: (2007).
[CrossRef]

Bartlett, D. H.

A. Vezzi, S. Campanaro, M. D’Angelo, F. Simonato, N. Vitulo, F. M. Lauro, A. Cestaro, G. Malacrida, B. Simionati, N. Cannata, C. Romualdi, D. H. Bartlett, and G. Valle, “Life at depth: Photobacterium profundum genome sequence and expression analysis,” Science 307(5714), 1459–1461 (2005).
[CrossRef] [PubMed]

Baruchel, J.

P. Cloetens, W. Ludwig, J. Baruchel, D. Van Dyck, J. Van Landuyt, J. P. Guigay, and M. Schlenker, “Holotomography: Quantitative phase tomography with micrometer resolution using hard synchrotron x rays,” Appl. Phys. Lett. 75 (19), 2912–2914 (1999)
[CrossRef]

Bay, A.

A. Bay and J. P. Vigneron, “Light extraction from the bioluminescent organs of fireflies,” Proc. SPIE 7401, Biomimetics and Bioinspiration 740108 (2009).
[CrossRef]

Benisty, H.

H. Benisty, “Physics of light extraction efficiency in planar microcavity light-emitting diodes,” in Lecture Notes in Physics: Confined Photon Systems (Springer, Berlin1999) vol. 531, pp. 393–405.
[CrossRef]

Bienstman, P.

P. Vandersteegen, A. U. Nieto, C. Van Buggenhout, S. Verstuyft, P. Bienstman, P. Debackere, K. Neyts, and R. Baets, “Employing a 2D surface grating to improve light out coupling of a substrate emitting organic LED,” Proc. SPIE 6486, Light-Emitting Diodes: Research, Manufacturing, and Applications XI 64860H, DOI: (2007).
[CrossRef]

P. Vandersteegen, S. Mladenovski, V. Van Elsbergen, G. Gartner, P. Bienstman, K. Neyts, and R. Baets, “Light extraction for a doubly resonant cavity organic LED: the RC2LED,” Proc. SPIE 6655, Organic Light Emitting Materials and Devices XI 665513, DOI: (2007).
[CrossRef]

Bouju, X.

V. Lousse, J.-P. Vigneron, X. Bouju, and J.-M. Vigoureux, “Atomic radiation rates in photonic crystals,” Phys. Rev. B 64(20), 201104(R) (2001).
[CrossRef]

Campanaro, S.

A. Vezzi, S. Campanaro, M. D’Angelo, F. Simonato, N. Vitulo, F. M. Lauro, A. Cestaro, G. Malacrida, B. Simionati, N. Cannata, C. Romualdi, D. H. Bartlett, and G. Valle, “Life at depth: Photobacterium profundum genome sequence and expression analysis,” Science 307(5714), 1459–1461 (2005).
[CrossRef] [PubMed]

Cannata, N.

A. Vezzi, S. Campanaro, M. D’Angelo, F. Simonato, N. Vitulo, F. M. Lauro, A. Cestaro, G. Malacrida, B. Simionati, N. Cannata, C. Romualdi, D. H. Bartlett, and G. Valle, “Life at depth: Photobacterium profundum genome sequence and expression analysis,” Science 307(5714), 1459–1461 (2005).
[CrossRef] [PubMed]

Cestaro, A.

A. Vezzi, S. Campanaro, M. D’Angelo, F. Simonato, N. Vitulo, F. M. Lauro, A. Cestaro, G. Malacrida, B. Simionati, N. Cannata, C. Romualdi, D. H. Bartlett, and G. Valle, “Life at depth: Photobacterium profundum genome sequence and expression analysis,” Science 307(5714), 1459–1461 (2005).
[CrossRef] [PubMed]

Chapman, R.F.

R.F. Chapman, The Insects. Structure and Function. 4th ed., (Cambridge University Press, Cambridge UK, 1998).
[CrossRef]

Cloetens, P.

P. Cloetens, W. Ludwig, J. Baruchel, D. Van Dyck, J. Van Landuyt, J. P. Guigay, and M. Schlenker, “Holotomography: Quantitative phase tomography with micrometer resolution using hard synchrotron x rays,” Appl. Phys. Lett. 75 (19), 2912–2914 (1999)
[CrossRef]

Colomer, J.-F.

J.P. Vigneron, J.-F. Colomer, N. Vigneron, and V. Lousse, “Natural layer-by-layer photonic structure in the squamae of Hoplia coerulea (Coleoptera),” Phys. Rev. E 72, 061904 (2005).
[CrossRef]

D’Angelo, M.

A. Vezzi, S. Campanaro, M. D’Angelo, F. Simonato, N. Vitulo, F. M. Lauro, A. Cestaro, G. Malacrida, B. Simionati, N. Cannata, C. Romualdi, D. H. Bartlett, and G. Valle, “Life at depth: Photobacterium profundum genome sequence and expression analysis,” Science 307(5714), 1459–1461 (2005).
[CrossRef] [PubMed]

de Duve, C.

C. de Duve, “The peroxisome: a new cytoplasmic organelle,” P. Roy. Soc. B - Biol. Sci. 173 (30), 71–83 (1969).
[CrossRef]

De Vico, L.

L. De Vico, Y.-J. Liu, and R. Lindh, “Ab initio investigation on the chemical origin of the firefly bioluminescence,” J. Photoch. Photobio. A 194, 261–267 (2008).
[CrossRef]

Debackere, P.

P. Vandersteegen, A. U. Nieto, C. Van Buggenhout, S. Verstuyft, P. Bienstman, P. Debackere, K. Neyts, and R. Baets, “Employing a 2D surface grating to improve light out coupling of a substrate emitting organic LED,” Proc. SPIE 6486, Light-Emitting Diodes: Research, Manufacturing, and Applications XI 64860H, DOI: (2007).
[CrossRef]

Eisner, T.

T. Eisner, M. A. Goetz, D. E. Hill, S. R. Smedley, and J. Meinwald, “Firefly “femmes fatales” acquire defensive steroids (lucibufagins) from their firefly prey,” Proc. Natl. Acad. Sci. USA 94, 9723–9728 (1997).
[CrossRef] [PubMed]

Forsythe, G.

G. Forsythe, M. Malcolm, and C. Moler, Computer Methods for Mathematical Computations, (Prentice-Hall, Englewood Cliffs, NJ1977).

Gartner, G.

P. Vandersteegen, S. Mladenovski, V. Van Elsbergen, G. Gartner, P. Bienstman, K. Neyts, and R. Baets, “Light extraction for a doubly resonant cavity organic LED: the RC2LED,” Proc. SPIE 6655, Organic Light Emitting Materials and Devices XI 665513, DOI: (2007).
[CrossRef]

Gaylord, T. K.

Ghiradella, H.

H. Ghiradella, “The anatomy of light production : The fine structure of the firefly lantern,” In Microscopic Anatomy of Invertebrates11A : Insecta (Wiley-Liss, 1998) pp. 363–381.

Goetz, M. A.

T. Eisner, M. A. Goetz, D. E. Hill, S. R. Smedley, and J. Meinwald, “Firefly “femmes fatales” acquire defensive steroids (lucibufagins) from their firefly prey,” Proc. Natl. Acad. Sci. USA 94, 9723–9728 (1997).
[CrossRef] [PubMed]

Guigay, J. P.

P. Cloetens, W. Ludwig, J. Baruchel, D. Van Dyck, J. Van Landuyt, J. P. Guigay, and M. Schlenker, “Holotomography: Quantitative phase tomography with micrometer resolution using hard synchrotron x rays,” Appl. Phys. Lett. 75 (19), 2912–2914 (1999)
[CrossRef]

Hill, D. E.

T. Eisner, M. A. Goetz, D. E. Hill, S. R. Smedley, and J. Meinwald, “Firefly “femmes fatales” acquire defensive steroids (lucibufagins) from their firefly prey,” Proc. Natl. Acad. Sci. USA 94, 9723–9728 (1997).
[CrossRef] [PubMed]

Hooper, I.

P. Vukusic and I. Hooper, “Directionally controlled fluorescence emission in butterflies,” Science 310(5751), 1151 (2005).
[CrossRef] [PubMed]

Kinoshita, S.

S. Yoshioka and S. Kinoshita, Phys. Rev. E, 83, 051917 (2011).
[CrossRef]

Lauro, F. M.

A. Vezzi, S. Campanaro, M. D’Angelo, F. Simonato, N. Vitulo, F. M. Lauro, A. Cestaro, G. Malacrida, B. Simionati, N. Cannata, C. Romualdi, D. H. Bartlett, and G. Valle, “Life at depth: Photobacterium profundum genome sequence and expression analysis,” Science 307(5714), 1459–1461 (2005).
[CrossRef] [PubMed]

Lawrence, C.R.

P. Vukusic, J.R. Sambles, C.R. Lawrence, and R.J. Wootton, “Quantified interference and diffraction in single Morpho butterfly scales,” P. Roy. Soc. B - Biol. Sci. 266, 1403–1411 (1999).
[CrossRef]

Lindh, R.

L. De Vico, Y.-J. Liu, and R. Lindh, “Ab initio investigation on the chemical origin of the firefly bioluminescence,” J. Photoch. Photobio. A 194, 261–267 (2008).
[CrossRef]

Liu, Y.-J.

L. De Vico, Y.-J. Liu, and R. Lindh, “Ab initio investigation on the chemical origin of the firefly bioluminescence,” J. Photoch. Photobio. A 194, 261–267 (2008).
[CrossRef]

Lloyd, J.E.

J.E. Lloyd, “Aggressive mimicry in Photuris : firefly femmes fatales,” Science 149, 653–654 (1965).
[CrossRef] [PubMed]

Lousse, V.

J.P. Vigneron and V. Lousse, “Variation of a photonic crystal color with the Miller indices of the exposed surface,” Proc. SPIE conference 6128: Photonic Crystal Materials and Devices IV 6128, 1G 1–10 (2006).

J.P. Vigneron, J.-F. Colomer, N. Vigneron, and V. Lousse, “Natural layer-by-layer photonic structure in the squamae of Hoplia coerulea (Coleoptera),” Phys. Rev. E 72, 061904 (2005).
[CrossRef]

V. Lousse, J.-P. Vigneron, X. Bouju, and J.-M. Vigoureux, “Atomic radiation rates in photonic crystals,” Phys. Rev. B 64(20), 201104(R) (2001).
[CrossRef]

Ludwig, W.

P. Cloetens, W. Ludwig, J. Baruchel, D. Van Dyck, J. Van Landuyt, J. P. Guigay, and M. Schlenker, “Holotomography: Quantitative phase tomography with micrometer resolution using hard synchrotron x rays,” Appl. Phys. Lett. 75 (19), 2912–2914 (1999)
[CrossRef]

Malacrida, G.

A. Vezzi, S. Campanaro, M. D’Angelo, F. Simonato, N. Vitulo, F. M. Lauro, A. Cestaro, G. Malacrida, B. Simionati, N. Cannata, C. Romualdi, D. H. Bartlett, and G. Valle, “Life at depth: Photobacterium profundum genome sequence and expression analysis,” Science 307(5714), 1459–1461 (2005).
[CrossRef] [PubMed]

Malcolm, M.

G. Forsythe, M. Malcolm, and C. Moler, Computer Methods for Mathematical Computations, (Prentice-Hall, Englewood Cliffs, NJ1977).

Meinwald, J.

T. Eisner, M. A. Goetz, D. E. Hill, S. R. Smedley, and J. Meinwald, “Firefly “femmes fatales” acquire defensive steroids (lucibufagins) from their firefly prey,” Proc. Natl. Acad. Sci. USA 94, 9723–9728 (1997).
[CrossRef] [PubMed]

Mladenovski, S.

P. Vandersteegen, S. Mladenovski, V. Van Elsbergen, G. Gartner, P. Bienstman, K. Neyts, and R. Baets, “Light extraction for a doubly resonant cavity organic LED: the RC2LED,” Proc. SPIE 6655, Organic Light Emitting Materials and Devices XI 665513, DOI: (2007).
[CrossRef]

Moharam, M. G.

Moler, C.

G. Forsythe, M. Malcolm, and C. Moler, Computer Methods for Mathematical Computations, (Prentice-Hall, Englewood Cliffs, NJ1977).

Neyts, K.

P. Vandersteegen, S. Mladenovski, V. Van Elsbergen, G. Gartner, P. Bienstman, K. Neyts, and R. Baets, “Light extraction for a doubly resonant cavity organic LED: the RC2LED,” Proc. SPIE 6655, Organic Light Emitting Materials and Devices XI 665513, DOI: (2007).
[CrossRef]

P. Vandersteegen, A. U. Nieto, C. Van Buggenhout, S. Verstuyft, P. Bienstman, P. Debackere, K. Neyts, and R. Baets, “Employing a 2D surface grating to improve light out coupling of a substrate emitting organic LED,” Proc. SPIE 6486, Light-Emitting Diodes: Research, Manufacturing, and Applications XI 64860H, DOI: (2007).
[CrossRef]

Nieto, A. U.

P. Vandersteegen, A. U. Nieto, C. Van Buggenhout, S. Verstuyft, P. Bienstman, P. Debackere, K. Neyts, and R. Baets, “Employing a 2D surface grating to improve light out coupling of a substrate emitting organic LED,” Proc. SPIE 6486, Light-Emitting Diodes: Research, Manufacturing, and Applications XI 64860H, DOI: (2007).
[CrossRef]

Romualdi, C.

A. Vezzi, S. Campanaro, M. D’Angelo, F. Simonato, N. Vitulo, F. M. Lauro, A. Cestaro, G. Malacrida, B. Simionati, N. Cannata, C. Romualdi, D. H. Bartlett, and G. Valle, “Life at depth: Photobacterium profundum genome sequence and expression analysis,” Science 307(5714), 1459–1461 (2005).
[CrossRef] [PubMed]

Sambles, J.R.

P. Vukusic, J.R. Sambles, C.R. Lawrence, and R.J. Wootton, “Quantified interference and diffraction in single Morpho butterfly scales,” P. Roy. Soc. B - Biol. Sci. 266, 1403–1411 (1999).
[CrossRef]

Schlenker, M.

P. Cloetens, W. Ludwig, J. Baruchel, D. Van Dyck, J. Van Landuyt, J. P. Guigay, and M. Schlenker, “Holotomography: Quantitative phase tomography with micrometer resolution using hard synchrotron x rays,” Appl. Phys. Lett. 75 (19), 2912–2914 (1999)
[CrossRef]

Simionati, B.

A. Vezzi, S. Campanaro, M. D’Angelo, F. Simonato, N. Vitulo, F. M. Lauro, A. Cestaro, G. Malacrida, B. Simionati, N. Cannata, C. Romualdi, D. H. Bartlett, and G. Valle, “Life at depth: Photobacterium profundum genome sequence and expression analysis,” Science 307(5714), 1459–1461 (2005).
[CrossRef] [PubMed]

Simonato, F.

A. Vezzi, S. Campanaro, M. D’Angelo, F. Simonato, N. Vitulo, F. M. Lauro, A. Cestaro, G. Malacrida, B. Simionati, N. Cannata, C. Romualdi, D. H. Bartlett, and G. Valle, “Life at depth: Photobacterium profundum genome sequence and expression analysis,” Science 307(5714), 1459–1461 (2005).
[CrossRef] [PubMed]

Smedley, S. R.

T. Eisner, M. A. Goetz, D. E. Hill, S. R. Smedley, and J. Meinwald, “Firefly “femmes fatales” acquire defensive steroids (lucibufagins) from their firefly prey,” Proc. Natl. Acad. Sci. USA 94, 9723–9728 (1997).
[CrossRef] [PubMed]

Sollas, I. B. J.

I. B. J. Sollas, “On the identification of chitin by its physical constants,” Proc. Roy. Soc. B - Biol. Sci. 79 (534), 474–481 (1907).
[CrossRef]

Valle, G.

A. Vezzi, S. Campanaro, M. D’Angelo, F. Simonato, N. Vitulo, F. M. Lauro, A. Cestaro, G. Malacrida, B. Simionati, N. Cannata, C. Romualdi, D. H. Bartlett, and G. Valle, “Life at depth: Photobacterium profundum genome sequence and expression analysis,” Science 307(5714), 1459–1461 (2005).
[CrossRef] [PubMed]

Van Buggenhout, C.

P. Vandersteegen, A. U. Nieto, C. Van Buggenhout, S. Verstuyft, P. Bienstman, P. Debackere, K. Neyts, and R. Baets, “Employing a 2D surface grating to improve light out coupling of a substrate emitting organic LED,” Proc. SPIE 6486, Light-Emitting Diodes: Research, Manufacturing, and Applications XI 64860H, DOI: (2007).
[CrossRef]

Van Dyck, D.

P. Cloetens, W. Ludwig, J. Baruchel, D. Van Dyck, J. Van Landuyt, J. P. Guigay, and M. Schlenker, “Holotomography: Quantitative phase tomography with micrometer resolution using hard synchrotron x rays,” Appl. Phys. Lett. 75 (19), 2912–2914 (1999)
[CrossRef]

Van Elsbergen, V.

P. Vandersteegen, S. Mladenovski, V. Van Elsbergen, G. Gartner, P. Bienstman, K. Neyts, and R. Baets, “Light extraction for a doubly resonant cavity organic LED: the RC2LED,” Proc. SPIE 6655, Organic Light Emitting Materials and Devices XI 665513, DOI: (2007).
[CrossRef]

Van Landuyt, J.

P. Cloetens, W. Ludwig, J. Baruchel, D. Van Dyck, J. Van Landuyt, J. P. Guigay, and M. Schlenker, “Holotomography: Quantitative phase tomography with micrometer resolution using hard synchrotron x rays,” Appl. Phys. Lett. 75 (19), 2912–2914 (1999)
[CrossRef]

Vandersteegen, P.

P. Vandersteegen, S. Mladenovski, V. Van Elsbergen, G. Gartner, P. Bienstman, K. Neyts, and R. Baets, “Light extraction for a doubly resonant cavity organic LED: the RC2LED,” Proc. SPIE 6655, Organic Light Emitting Materials and Devices XI 665513, DOI: (2007).
[CrossRef]

P. Vandersteegen, A. U. Nieto, C. Van Buggenhout, S. Verstuyft, P. Bienstman, P. Debackere, K. Neyts, and R. Baets, “Employing a 2D surface grating to improve light out coupling of a substrate emitting organic LED,” Proc. SPIE 6486, Light-Emitting Diodes: Research, Manufacturing, and Applications XI 64860H, DOI: (2007).
[CrossRef]

Verstuyft, S.

P. Vandersteegen, A. U. Nieto, C. Van Buggenhout, S. Verstuyft, P. Bienstman, P. Debackere, K. Neyts, and R. Baets, “Employing a 2D surface grating to improve light out coupling of a substrate emitting organic LED,” Proc. SPIE 6486, Light-Emitting Diodes: Research, Manufacturing, and Applications XI 64860H, DOI: (2007).
[CrossRef]

Vezzi, A.

A. Vezzi, S. Campanaro, M. D’Angelo, F. Simonato, N. Vitulo, F. M. Lauro, A. Cestaro, G. Malacrida, B. Simionati, N. Cannata, C. Romualdi, D. H. Bartlett, and G. Valle, “Life at depth: Photobacterium profundum genome sequence and expression analysis,” Science 307(5714), 1459–1461 (2005).
[CrossRef] [PubMed]

Vigneron, J. P.

A. Bay and J. P. Vigneron, “Light extraction from the bioluminescent organs of fireflies,” Proc. SPIE 7401, Biomimetics and Bioinspiration 740108 (2009).
[CrossRef]

Vigneron, J.P.

J.P. Vigneron and V. Lousse, “Variation of a photonic crystal color with the Miller indices of the exposed surface,” Proc. SPIE conference 6128: Photonic Crystal Materials and Devices IV 6128, 1G 1–10 (2006).

J.P. Vigneron, J.-F. Colomer, N. Vigneron, and V. Lousse, “Natural layer-by-layer photonic structure in the squamae of Hoplia coerulea (Coleoptera),” Phys. Rev. E 72, 061904 (2005).
[CrossRef]

Vigneron, J.-P.

V. Lousse, J.-P. Vigneron, X. Bouju, and J.-M. Vigoureux, “Atomic radiation rates in photonic crystals,” Phys. Rev. B 64(20), 201104(R) (2001).
[CrossRef]

Vigneron, N.

J.P. Vigneron, J.-F. Colomer, N. Vigneron, and V. Lousse, “Natural layer-by-layer photonic structure in the squamae of Hoplia coerulea (Coleoptera),” Phys. Rev. E 72, 061904 (2005).
[CrossRef]

Vigoureux, J.-M.

V. Lousse, J.-P. Vigneron, X. Bouju, and J.-M. Vigoureux, “Atomic radiation rates in photonic crystals,” Phys. Rev. B 64(20), 201104(R) (2001).
[CrossRef]

Vitulo, N.

A. Vezzi, S. Campanaro, M. D’Angelo, F. Simonato, N. Vitulo, F. M. Lauro, A. Cestaro, G. Malacrida, B. Simionati, N. Cannata, C. Romualdi, D. H. Bartlett, and G. Valle, “Life at depth: Photobacterium profundum genome sequence and expression analysis,” Science 307(5714), 1459–1461 (2005).
[CrossRef] [PubMed]

Vukusic, P.

P. Vukusic and I. Hooper, “Directionally controlled fluorescence emission in butterflies,” Science 310(5751), 1151 (2005).
[CrossRef] [PubMed]

P. Vukusic, J.R. Sambles, C.R. Lawrence, and R.J. Wootton, “Quantified interference and diffraction in single Morpho butterfly scales,” P. Roy. Soc. B - Biol. Sci. 266, 1403–1411 (1999).
[CrossRef]

Wootton, R.J.

P. Vukusic, J.R. Sambles, C.R. Lawrence, and R.J. Wootton, “Quantified interference and diffraction in single Morpho butterfly scales,” P. Roy. Soc. B - Biol. Sci. 266, 1403–1411 (1999).
[CrossRef]

Yoshioka, S.

S. Yoshioka and S. Kinoshita, Phys. Rev. E, 83, 051917 (2011).
[CrossRef]

Appl. Phys. Lett.

P. Cloetens, W. Ludwig, J. Baruchel, D. Van Dyck, J. Van Landuyt, J. P. Guigay, and M. Schlenker, “Holotomography: Quantitative phase tomography with micrometer resolution using hard synchrotron x rays,” Appl. Phys. Lett. 75 (19), 2912–2914 (1999)
[CrossRef]

J. Opt. Soc. Am.

J. Photoch. Photobio. A

L. De Vico, Y.-J. Liu, and R. Lindh, “Ab initio investigation on the chemical origin of the firefly bioluminescence,” J. Photoch. Photobio. A 194, 261–267 (2008).
[CrossRef]

P. Roy. Soc. B - Biol. Sci.

P. Vukusic, J.R. Sambles, C.R. Lawrence, and R.J. Wootton, “Quantified interference and diffraction in single Morpho butterfly scales,” P. Roy. Soc. B - Biol. Sci. 266, 1403–1411 (1999).
[CrossRef]

C. de Duve, “The peroxisome: a new cytoplasmic organelle,” P. Roy. Soc. B - Biol. Sci. 173 (30), 71–83 (1969).
[CrossRef]

Phys. Rev. B

V. Lousse, J.-P. Vigneron, X. Bouju, and J.-M. Vigoureux, “Atomic radiation rates in photonic crystals,” Phys. Rev. B 64(20), 201104(R) (2001).
[CrossRef]

Phys. Rev. E

J.P. Vigneron, J.-F. Colomer, N. Vigneron, and V. Lousse, “Natural layer-by-layer photonic structure in the squamae of Hoplia coerulea (Coleoptera),” Phys. Rev. E 72, 061904 (2005).
[CrossRef]

S. Yoshioka and S. Kinoshita, Phys. Rev. E, 83, 051917 (2011).
[CrossRef]

Proc. Natl. Acad. Sci. USA

T. Eisner, M. A. Goetz, D. E. Hill, S. R. Smedley, and J. Meinwald, “Firefly “femmes fatales” acquire defensive steroids (lucibufagins) from their firefly prey,” Proc. Natl. Acad. Sci. USA 94, 9723–9728 (1997).
[CrossRef] [PubMed]

Proc. Roy. Soc. B - Biol. Sci.

I. B. J. Sollas, “On the identification of chitin by its physical constants,” Proc. Roy. Soc. B - Biol. Sci. 79 (534), 474–481 (1907).
[CrossRef]

Proc. SPIE

P. Vandersteegen, A. U. Nieto, C. Van Buggenhout, S. Verstuyft, P. Bienstman, P. Debackere, K. Neyts, and R. Baets, “Employing a 2D surface grating to improve light out coupling of a substrate emitting organic LED,” Proc. SPIE 6486, Light-Emitting Diodes: Research, Manufacturing, and Applications XI 64860H, DOI: (2007).
[CrossRef]

P. Vandersteegen, S. Mladenovski, V. Van Elsbergen, G. Gartner, P. Bienstman, K. Neyts, and R. Baets, “Light extraction for a doubly resonant cavity organic LED: the RC2LED,” Proc. SPIE 6655, Organic Light Emitting Materials and Devices XI 665513, DOI: (2007).
[CrossRef]

A. Bay and J. P. Vigneron, “Light extraction from the bioluminescent organs of fireflies,” Proc. SPIE 7401, Biomimetics and Bioinspiration 740108 (2009).
[CrossRef]

Proc. SPIE conference 6128: Photonic Crystal Materials and Devices IV

J.P. Vigneron and V. Lousse, “Variation of a photonic crystal color with the Miller indices of the exposed surface,” Proc. SPIE conference 6128: Photonic Crystal Materials and Devices IV 6128, 1G 1–10 (2006).

Science

P. Vukusic and I. Hooper, “Directionally controlled fluorescence emission in butterflies,” Science 310(5751), 1151 (2005).
[CrossRef] [PubMed]

A. Vezzi, S. Campanaro, M. D’Angelo, F. Simonato, N. Vitulo, F. M. Lauro, A. Cestaro, G. Malacrida, B. Simionati, N. Cannata, C. Romualdi, D. H. Bartlett, and G. Valle, “Life at depth: Photobacterium profundum genome sequence and expression analysis,” Science 307(5714), 1459–1461 (2005).
[CrossRef] [PubMed]

J.E. Lloyd, “Aggressive mimicry in Photuris : firefly femmes fatales,” Science 149, 653–654 (1965).
[CrossRef] [PubMed]

Other

H. Ghiradella, “The anatomy of light production : The fine structure of the firefly lantern,” In Microscopic Anatomy of Invertebrates11A : Insecta (Wiley-Liss, 1998) pp. 363–381.

R.F. Chapman, The Insects. Structure and Function. 4th ed., (Cambridge University Press, Cambridge UK, 1998).
[CrossRef]

H. Benisty, “Physics of light extraction efficiency in planar microcavity light-emitting diodes,” in Lecture Notes in Physics: Confined Photon Systems (Springer, Berlin1999) vol. 531, pp. 393–405.
[CrossRef]

G. Forsythe, M. Malcolm, and C. Moler, Computer Methods for Mathematical Computations, (Prentice-Hall, Englewood Cliffs, NJ1977).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

The Photuris sp. firefly, collected in the Darien forest, Republic of Panama, whose lantern is investigated in the present work.

Fig. 2
Fig. 2

Geometric data for the integration of the transmitted light over the surface of the reference homogeneous system.

Fig. 3
Fig. 3

Observed structures crossed by the emitted light in the lantern of the firefly. (1) Setae; (2) ribs separated by 250 nm; (3) misfit scales, 10 μm long and 3 μm high; (4) textured cuticle volume, 2.4 μm thick. The insert is a top view of the structure; (5) muscular layer (tentative interpretation), variable thickness; (6) photocytes cluster membrane, 60 nm thick; (7) photocytes layer, containing a high density of spherical peroxisomes.

Fig. 4
Fig. 4

The various structures to be examined for light extraction improvement. (1) Setae; (2) ribs separated by 250 nm; (3) misfit scales, 10 μm long and 3 μm high; (4) textured cuticle volume, 2.4 μm thick; (5) muscular layer (tentative interpretation), variable thickness; (6) photocytes cluster membrane, 60 nm thick; (7) Photocytes layer, containing spherical peroxisomes.

Fig. 5
Fig. 5

(a) X-ray nanotomography landscape image, extracted from a three-dimensional representation of the internal structure of a photocyte. These three-dimensional data confirm a disordered and slightly multi-dispersed distribution of the peroxisomes, suggesting an isotropic diffuse light emission. (b) Spherical peroxisomes in the photocytes. Note the remains of a fractured tracheole (arrow) which brings oxygen for the luciferine oxidation.

Fig. 6
Fig. 6

Diffraction by the 250 nm grating formed by the (a) longitudinal ribs on the surface of the firefly abdominal scales for a fixed incident azimuthal angle ϕ = 80°. The diagram in (b) results from application of Eq. (9). This shows the existence of diffracted orders (m=−1), but does not provide any information about their intensities. These are calculated and reported in Fig. 7.

Fig. 7
Fig. 7

Hemispheric transmission (logarithmic scale) of a sine-square grating with step b = 250 nm, as a function of the incidence angles (polar and azimuthal). The geometric factor sin θi is included. See Eq. (5). The intensities above θi = 40° are diffracted.

Fig. 8
Fig. 8

Hemispheric transmission (logarithmic scale) of a grating with a triangular profile, with step b = 10 μm, as a function of the incidence angles (polar and azimuthal). The geometric factor sinθi is included. See Eq. (5).

Fig. 9
Fig. 9

Light transmission image of the scales covering the surface of one of the firefly’s light-emitting segments, viewed in an optical microscope with illumination set for transmission through the sample. The high-intensity trace concentrated on the edges of the protruding scale adds to the transmitted intensity and favors light extraction. The incrustation shows an intensity profile across the scale edge, in the image plane.

Fig. 10
Fig. 10

Hemispheric transmission (logarithmic scale) of the whole structure, as a function of the incidence angles (polar and azimuthal). The geometric factor sinθi is included. See Eq. (5).

Fig. 11
Fig. 11

Hemispheric radiance of the abdomen of a Photinus firefly, with (red) and without (blue) its surface corrugation. The suppression of the corrugation, in the latter case, was obtained by coating the ventral part of the abdomen segments with a refractive-index matching liquid.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

d Ω 2 π ( P 0 / 2 ) = d s u 2 π ρ 2 ( P 0 / 2 ) = ( P 0 / 2 ) d s cos θ i 2 π ρ 2
d Ω 2 π ( P 0 / 2 ) = ( P 0 / 2 ) 2 π sin θ i d θ i d ϕ
P i = ( P 0 / 2 ) 0 π 2 sin θ i d θ i
P t = ( P 0 / 2 ) 0 π 2 T ( θ i ) sin θ i d θ i
P t P i = 0 π 2 T ( θ i ) sin θ i d θ i
T ( θ i ) = 1 2 { sin 2 ( θ i θ t ) sin 2 ( θ i + θ t ) + tan 2 ( θ i θ t ) tan 2 ( θ i + θ t ) }
sin θ t = n i n t sin θ i
sin θ c = n t n i
sin θ t = n i n t sin θ i + m ( λ / n t ) b
z ( y ) = h sin 2 ( π b y )

Metrics