Abstract

We demonstrate laser-driven microflow-induced orientational change (homeotropic to planar) in a dye-doped nematic liquid crystal. The homeotropic to planar director alignment is achieved in unrubbed cells in the thermal hysteresis range of a discontinuous anchoring reorientation transition due to the local heating by light absorption in dye-doped sample. Various bistable patterns were recorded in the cell by a programmable laser tweezers. The width of the patterns depend on the scanning speed of the tightly focussed laser beam and the minimum width obtained is ≃0.57μm which is about 35 times smaller than the earlier report in the rubbed cells. We show that the motion of the microbeam spot causes local flow as a result the liquid crystal director is aligned along that direction.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. M. Blinov and V. G. Chigrinov, Electrooptic Effects in Liquid Crystal Materials (Springer-Verlag Inc., 1994).
    [CrossRef]
  2. D. Andrienko, A. Dyadyusha, Y. Kurioz, V. Reshetnyak, and Y. Reznikov, “Light-induced anchoring transitions and bistable nematic alignment on polysiloxane-based aligning surface,” Mol. Cryst. Liq. Cryst.321, 299–307 (1998).
    [CrossRef]
  3. J. Niitsuma, M. Yoneya, and H. Yokoyama, “Contact photolithographic micropatterning for bistable nematic liquid crystal displays,” Appl. Phys. Lett.92, 241120 (2008).
    [CrossRef]
  4. J. S. Gwag, J. H. Kim, M. Yoney, and H. Yokoyama, “Surface nematic bistability at nanoimprinted topography,” Appl. Phys. Lett.92, 153110 (2008).
    [CrossRef]
  5. G. D. Boyd, J. Cheng, and P. D. T. Ngo, “Liquid crystal orientational bistability and nematic storage effects,” Appl. Phys. Lett.36, 556–558 (1980).
    [CrossRef]
  6. D. W. Berreman and W. R. Heffner, “New bistable liquid crystal twist cell,” J. Appl. Phys.52, 3032–3039 (1981).
    [CrossRef]
  7. R. Barberi, M. Boix, and G. Durand, “Electrically controlled surface bistability in nematic liquid crystals,” Appl. Phys. Lett.55, 2506–2508 (1989).
    [CrossRef]
  8. J. H. Kim, M. Yoneya, J. Yamamoto, and H. Yokoyama, “Surface alignment bistability of nematic liquid crystals by orientationally frustrated surface patterns,” Appl. Phys. Lett.78, 3055–3057 (2001).
    [CrossRef]
  9. M. Yoneya, J. H. Kim, and H. Yokoyama, “Multistable nematic liquid crystal device using nanoscopically patterned surface alignment,” Appl. Phys. Lett.80, 1034–1035 (2002).
  10. J. H. Kim, M. Yoney, and H. Yokoyama, “Tristable nematic liquid-crystal device using micropatterned surface alignment,” Nature420, 159–162 (2002).
    [CrossRef] [PubMed]
  11. J. H. Kim, M. Yoney, J. Yamamoto, and H. Yokoyama, “Nano-rubbing of a liquid crystal alignment layer by an atomic force microscope: a detailed characterization,” Nanotechnology13, 133–137 (2002).
    [CrossRef]
  12. Y. Kurioz, D. Kurysh, V. Reshetnyak, and Y. Reznikov, “Temperature induced anchoring transition in nematic liquid crystal cell,” Proc. SPIE5257, 128–131 (2003).
    [CrossRef]
  13. J. S. Patel and H. Yokoyama, “Continuous anchoring transition in liquid crystals,” Nature (London)362, 525–527 (1993).
    [CrossRef]
  14. S. Dhara, J. K. Kim, S. M. Jeong, R. Kogo, F. Araoka, K. Ishikawa, and H. Takezoe, “Anchoring transitions of transversely polar liquid-crystal molecules on perfluoropolymer surfaces,” Phys. Rev. E79, 060701R (2009).
    [CrossRef]
  15. J. K. Kim, F. Araoka, S.M. Jeong, S. Dhara, K. Ishikawa, and H. Takezoe, “Bistable device using anchoring transition of nematic liquid crystals,” Appl. Phys. Lett.95, 063505 (2009).
    [CrossRef]
  16. J. K. Kim, K. V. Le, S. Dhara, F. Araoka, K. Ishikawa, and H. Takezoe, “Heat-driven and electric-field-driven bistable devices using dye-doped nematic liquid crystals,” J. Appl. Phys.107, 123108 (2010).
    [CrossRef]
  17. T. A. Kumar, K. V. Le, S. Aya, S. Kang, F. Araoka, K. Ishikawa, S. Dhara, and H. Takezoe, “Anchoring transition in a nematic liquid crystal doped with chiral agents,” Phase Transitions85, 888–899 (2012).
    [CrossRef]
  18. S. M. Jeong, J. K. Kim, Y. Shimbo, F. Araoka, S. Dhara, N. Y. Ha, K. Ishikawa, and H. Takezoe, “Perfluoropolymer surface for shock-free homeotropic alignment of smectic liquid crystals,” Adv. Mater.22, 34–38 (2010).
    [CrossRef] [PubMed]
  19. S. Dhara and N. V. Madhusudana, “Physical characterisation of 4-butyl-4-heptyl-bicyclohexyl- 4-carbonitrile,” Phase Transitions81, 561–569 (2008).
    [CrossRef]
  20. T. A. Kumar, V. S. S. Sastry, K. Ishikawa, H. Takezoe, N.V. Madhusudana, and S. Dhara, “Effect of an electric field on defects in a nematic liquid crystal with variable surface anchoring,” Liq. Cryst.38, 971–979 (2011).
    [CrossRef]

2012

T. A. Kumar, K. V. Le, S. Aya, S. Kang, F. Araoka, K. Ishikawa, S. Dhara, and H. Takezoe, “Anchoring transition in a nematic liquid crystal doped with chiral agents,” Phase Transitions85, 888–899 (2012).
[CrossRef]

2011

T. A. Kumar, V. S. S. Sastry, K. Ishikawa, H. Takezoe, N.V. Madhusudana, and S. Dhara, “Effect of an electric field on defects in a nematic liquid crystal with variable surface anchoring,” Liq. Cryst.38, 971–979 (2011).
[CrossRef]

2010

J. K. Kim, K. V. Le, S. Dhara, F. Araoka, K. Ishikawa, and H. Takezoe, “Heat-driven and electric-field-driven bistable devices using dye-doped nematic liquid crystals,” J. Appl. Phys.107, 123108 (2010).
[CrossRef]

S. M. Jeong, J. K. Kim, Y. Shimbo, F. Araoka, S. Dhara, N. Y. Ha, K. Ishikawa, and H. Takezoe, “Perfluoropolymer surface for shock-free homeotropic alignment of smectic liquid crystals,” Adv. Mater.22, 34–38 (2010).
[CrossRef] [PubMed]

2009

S. Dhara, J. K. Kim, S. M. Jeong, R. Kogo, F. Araoka, K. Ishikawa, and H. Takezoe, “Anchoring transitions of transversely polar liquid-crystal molecules on perfluoropolymer surfaces,” Phys. Rev. E79, 060701R (2009).
[CrossRef]

J. K. Kim, F. Araoka, S.M. Jeong, S. Dhara, K. Ishikawa, and H. Takezoe, “Bistable device using anchoring transition of nematic liquid crystals,” Appl. Phys. Lett.95, 063505 (2009).
[CrossRef]

2008

S. Dhara and N. V. Madhusudana, “Physical characterisation of 4-butyl-4-heptyl-bicyclohexyl- 4-carbonitrile,” Phase Transitions81, 561–569 (2008).
[CrossRef]

J. Niitsuma, M. Yoneya, and H. Yokoyama, “Contact photolithographic micropatterning for bistable nematic liquid crystal displays,” Appl. Phys. Lett.92, 241120 (2008).
[CrossRef]

J. S. Gwag, J. H. Kim, M. Yoney, and H. Yokoyama, “Surface nematic bistability at nanoimprinted topography,” Appl. Phys. Lett.92, 153110 (2008).
[CrossRef]

2003

Y. Kurioz, D. Kurysh, V. Reshetnyak, and Y. Reznikov, “Temperature induced anchoring transition in nematic liquid crystal cell,” Proc. SPIE5257, 128–131 (2003).
[CrossRef]

2002

M. Yoneya, J. H. Kim, and H. Yokoyama, “Multistable nematic liquid crystal device using nanoscopically patterned surface alignment,” Appl. Phys. Lett.80, 1034–1035 (2002).

J. H. Kim, M. Yoney, and H. Yokoyama, “Tristable nematic liquid-crystal device using micropatterned surface alignment,” Nature420, 159–162 (2002).
[CrossRef] [PubMed]

J. H. Kim, M. Yoney, J. Yamamoto, and H. Yokoyama, “Nano-rubbing of a liquid crystal alignment layer by an atomic force microscope: a detailed characterization,” Nanotechnology13, 133–137 (2002).
[CrossRef]

2001

J. H. Kim, M. Yoneya, J. Yamamoto, and H. Yokoyama, “Surface alignment bistability of nematic liquid crystals by orientationally frustrated surface patterns,” Appl. Phys. Lett.78, 3055–3057 (2001).
[CrossRef]

1998

D. Andrienko, A. Dyadyusha, Y. Kurioz, V. Reshetnyak, and Y. Reznikov, “Light-induced anchoring transitions and bistable nematic alignment on polysiloxane-based aligning surface,” Mol. Cryst. Liq. Cryst.321, 299–307 (1998).
[CrossRef]

1993

J. S. Patel and H. Yokoyama, “Continuous anchoring transition in liquid crystals,” Nature (London)362, 525–527 (1993).
[CrossRef]

1989

R. Barberi, M. Boix, and G. Durand, “Electrically controlled surface bistability in nematic liquid crystals,” Appl. Phys. Lett.55, 2506–2508 (1989).
[CrossRef]

1981

D. W. Berreman and W. R. Heffner, “New bistable liquid crystal twist cell,” J. Appl. Phys.52, 3032–3039 (1981).
[CrossRef]

1980

G. D. Boyd, J. Cheng, and P. D. T. Ngo, “Liquid crystal orientational bistability and nematic storage effects,” Appl. Phys. Lett.36, 556–558 (1980).
[CrossRef]

Andrienko, D.

D. Andrienko, A. Dyadyusha, Y. Kurioz, V. Reshetnyak, and Y. Reznikov, “Light-induced anchoring transitions and bistable nematic alignment on polysiloxane-based aligning surface,” Mol. Cryst. Liq. Cryst.321, 299–307 (1998).
[CrossRef]

Araoka, F.

T. A. Kumar, K. V. Le, S. Aya, S. Kang, F. Araoka, K. Ishikawa, S. Dhara, and H. Takezoe, “Anchoring transition in a nematic liquid crystal doped with chiral agents,” Phase Transitions85, 888–899 (2012).
[CrossRef]

S. M. Jeong, J. K. Kim, Y. Shimbo, F. Araoka, S. Dhara, N. Y. Ha, K. Ishikawa, and H. Takezoe, “Perfluoropolymer surface for shock-free homeotropic alignment of smectic liquid crystals,” Adv. Mater.22, 34–38 (2010).
[CrossRef] [PubMed]

J. K. Kim, K. V. Le, S. Dhara, F. Araoka, K. Ishikawa, and H. Takezoe, “Heat-driven and electric-field-driven bistable devices using dye-doped nematic liquid crystals,” J. Appl. Phys.107, 123108 (2010).
[CrossRef]

S. Dhara, J. K. Kim, S. M. Jeong, R. Kogo, F. Araoka, K. Ishikawa, and H. Takezoe, “Anchoring transitions of transversely polar liquid-crystal molecules on perfluoropolymer surfaces,” Phys. Rev. E79, 060701R (2009).
[CrossRef]

J. K. Kim, F. Araoka, S.M. Jeong, S. Dhara, K. Ishikawa, and H. Takezoe, “Bistable device using anchoring transition of nematic liquid crystals,” Appl. Phys. Lett.95, 063505 (2009).
[CrossRef]

Aya, S.

T. A. Kumar, K. V. Le, S. Aya, S. Kang, F. Araoka, K. Ishikawa, S. Dhara, and H. Takezoe, “Anchoring transition in a nematic liquid crystal doped with chiral agents,” Phase Transitions85, 888–899 (2012).
[CrossRef]

Barberi, R.

R. Barberi, M. Boix, and G. Durand, “Electrically controlled surface bistability in nematic liquid crystals,” Appl. Phys. Lett.55, 2506–2508 (1989).
[CrossRef]

Berreman, D. W.

D. W. Berreman and W. R. Heffner, “New bistable liquid crystal twist cell,” J. Appl. Phys.52, 3032–3039 (1981).
[CrossRef]

Blinov, L. M.

L. M. Blinov and V. G. Chigrinov, Electrooptic Effects in Liquid Crystal Materials (Springer-Verlag Inc., 1994).
[CrossRef]

Boix, M.

R. Barberi, M. Boix, and G. Durand, “Electrically controlled surface bistability in nematic liquid crystals,” Appl. Phys. Lett.55, 2506–2508 (1989).
[CrossRef]

Boyd, G. D.

G. D. Boyd, J. Cheng, and P. D. T. Ngo, “Liquid crystal orientational bistability and nematic storage effects,” Appl. Phys. Lett.36, 556–558 (1980).
[CrossRef]

Cheng, J.

G. D. Boyd, J. Cheng, and P. D. T. Ngo, “Liquid crystal orientational bistability and nematic storage effects,” Appl. Phys. Lett.36, 556–558 (1980).
[CrossRef]

Chigrinov, V. G.

L. M. Blinov and V. G. Chigrinov, Electrooptic Effects in Liquid Crystal Materials (Springer-Verlag Inc., 1994).
[CrossRef]

Dhara, S.

T. A. Kumar, K. V. Le, S. Aya, S. Kang, F. Araoka, K. Ishikawa, S. Dhara, and H. Takezoe, “Anchoring transition in a nematic liquid crystal doped with chiral agents,” Phase Transitions85, 888–899 (2012).
[CrossRef]

T. A. Kumar, V. S. S. Sastry, K. Ishikawa, H. Takezoe, N.V. Madhusudana, and S. Dhara, “Effect of an electric field on defects in a nematic liquid crystal with variable surface anchoring,” Liq. Cryst.38, 971–979 (2011).
[CrossRef]

J. K. Kim, K. V. Le, S. Dhara, F. Araoka, K. Ishikawa, and H. Takezoe, “Heat-driven and electric-field-driven bistable devices using dye-doped nematic liquid crystals,” J. Appl. Phys.107, 123108 (2010).
[CrossRef]

S. M. Jeong, J. K. Kim, Y. Shimbo, F. Araoka, S. Dhara, N. Y. Ha, K. Ishikawa, and H. Takezoe, “Perfluoropolymer surface for shock-free homeotropic alignment of smectic liquid crystals,” Adv. Mater.22, 34–38 (2010).
[CrossRef] [PubMed]

J. K. Kim, F. Araoka, S.M. Jeong, S. Dhara, K. Ishikawa, and H. Takezoe, “Bistable device using anchoring transition of nematic liquid crystals,” Appl. Phys. Lett.95, 063505 (2009).
[CrossRef]

S. Dhara, J. K. Kim, S. M. Jeong, R. Kogo, F. Araoka, K. Ishikawa, and H. Takezoe, “Anchoring transitions of transversely polar liquid-crystal molecules on perfluoropolymer surfaces,” Phys. Rev. E79, 060701R (2009).
[CrossRef]

S. Dhara and N. V. Madhusudana, “Physical characterisation of 4-butyl-4-heptyl-bicyclohexyl- 4-carbonitrile,” Phase Transitions81, 561–569 (2008).
[CrossRef]

Durand, G.

R. Barberi, M. Boix, and G. Durand, “Electrically controlled surface bistability in nematic liquid crystals,” Appl. Phys. Lett.55, 2506–2508 (1989).
[CrossRef]

Dyadyusha, A.

D. Andrienko, A. Dyadyusha, Y. Kurioz, V. Reshetnyak, and Y. Reznikov, “Light-induced anchoring transitions and bistable nematic alignment on polysiloxane-based aligning surface,” Mol. Cryst. Liq. Cryst.321, 299–307 (1998).
[CrossRef]

Gwag, J. S.

J. S. Gwag, J. H. Kim, M. Yoney, and H. Yokoyama, “Surface nematic bistability at nanoimprinted topography,” Appl. Phys. Lett.92, 153110 (2008).
[CrossRef]

Ha, N. Y.

S. M. Jeong, J. K. Kim, Y. Shimbo, F. Araoka, S. Dhara, N. Y. Ha, K. Ishikawa, and H. Takezoe, “Perfluoropolymer surface for shock-free homeotropic alignment of smectic liquid crystals,” Adv. Mater.22, 34–38 (2010).
[CrossRef] [PubMed]

Heffner, W. R.

D. W. Berreman and W. R. Heffner, “New bistable liquid crystal twist cell,” J. Appl. Phys.52, 3032–3039 (1981).
[CrossRef]

Ishikawa, K.

T. A. Kumar, K. V. Le, S. Aya, S. Kang, F. Araoka, K. Ishikawa, S. Dhara, and H. Takezoe, “Anchoring transition in a nematic liquid crystal doped with chiral agents,” Phase Transitions85, 888–899 (2012).
[CrossRef]

T. A. Kumar, V. S. S. Sastry, K. Ishikawa, H. Takezoe, N.V. Madhusudana, and S. Dhara, “Effect of an electric field on defects in a nematic liquid crystal with variable surface anchoring,” Liq. Cryst.38, 971–979 (2011).
[CrossRef]

S. M. Jeong, J. K. Kim, Y. Shimbo, F. Araoka, S. Dhara, N. Y. Ha, K. Ishikawa, and H. Takezoe, “Perfluoropolymer surface for shock-free homeotropic alignment of smectic liquid crystals,” Adv. Mater.22, 34–38 (2010).
[CrossRef] [PubMed]

J. K. Kim, K. V. Le, S. Dhara, F. Araoka, K. Ishikawa, and H. Takezoe, “Heat-driven and electric-field-driven bistable devices using dye-doped nematic liquid crystals,” J. Appl. Phys.107, 123108 (2010).
[CrossRef]

J. K. Kim, F. Araoka, S.M. Jeong, S. Dhara, K. Ishikawa, and H. Takezoe, “Bistable device using anchoring transition of nematic liquid crystals,” Appl. Phys. Lett.95, 063505 (2009).
[CrossRef]

S. Dhara, J. K. Kim, S. M. Jeong, R. Kogo, F. Araoka, K. Ishikawa, and H. Takezoe, “Anchoring transitions of transversely polar liquid-crystal molecules on perfluoropolymer surfaces,” Phys. Rev. E79, 060701R (2009).
[CrossRef]

Jeong, S. M.

S. M. Jeong, J. K. Kim, Y. Shimbo, F. Araoka, S. Dhara, N. Y. Ha, K. Ishikawa, and H. Takezoe, “Perfluoropolymer surface for shock-free homeotropic alignment of smectic liquid crystals,” Adv. Mater.22, 34–38 (2010).
[CrossRef] [PubMed]

S. Dhara, J. K. Kim, S. M. Jeong, R. Kogo, F. Araoka, K. Ishikawa, and H. Takezoe, “Anchoring transitions of transversely polar liquid-crystal molecules on perfluoropolymer surfaces,” Phys. Rev. E79, 060701R (2009).
[CrossRef]

Jeong, S.M.

J. K. Kim, F. Araoka, S.M. Jeong, S. Dhara, K. Ishikawa, and H. Takezoe, “Bistable device using anchoring transition of nematic liquid crystals,” Appl. Phys. Lett.95, 063505 (2009).
[CrossRef]

Kang, S.

T. A. Kumar, K. V. Le, S. Aya, S. Kang, F. Araoka, K. Ishikawa, S. Dhara, and H. Takezoe, “Anchoring transition in a nematic liquid crystal doped with chiral agents,” Phase Transitions85, 888–899 (2012).
[CrossRef]

Kim, J. H.

J. S. Gwag, J. H. Kim, M. Yoney, and H. Yokoyama, “Surface nematic bistability at nanoimprinted topography,” Appl. Phys. Lett.92, 153110 (2008).
[CrossRef]

M. Yoneya, J. H. Kim, and H. Yokoyama, “Multistable nematic liquid crystal device using nanoscopically patterned surface alignment,” Appl. Phys. Lett.80, 1034–1035 (2002).

J. H. Kim, M. Yoney, and H. Yokoyama, “Tristable nematic liquid-crystal device using micropatterned surface alignment,” Nature420, 159–162 (2002).
[CrossRef] [PubMed]

J. H. Kim, M. Yoney, J. Yamamoto, and H. Yokoyama, “Nano-rubbing of a liquid crystal alignment layer by an atomic force microscope: a detailed characterization,” Nanotechnology13, 133–137 (2002).
[CrossRef]

J. H. Kim, M. Yoneya, J. Yamamoto, and H. Yokoyama, “Surface alignment bistability of nematic liquid crystals by orientationally frustrated surface patterns,” Appl. Phys. Lett.78, 3055–3057 (2001).
[CrossRef]

Kim, J. K.

J. K. Kim, K. V. Le, S. Dhara, F. Araoka, K. Ishikawa, and H. Takezoe, “Heat-driven and electric-field-driven bistable devices using dye-doped nematic liquid crystals,” J. Appl. Phys.107, 123108 (2010).
[CrossRef]

S. M. Jeong, J. K. Kim, Y. Shimbo, F. Araoka, S. Dhara, N. Y. Ha, K. Ishikawa, and H. Takezoe, “Perfluoropolymer surface for shock-free homeotropic alignment of smectic liquid crystals,” Adv. Mater.22, 34–38 (2010).
[CrossRef] [PubMed]

J. K. Kim, F. Araoka, S.M. Jeong, S. Dhara, K. Ishikawa, and H. Takezoe, “Bistable device using anchoring transition of nematic liquid crystals,” Appl. Phys. Lett.95, 063505 (2009).
[CrossRef]

S. Dhara, J. K. Kim, S. M. Jeong, R. Kogo, F. Araoka, K. Ishikawa, and H. Takezoe, “Anchoring transitions of transversely polar liquid-crystal molecules on perfluoropolymer surfaces,” Phys. Rev. E79, 060701R (2009).
[CrossRef]

Kogo, R.

S. Dhara, J. K. Kim, S. M. Jeong, R. Kogo, F. Araoka, K. Ishikawa, and H. Takezoe, “Anchoring transitions of transversely polar liquid-crystal molecules on perfluoropolymer surfaces,” Phys. Rev. E79, 060701R (2009).
[CrossRef]

Kumar, T. A.

T. A. Kumar, K. V. Le, S. Aya, S. Kang, F. Araoka, K. Ishikawa, S. Dhara, and H. Takezoe, “Anchoring transition in a nematic liquid crystal doped with chiral agents,” Phase Transitions85, 888–899 (2012).
[CrossRef]

T. A. Kumar, V. S. S. Sastry, K. Ishikawa, H. Takezoe, N.V. Madhusudana, and S. Dhara, “Effect of an electric field on defects in a nematic liquid crystal with variable surface anchoring,” Liq. Cryst.38, 971–979 (2011).
[CrossRef]

Kurioz, Y.

Y. Kurioz, D. Kurysh, V. Reshetnyak, and Y. Reznikov, “Temperature induced anchoring transition in nematic liquid crystal cell,” Proc. SPIE5257, 128–131 (2003).
[CrossRef]

D. Andrienko, A. Dyadyusha, Y. Kurioz, V. Reshetnyak, and Y. Reznikov, “Light-induced anchoring transitions and bistable nematic alignment on polysiloxane-based aligning surface,” Mol. Cryst. Liq. Cryst.321, 299–307 (1998).
[CrossRef]

Kurysh, D.

Y. Kurioz, D. Kurysh, V. Reshetnyak, and Y. Reznikov, “Temperature induced anchoring transition in nematic liquid crystal cell,” Proc. SPIE5257, 128–131 (2003).
[CrossRef]

Le, K. V.

T. A. Kumar, K. V. Le, S. Aya, S. Kang, F. Araoka, K. Ishikawa, S. Dhara, and H. Takezoe, “Anchoring transition in a nematic liquid crystal doped with chiral agents,” Phase Transitions85, 888–899 (2012).
[CrossRef]

J. K. Kim, K. V. Le, S. Dhara, F. Araoka, K. Ishikawa, and H. Takezoe, “Heat-driven and electric-field-driven bistable devices using dye-doped nematic liquid crystals,” J. Appl. Phys.107, 123108 (2010).
[CrossRef]

Madhusudana, N. V.

S. Dhara and N. V. Madhusudana, “Physical characterisation of 4-butyl-4-heptyl-bicyclohexyl- 4-carbonitrile,” Phase Transitions81, 561–569 (2008).
[CrossRef]

Madhusudana, N.V.

T. A. Kumar, V. S. S. Sastry, K. Ishikawa, H. Takezoe, N.V. Madhusudana, and S. Dhara, “Effect of an electric field on defects in a nematic liquid crystal with variable surface anchoring,” Liq. Cryst.38, 971–979 (2011).
[CrossRef]

Ngo, P. D. T.

G. D. Boyd, J. Cheng, and P. D. T. Ngo, “Liquid crystal orientational bistability and nematic storage effects,” Appl. Phys. Lett.36, 556–558 (1980).
[CrossRef]

Niitsuma, J.

J. Niitsuma, M. Yoneya, and H. Yokoyama, “Contact photolithographic micropatterning for bistable nematic liquid crystal displays,” Appl. Phys. Lett.92, 241120 (2008).
[CrossRef]

Patel, J. S.

J. S. Patel and H. Yokoyama, “Continuous anchoring transition in liquid crystals,” Nature (London)362, 525–527 (1993).
[CrossRef]

Reshetnyak, V.

Y. Kurioz, D. Kurysh, V. Reshetnyak, and Y. Reznikov, “Temperature induced anchoring transition in nematic liquid crystal cell,” Proc. SPIE5257, 128–131 (2003).
[CrossRef]

D. Andrienko, A. Dyadyusha, Y. Kurioz, V. Reshetnyak, and Y. Reznikov, “Light-induced anchoring transitions and bistable nematic alignment on polysiloxane-based aligning surface,” Mol. Cryst. Liq. Cryst.321, 299–307 (1998).
[CrossRef]

Reznikov, Y.

Y. Kurioz, D. Kurysh, V. Reshetnyak, and Y. Reznikov, “Temperature induced anchoring transition in nematic liquid crystal cell,” Proc. SPIE5257, 128–131 (2003).
[CrossRef]

D. Andrienko, A. Dyadyusha, Y. Kurioz, V. Reshetnyak, and Y. Reznikov, “Light-induced anchoring transitions and bistable nematic alignment on polysiloxane-based aligning surface,” Mol. Cryst. Liq. Cryst.321, 299–307 (1998).
[CrossRef]

Sastry, V. S. S.

T. A. Kumar, V. S. S. Sastry, K. Ishikawa, H. Takezoe, N.V. Madhusudana, and S. Dhara, “Effect of an electric field on defects in a nematic liquid crystal with variable surface anchoring,” Liq. Cryst.38, 971–979 (2011).
[CrossRef]

Shimbo, Y.

S. M. Jeong, J. K. Kim, Y. Shimbo, F. Araoka, S. Dhara, N. Y. Ha, K. Ishikawa, and H. Takezoe, “Perfluoropolymer surface for shock-free homeotropic alignment of smectic liquid crystals,” Adv. Mater.22, 34–38 (2010).
[CrossRef] [PubMed]

Takezoe, H.

T. A. Kumar, K. V. Le, S. Aya, S. Kang, F. Araoka, K. Ishikawa, S. Dhara, and H. Takezoe, “Anchoring transition in a nematic liquid crystal doped with chiral agents,” Phase Transitions85, 888–899 (2012).
[CrossRef]

T. A. Kumar, V. S. S. Sastry, K. Ishikawa, H. Takezoe, N.V. Madhusudana, and S. Dhara, “Effect of an electric field on defects in a nematic liquid crystal with variable surface anchoring,” Liq. Cryst.38, 971–979 (2011).
[CrossRef]

S. M. Jeong, J. K. Kim, Y. Shimbo, F. Araoka, S. Dhara, N. Y. Ha, K. Ishikawa, and H. Takezoe, “Perfluoropolymer surface for shock-free homeotropic alignment of smectic liquid crystals,” Adv. Mater.22, 34–38 (2010).
[CrossRef] [PubMed]

J. K. Kim, K. V. Le, S. Dhara, F. Araoka, K. Ishikawa, and H. Takezoe, “Heat-driven and electric-field-driven bistable devices using dye-doped nematic liquid crystals,” J. Appl. Phys.107, 123108 (2010).
[CrossRef]

S. Dhara, J. K. Kim, S. M. Jeong, R. Kogo, F. Araoka, K. Ishikawa, and H. Takezoe, “Anchoring transitions of transversely polar liquid-crystal molecules on perfluoropolymer surfaces,” Phys. Rev. E79, 060701R (2009).
[CrossRef]

J. K. Kim, F. Araoka, S.M. Jeong, S. Dhara, K. Ishikawa, and H. Takezoe, “Bistable device using anchoring transition of nematic liquid crystals,” Appl. Phys. Lett.95, 063505 (2009).
[CrossRef]

Yamamoto, J.

J. H. Kim, M. Yoney, J. Yamamoto, and H. Yokoyama, “Nano-rubbing of a liquid crystal alignment layer by an atomic force microscope: a detailed characterization,” Nanotechnology13, 133–137 (2002).
[CrossRef]

J. H. Kim, M. Yoneya, J. Yamamoto, and H. Yokoyama, “Surface alignment bistability of nematic liquid crystals by orientationally frustrated surface patterns,” Appl. Phys. Lett.78, 3055–3057 (2001).
[CrossRef]

Yokoyama, H.

J. Niitsuma, M. Yoneya, and H. Yokoyama, “Contact photolithographic micropatterning for bistable nematic liquid crystal displays,” Appl. Phys. Lett.92, 241120 (2008).
[CrossRef]

J. S. Gwag, J. H. Kim, M. Yoney, and H. Yokoyama, “Surface nematic bistability at nanoimprinted topography,” Appl. Phys. Lett.92, 153110 (2008).
[CrossRef]

M. Yoneya, J. H. Kim, and H. Yokoyama, “Multistable nematic liquid crystal device using nanoscopically patterned surface alignment,” Appl. Phys. Lett.80, 1034–1035 (2002).

J. H. Kim, M. Yoney, J. Yamamoto, and H. Yokoyama, “Nano-rubbing of a liquid crystal alignment layer by an atomic force microscope: a detailed characterization,” Nanotechnology13, 133–137 (2002).
[CrossRef]

J. H. Kim, M. Yoney, and H. Yokoyama, “Tristable nematic liquid-crystal device using micropatterned surface alignment,” Nature420, 159–162 (2002).
[CrossRef] [PubMed]

J. H. Kim, M. Yoneya, J. Yamamoto, and H. Yokoyama, “Surface alignment bistability of nematic liquid crystals by orientationally frustrated surface patterns,” Appl. Phys. Lett.78, 3055–3057 (2001).
[CrossRef]

J. S. Patel and H. Yokoyama, “Continuous anchoring transition in liquid crystals,” Nature (London)362, 525–527 (1993).
[CrossRef]

Yoney, M.

J. S. Gwag, J. H. Kim, M. Yoney, and H. Yokoyama, “Surface nematic bistability at nanoimprinted topography,” Appl. Phys. Lett.92, 153110 (2008).
[CrossRef]

J. H. Kim, M. Yoney, J. Yamamoto, and H. Yokoyama, “Nano-rubbing of a liquid crystal alignment layer by an atomic force microscope: a detailed characterization,” Nanotechnology13, 133–137 (2002).
[CrossRef]

J. H. Kim, M. Yoney, and H. Yokoyama, “Tristable nematic liquid-crystal device using micropatterned surface alignment,” Nature420, 159–162 (2002).
[CrossRef] [PubMed]

Yoneya, M.

J. Niitsuma, M. Yoneya, and H. Yokoyama, “Contact photolithographic micropatterning for bistable nematic liquid crystal displays,” Appl. Phys. Lett.92, 241120 (2008).
[CrossRef]

M. Yoneya, J. H. Kim, and H. Yokoyama, “Multistable nematic liquid crystal device using nanoscopically patterned surface alignment,” Appl. Phys. Lett.80, 1034–1035 (2002).

J. H. Kim, M. Yoneya, J. Yamamoto, and H. Yokoyama, “Surface alignment bistability of nematic liquid crystals by orientationally frustrated surface patterns,” Appl. Phys. Lett.78, 3055–3057 (2001).
[CrossRef]

Adv. Mater.

S. M. Jeong, J. K. Kim, Y. Shimbo, F. Araoka, S. Dhara, N. Y. Ha, K. Ishikawa, and H. Takezoe, “Perfluoropolymer surface for shock-free homeotropic alignment of smectic liquid crystals,” Adv. Mater.22, 34–38 (2010).
[CrossRef] [PubMed]

Appl. Phys. Lett.

J. Niitsuma, M. Yoneya, and H. Yokoyama, “Contact photolithographic micropatterning for bistable nematic liquid crystal displays,” Appl. Phys. Lett.92, 241120 (2008).
[CrossRef]

J. S. Gwag, J. H. Kim, M. Yoney, and H. Yokoyama, “Surface nematic bistability at nanoimprinted topography,” Appl. Phys. Lett.92, 153110 (2008).
[CrossRef]

G. D. Boyd, J. Cheng, and P. D. T. Ngo, “Liquid crystal orientational bistability and nematic storage effects,” Appl. Phys. Lett.36, 556–558 (1980).
[CrossRef]

R. Barberi, M. Boix, and G. Durand, “Electrically controlled surface bistability in nematic liquid crystals,” Appl. Phys. Lett.55, 2506–2508 (1989).
[CrossRef]

J. H. Kim, M. Yoneya, J. Yamamoto, and H. Yokoyama, “Surface alignment bistability of nematic liquid crystals by orientationally frustrated surface patterns,” Appl. Phys. Lett.78, 3055–3057 (2001).
[CrossRef]

M. Yoneya, J. H. Kim, and H. Yokoyama, “Multistable nematic liquid crystal device using nanoscopically patterned surface alignment,” Appl. Phys. Lett.80, 1034–1035 (2002).

J. K. Kim, F. Araoka, S.M. Jeong, S. Dhara, K. Ishikawa, and H. Takezoe, “Bistable device using anchoring transition of nematic liquid crystals,” Appl. Phys. Lett.95, 063505 (2009).
[CrossRef]

J. Appl. Phys.

J. K. Kim, K. V. Le, S. Dhara, F. Araoka, K. Ishikawa, and H. Takezoe, “Heat-driven and electric-field-driven bistable devices using dye-doped nematic liquid crystals,” J. Appl. Phys.107, 123108 (2010).
[CrossRef]

D. W. Berreman and W. R. Heffner, “New bistable liquid crystal twist cell,” J. Appl. Phys.52, 3032–3039 (1981).
[CrossRef]

Liq. Cryst.

T. A. Kumar, V. S. S. Sastry, K. Ishikawa, H. Takezoe, N.V. Madhusudana, and S. Dhara, “Effect of an electric field on defects in a nematic liquid crystal with variable surface anchoring,” Liq. Cryst.38, 971–979 (2011).
[CrossRef]

Mol. Cryst. Liq. Cryst.

D. Andrienko, A. Dyadyusha, Y. Kurioz, V. Reshetnyak, and Y. Reznikov, “Light-induced anchoring transitions and bistable nematic alignment on polysiloxane-based aligning surface,” Mol. Cryst. Liq. Cryst.321, 299–307 (1998).
[CrossRef]

Nanotechnology

J. H. Kim, M. Yoney, J. Yamamoto, and H. Yokoyama, “Nano-rubbing of a liquid crystal alignment layer by an atomic force microscope: a detailed characterization,” Nanotechnology13, 133–137 (2002).
[CrossRef]

Nature

J. H. Kim, M. Yoney, and H. Yokoyama, “Tristable nematic liquid-crystal device using micropatterned surface alignment,” Nature420, 159–162 (2002).
[CrossRef] [PubMed]

Nature (London)

J. S. Patel and H. Yokoyama, “Continuous anchoring transition in liquid crystals,” Nature (London)362, 525–527 (1993).
[CrossRef]

Phase Transitions

T. A. Kumar, K. V. Le, S. Aya, S. Kang, F. Araoka, K. Ishikawa, S. Dhara, and H. Takezoe, “Anchoring transition in a nematic liquid crystal doped with chiral agents,” Phase Transitions85, 888–899 (2012).
[CrossRef]

S. Dhara and N. V. Madhusudana, “Physical characterisation of 4-butyl-4-heptyl-bicyclohexyl- 4-carbonitrile,” Phase Transitions81, 561–569 (2008).
[CrossRef]

Phys. Rev. E

S. Dhara, J. K. Kim, S. M. Jeong, R. Kogo, F. Araoka, K. Ishikawa, and H. Takezoe, “Anchoring transitions of transversely polar liquid-crystal molecules on perfluoropolymer surfaces,” Phys. Rev. E79, 060701R (2009).
[CrossRef]

Proc. SPIE

Y. Kurioz, D. Kurysh, V. Reshetnyak, and Y. Reznikov, “Temperature induced anchoring transition in nematic liquid crystal cell,” Proc. SPIE5257, 128–131 (2003).
[CrossRef]

Other

L. M. Blinov and V. G. Chigrinov, Electrooptic Effects in Liquid Crystal Materials (Springer-Verlag Inc., 1994).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Representative textures of the sample as observed under optical polarizing microscope in cooling (top) and heating (bottom). The bistable (hysteresis) temperature range is indicated below.

Fig. 2
Fig. 2

(a) Recorded lines at various scanning speed of the laser tweezer beam at a temperature 51°C. The scanning speeds are (a)8 μm/s (b)19 μm/s (c)45 μm/s, respectively. The line widths are mentioned in each figures. Laser power 120 mW. Cell thickness ≃ 5μm. The intensity at each pixel across the bistable line is shown on the right side.

Fig. 3
Fig. 3

Two orthogonal recorded lines under polarizing microscope at temperature 51°C (a) the beam scanning direction is parallel to the polarizer/analyser (b) 45° with respect to the polarizer/analyzer (c) with λ-plate and fast axis orientated parallel to the vertical line (d) with λ-plate and fast axis orientated parallel to the horizontal line. Cell thickness 5.2 μm.

Fig. 4
Fig. 4

Square grid patterns prepared at 51°C. (a) Pattern for a square box generated in the computer using Origin Software. Each square box is composed of parallel line of equal width and spacing. (b) the beam scanning direction is parallel to the polarizer/analyser. (c) 45° with respect to the polarizer/analyzer (d) with λ-plate and fast axis orientated parallel to the vertical line (e) with λ-plate and fast axis orientated parallel to the horizontal line. Cell thickness 5.2 μm.

Fig. 5
Fig. 5

Schematic representation of the molecular orientation in planar and homeotropic regions (top view). The DCM dye molecules are indicated in red colour. The green arrows indicate the direction of the motion of the beam spot in two orthogonal directions.

Metrics