Abstract

An autocorrelator based on a Fabry-Perot interferometer is proposed for ultrashort pulse measurement. Main features of this autocorrelator due to the superposition of multiple pulses were investigated experimentally and theoretically. It turns out that the signal from a Fabry-Perot interferometer can be used as an autocorrelator signal. This autocorrelator provides more compact setup with a much easier alignment than a conventional autocorrelator based on a Michelson interferometer.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Schultze, E. Goulielmakis, M. Uiberacker, M. Hofstetter, J. Kim, D. Kim, F. Krausz, and U. Kleineberg, “Powerful 170-attosecond XUV pulses generated with few-cycle laser pulses and broadband multilayer optics,” New J. Phys.9(7), 243 (2007).
    [CrossRef]
  2. R. Trebino and D. J. Kane, “Using phase retrieval to measure the intensity and phase of ultrashort pulses: frequency-resolved optical gating,” J. Opt. Soc. Am. A10(5), 1101–1111 (1993).
    [CrossRef]
  3. C. Iaconis, V. Wong, and I. A. Walmsley, “Direct interferometric techniques for characterizing ultrashort optical pulses,” IEEE J. Sel. Top. Quantum Electron.4(2), 285–294 (1998).
    [CrossRef]
  4. D. A. Bender, J. W. Nicholson, and M. Sheik-Bahae, “Ultrashort laser pulse characterization using modified spectrum auto-interferometric correlation (MOSAIC),” Opt. Express16(16), 11782–11794 (2008).
    [CrossRef] [PubMed]
  5. E. Goulielmakis, M. Uiberacker, R. Kienberger, A. Baltuska, V. Yakovlev, A. Scrinzi, Th. Westerwalbesloh, U. Kleineberg, U. Heinzmann, M. Drescher, and F. Krausz, “Direct measurement of light waves,” Science305(5688), 1267–1269 (2004).
    [CrossRef] [PubMed]
  6. P. Wasylczyk, “Ultracompact autocorrelator for femtosecond laser pulses,” Rev. Sci. Instrum.72(4), 2221–2223 (2001).
    [CrossRef]
  7. S. M. Kobtsev, S. V. Smirnov, S. V. Kukarin, and V. B. Sorokin, “Femtosecond autocorrelator based on a swinging birefringent plate,” Quantum Electron.31(9), 829–833 (2001).
    [CrossRef]
  8. J. An and D. E. Kim, “Compact in-line autocorrelator using double wedge,” Opt. Express20(3), 3325–3330 (2012).
    [CrossRef] [PubMed]
  9. J. Diels and W. Rudolph, Ultrashort Laser Pulse Phenomena (Academic Press, 2006), Chap. 9.
  10. F. Raksi, W. Heuer, and H. Zacharias, “Single pulse pump-and-probe measurements and a new single pulse autocorrelator,” Opt. Commun.86(1), 1–6 (1991).
    [CrossRef]
  11. B. Colombeau, C. Froehly, and M. Vampouille, “Autocorrelation of laser pulses by optical processing of Fabry-Perot spectrograms,” Appl. Opt.19(4), 534–541 (1980).
    [CrossRef] [PubMed]
  12. P. Yeh, A. Yariv, and C. Hong, “Electromagnetic propagation in periodic stratified media. I. General theory,” J. Opt. Soc. Am.67(4), 423–438 (1977).
    [CrossRef]
  13. P. Yeh, Optical Waves in Layered Media (John Wiley & Sons, 2005), Chap. 5.

2012

2008

2007

M. Schultze, E. Goulielmakis, M. Uiberacker, M. Hofstetter, J. Kim, D. Kim, F. Krausz, and U. Kleineberg, “Powerful 170-attosecond XUV pulses generated with few-cycle laser pulses and broadband multilayer optics,” New J. Phys.9(7), 243 (2007).
[CrossRef]

2004

E. Goulielmakis, M. Uiberacker, R. Kienberger, A. Baltuska, V. Yakovlev, A. Scrinzi, Th. Westerwalbesloh, U. Kleineberg, U. Heinzmann, M. Drescher, and F. Krausz, “Direct measurement of light waves,” Science305(5688), 1267–1269 (2004).
[CrossRef] [PubMed]

2001

P. Wasylczyk, “Ultracompact autocorrelator for femtosecond laser pulses,” Rev. Sci. Instrum.72(4), 2221–2223 (2001).
[CrossRef]

S. M. Kobtsev, S. V. Smirnov, S. V. Kukarin, and V. B. Sorokin, “Femtosecond autocorrelator based on a swinging birefringent plate,” Quantum Electron.31(9), 829–833 (2001).
[CrossRef]

1998

C. Iaconis, V. Wong, and I. A. Walmsley, “Direct interferometric techniques for characterizing ultrashort optical pulses,” IEEE J. Sel. Top. Quantum Electron.4(2), 285–294 (1998).
[CrossRef]

1993

1991

F. Raksi, W. Heuer, and H. Zacharias, “Single pulse pump-and-probe measurements and a new single pulse autocorrelator,” Opt. Commun.86(1), 1–6 (1991).
[CrossRef]

1980

1977

An, J.

Baltuska, A.

E. Goulielmakis, M. Uiberacker, R. Kienberger, A. Baltuska, V. Yakovlev, A. Scrinzi, Th. Westerwalbesloh, U. Kleineberg, U. Heinzmann, M. Drescher, and F. Krausz, “Direct measurement of light waves,” Science305(5688), 1267–1269 (2004).
[CrossRef] [PubMed]

Bender, D. A.

Colombeau, B.

Drescher, M.

E. Goulielmakis, M. Uiberacker, R. Kienberger, A. Baltuska, V. Yakovlev, A. Scrinzi, Th. Westerwalbesloh, U. Kleineberg, U. Heinzmann, M. Drescher, and F. Krausz, “Direct measurement of light waves,” Science305(5688), 1267–1269 (2004).
[CrossRef] [PubMed]

Froehly, C.

Goulielmakis, E.

M. Schultze, E. Goulielmakis, M. Uiberacker, M. Hofstetter, J. Kim, D. Kim, F. Krausz, and U. Kleineberg, “Powerful 170-attosecond XUV pulses generated with few-cycle laser pulses and broadband multilayer optics,” New J. Phys.9(7), 243 (2007).
[CrossRef]

E. Goulielmakis, M. Uiberacker, R. Kienberger, A. Baltuska, V. Yakovlev, A. Scrinzi, Th. Westerwalbesloh, U. Kleineberg, U. Heinzmann, M. Drescher, and F. Krausz, “Direct measurement of light waves,” Science305(5688), 1267–1269 (2004).
[CrossRef] [PubMed]

Heinzmann, U.

E. Goulielmakis, M. Uiberacker, R. Kienberger, A. Baltuska, V. Yakovlev, A. Scrinzi, Th. Westerwalbesloh, U. Kleineberg, U. Heinzmann, M. Drescher, and F. Krausz, “Direct measurement of light waves,” Science305(5688), 1267–1269 (2004).
[CrossRef] [PubMed]

Heuer, W.

F. Raksi, W. Heuer, and H. Zacharias, “Single pulse pump-and-probe measurements and a new single pulse autocorrelator,” Opt. Commun.86(1), 1–6 (1991).
[CrossRef]

Hofstetter, M.

M. Schultze, E. Goulielmakis, M. Uiberacker, M. Hofstetter, J. Kim, D. Kim, F. Krausz, and U. Kleineberg, “Powerful 170-attosecond XUV pulses generated with few-cycle laser pulses and broadband multilayer optics,” New J. Phys.9(7), 243 (2007).
[CrossRef]

Hong, C.

Iaconis, C.

C. Iaconis, V. Wong, and I. A. Walmsley, “Direct interferometric techniques for characterizing ultrashort optical pulses,” IEEE J. Sel. Top. Quantum Electron.4(2), 285–294 (1998).
[CrossRef]

Kane, D. J.

Kienberger, R.

E. Goulielmakis, M. Uiberacker, R. Kienberger, A. Baltuska, V. Yakovlev, A. Scrinzi, Th. Westerwalbesloh, U. Kleineberg, U. Heinzmann, M. Drescher, and F. Krausz, “Direct measurement of light waves,” Science305(5688), 1267–1269 (2004).
[CrossRef] [PubMed]

Kim, D.

M. Schultze, E. Goulielmakis, M. Uiberacker, M. Hofstetter, J. Kim, D. Kim, F. Krausz, and U. Kleineberg, “Powerful 170-attosecond XUV pulses generated with few-cycle laser pulses and broadband multilayer optics,” New J. Phys.9(7), 243 (2007).
[CrossRef]

Kim, D. E.

Kim, J.

M. Schultze, E. Goulielmakis, M. Uiberacker, M. Hofstetter, J. Kim, D. Kim, F. Krausz, and U. Kleineberg, “Powerful 170-attosecond XUV pulses generated with few-cycle laser pulses and broadband multilayer optics,” New J. Phys.9(7), 243 (2007).
[CrossRef]

Kleineberg, U.

M. Schultze, E. Goulielmakis, M. Uiberacker, M. Hofstetter, J. Kim, D. Kim, F. Krausz, and U. Kleineberg, “Powerful 170-attosecond XUV pulses generated with few-cycle laser pulses and broadband multilayer optics,” New J. Phys.9(7), 243 (2007).
[CrossRef]

E. Goulielmakis, M. Uiberacker, R. Kienberger, A. Baltuska, V. Yakovlev, A. Scrinzi, Th. Westerwalbesloh, U. Kleineberg, U. Heinzmann, M. Drescher, and F. Krausz, “Direct measurement of light waves,” Science305(5688), 1267–1269 (2004).
[CrossRef] [PubMed]

Kobtsev, S. M.

S. M. Kobtsev, S. V. Smirnov, S. V. Kukarin, and V. B. Sorokin, “Femtosecond autocorrelator based on a swinging birefringent plate,” Quantum Electron.31(9), 829–833 (2001).
[CrossRef]

Krausz, F.

M. Schultze, E. Goulielmakis, M. Uiberacker, M. Hofstetter, J. Kim, D. Kim, F. Krausz, and U. Kleineberg, “Powerful 170-attosecond XUV pulses generated with few-cycle laser pulses and broadband multilayer optics,” New J. Phys.9(7), 243 (2007).
[CrossRef]

E. Goulielmakis, M. Uiberacker, R. Kienberger, A. Baltuska, V. Yakovlev, A. Scrinzi, Th. Westerwalbesloh, U. Kleineberg, U. Heinzmann, M. Drescher, and F. Krausz, “Direct measurement of light waves,” Science305(5688), 1267–1269 (2004).
[CrossRef] [PubMed]

Kukarin, S. V.

S. M. Kobtsev, S. V. Smirnov, S. V. Kukarin, and V. B. Sorokin, “Femtosecond autocorrelator based on a swinging birefringent plate,” Quantum Electron.31(9), 829–833 (2001).
[CrossRef]

Nicholson, J. W.

Raksi, F.

F. Raksi, W. Heuer, and H. Zacharias, “Single pulse pump-and-probe measurements and a new single pulse autocorrelator,” Opt. Commun.86(1), 1–6 (1991).
[CrossRef]

Schultze, M.

M. Schultze, E. Goulielmakis, M. Uiberacker, M. Hofstetter, J. Kim, D. Kim, F. Krausz, and U. Kleineberg, “Powerful 170-attosecond XUV pulses generated with few-cycle laser pulses and broadband multilayer optics,” New J. Phys.9(7), 243 (2007).
[CrossRef]

Scrinzi, A.

E. Goulielmakis, M. Uiberacker, R. Kienberger, A. Baltuska, V. Yakovlev, A. Scrinzi, Th. Westerwalbesloh, U. Kleineberg, U. Heinzmann, M. Drescher, and F. Krausz, “Direct measurement of light waves,” Science305(5688), 1267–1269 (2004).
[CrossRef] [PubMed]

Sheik-Bahae, M.

Smirnov, S. V.

S. M. Kobtsev, S. V. Smirnov, S. V. Kukarin, and V. B. Sorokin, “Femtosecond autocorrelator based on a swinging birefringent plate,” Quantum Electron.31(9), 829–833 (2001).
[CrossRef]

Sorokin, V. B.

S. M. Kobtsev, S. V. Smirnov, S. V. Kukarin, and V. B. Sorokin, “Femtosecond autocorrelator based on a swinging birefringent plate,” Quantum Electron.31(9), 829–833 (2001).
[CrossRef]

Trebino, R.

Uiberacker, M.

M. Schultze, E. Goulielmakis, M. Uiberacker, M. Hofstetter, J. Kim, D. Kim, F. Krausz, and U. Kleineberg, “Powerful 170-attosecond XUV pulses generated with few-cycle laser pulses and broadband multilayer optics,” New J. Phys.9(7), 243 (2007).
[CrossRef]

E. Goulielmakis, M. Uiberacker, R. Kienberger, A. Baltuska, V. Yakovlev, A. Scrinzi, Th. Westerwalbesloh, U. Kleineberg, U. Heinzmann, M. Drescher, and F. Krausz, “Direct measurement of light waves,” Science305(5688), 1267–1269 (2004).
[CrossRef] [PubMed]

Vampouille, M.

Walmsley, I. A.

C. Iaconis, V. Wong, and I. A. Walmsley, “Direct interferometric techniques for characterizing ultrashort optical pulses,” IEEE J. Sel. Top. Quantum Electron.4(2), 285–294 (1998).
[CrossRef]

Wasylczyk, P.

P. Wasylczyk, “Ultracompact autocorrelator for femtosecond laser pulses,” Rev. Sci. Instrum.72(4), 2221–2223 (2001).
[CrossRef]

Westerwalbesloh, Th.

E. Goulielmakis, M. Uiberacker, R. Kienberger, A. Baltuska, V. Yakovlev, A. Scrinzi, Th. Westerwalbesloh, U. Kleineberg, U. Heinzmann, M. Drescher, and F. Krausz, “Direct measurement of light waves,” Science305(5688), 1267–1269 (2004).
[CrossRef] [PubMed]

Wong, V.

C. Iaconis, V. Wong, and I. A. Walmsley, “Direct interferometric techniques for characterizing ultrashort optical pulses,” IEEE J. Sel. Top. Quantum Electron.4(2), 285–294 (1998).
[CrossRef]

Yakovlev, V.

E. Goulielmakis, M. Uiberacker, R. Kienberger, A. Baltuska, V. Yakovlev, A. Scrinzi, Th. Westerwalbesloh, U. Kleineberg, U. Heinzmann, M. Drescher, and F. Krausz, “Direct measurement of light waves,” Science305(5688), 1267–1269 (2004).
[CrossRef] [PubMed]

Yariv, A.

Yeh, P.

Zacharias, H.

F. Raksi, W. Heuer, and H. Zacharias, “Single pulse pump-and-probe measurements and a new single pulse autocorrelator,” Opt. Commun.86(1), 1–6 (1991).
[CrossRef]

Appl. Opt.

IEEE J. Sel. Top. Quantum Electron.

C. Iaconis, V. Wong, and I. A. Walmsley, “Direct interferometric techniques for characterizing ultrashort optical pulses,” IEEE J. Sel. Top. Quantum Electron.4(2), 285–294 (1998).
[CrossRef]

J. Opt. Soc. Am.

J. Opt. Soc. Am. A

New J. Phys.

M. Schultze, E. Goulielmakis, M. Uiberacker, M. Hofstetter, J. Kim, D. Kim, F. Krausz, and U. Kleineberg, “Powerful 170-attosecond XUV pulses generated with few-cycle laser pulses and broadband multilayer optics,” New J. Phys.9(7), 243 (2007).
[CrossRef]

Opt. Commun.

F. Raksi, W. Heuer, and H. Zacharias, “Single pulse pump-and-probe measurements and a new single pulse autocorrelator,” Opt. Commun.86(1), 1–6 (1991).
[CrossRef]

Opt. Express

Quantum Electron.

S. M. Kobtsev, S. V. Smirnov, S. V. Kukarin, and V. B. Sorokin, “Femtosecond autocorrelator based on a swinging birefringent plate,” Quantum Electron.31(9), 829–833 (2001).
[CrossRef]

Rev. Sci. Instrum.

P. Wasylczyk, “Ultracompact autocorrelator for femtosecond laser pulses,” Rev. Sci. Instrum.72(4), 2221–2223 (2001).
[CrossRef]

Science

E. Goulielmakis, M. Uiberacker, R. Kienberger, A. Baltuska, V. Yakovlev, A. Scrinzi, Th. Westerwalbesloh, U. Kleineberg, U. Heinzmann, M. Drescher, and F. Krausz, “Direct measurement of light waves,” Science305(5688), 1267–1269 (2004).
[CrossRef] [PubMed]

Other

J. Diels and W. Rudolph, Ultrashort Laser Pulse Phenomena (Academic Press, 2006), Chap. 9.

P. Yeh, Optical Waves in Layered Media (John Wiley & Sons, 2005), Chap. 5.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

An autocorrelator based on (a) a Michelson interferometer and (b) a Fabry-Perot interferometer, (c) multiple reflections in a Fabry-Perot etalon (BS: beam splitter, E: etalon pair, L: lens, SH: second harmonic generator such as BBO crystal, M: mirror for fundamental wavelength or harmonic separator, PD: photodiode detector)

Fig. 2
Fig. 2

Autocorrelation trace for a Gaussian pulse of 30 fs FWHM at 800 nm carrier wavelength in the case of (a) a Michelson autocorrelator and (b) a Fabry-Perot autocorrelator. For the geometry of Fig. 1(c), the negative delay is not possible in real experiment. This issue is discussed later in text.

Fig. 3
Fig. 3

(a) Shape conversion factor α versus reflectance R (b) envelopes of FPAC signals with various reflectance R for a given Gaussian pulse of 30 fs FWHM

Fig. 4
Fig. 4

Autocorrelation signals of a chirped pulse propagating through a fused silica, (a) using a Michelson interferometer (b) using a Fabry-Perot interferometer with R = 0.5

Fig. 5
Fig. 5

An interferometer for a Fabry-Perot autocorrelator with three reflecting surfaces (Reflections are drawn with an angle for the visual clarity. In fact, they are all normal to the surfaces)

Fig. 6
Fig. 6

Autocorrelation trace from two-interface and three-interface FPAC for a given Gaussian pulse of 32 fs FWHM. R = 0.5 for all reflecting surfaces.

Fig. 7
Fig. 7

Change of shape conversion factor α with respect to the pulse duration, where d0 = 2 mm, R = 0.5

Fig. 8
Fig. 8

Comparison of autocorrelation trace between MAC and FPAC: (a) 27 fs pulse measured by MAC (b) positively chirped pulse measured by MAC (c) 27 fs pulse measured by FPAC (d) positively chirped pulse measured by FPAC (e) comparison between theoretical FPAC trace and experimental FPAC trace for 27 fs pulse

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

A 0 (τ)= (1R) 4 n=0 R 4n ε 4 (tnτ)+4 n=0 m=0, mn R 2(n+m) ε 2 (tnτ) ε 2 (tmτ) dt.

Metrics