Abstract

We demonstrate a pulse-shaping technique that allows for spectrally resolved splitting of an input signal to multiple output ports. This ability enables reconfigurable creation of splitters with complex wavelength-dependent splitting ratios, giving similar flexibility to a Field Programmable Gate Array (FPGA) in electronics. Our technique can be used to create reprogrammable optical (interferometric) circuits, by emulating their multi-port spectral transfer functions instead of the traditional method of creating an interferometer by splitting and recombining the light with an added delay. We demonstrate the capabilities of this technique by creating a Mach-Zehnder interferometer, an all-optical discrete Fourier transform filter, two nested Mach-Zehnder interferometers and a complex splitter with a triangular-shaped response.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. M. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum.71, 1929–1960 (2000).
    [CrossRef]
  2. V. R. Supradeepa, C.-B. Huang, D. E. Leaird, and A. M. Weiner, “Femtosecond pulse shaping in two dimensions: towards higher complexity optical waveforms.” Opt. Express16, 11878–87 (2008).
    [CrossRef] [PubMed]
  3. S. Vidal, J. Degert, J. Oberlé, and E. Freysz, “Femtosecond optical pulse shaping for tunable terahertz pulse generation,” J. Opt. Soc. Am. B27, 1044–1050 (2010).
    [CrossRef]
  4. T. Brixner, N. H. Damrauer, P. Niklaus, and G. Gerber, “Photoselective adaptive femtosecond quantum control in the liquid phase,” Nature414, 57–60 (2001).
    [CrossRef] [PubMed]
  5. N. Dudovich, D. Oron, and Y. Silberberg, “Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy,” Nature418, 512–514 (2002).
    [CrossRef] [PubMed]
  6. G. Baxter, S. Frisken, D. Abakoumov, H. Zhou, I. Clarke, A. Bartos, and S. Poole, “Highly Programmable Wavelength Selective Switch Based on Liquid Crystal on Silicon Switching Elements,” in “Optical Fiber Communication Conference Engineers Conference,” (Optical Society of America, 2006), paper OTuF2.
  7. G.-H. Lee, S. Xiao, and A. Weiner, “Optical Dispersion Compensator With 4000-ps/nm Tuning Range Using a Virtually Imaged Phased Array (VIPA) and Spatial Light Modulator (SLM),” IEEE Photonic Tech. Lett.18, 1819–1821 (2006).
    [CrossRef]
  8. S. J. Frisken, H. Zhou, D. Abakoumov, G. Baxter, S. Poole, H. Ereifej, and P. Hallemeier, “High performance ’Drop and Continue’ Functionality in a Wavelength Selective Switch,” in “Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference,” (Optical Society of America, 2006), paper PDP14.
  9. J. C. Vaughan, T. Feurer, and K. A. Nelson, “Automated spatiotemporal diffraction of ultrashort laser pulses,” Opt. Lett.28, 2408–2410 (2003).
    [CrossRef] [PubMed]
  10. J. Schröder, O. Brasier, T. D. Vo, M. A. F. Roelens, S. Frisken, and B. J. Eggleton, “Simultaneous multi-channel OSNR monitoring with a wavelength selective switch,” Opt. Express18, 22299–22304 (2010).
    [CrossRef] [PubMed]
  11. J. Schröder, L. B. Du, M. A. Roelens, B. J. Eggleton, and A. J. Lowery, “Reconfigurable all-optical Discrete Fourier Transform in a Wavelength Selective Switch for Optical OFDM demultiplexing,” in “Optical Fiber Communication Conference (OFC),” (Optical Society of America2012), paper OTh1G.6.
  12. M. A. F. Roelens, S. Frisken, J. A. Bolger, D. Abakoumov, G. Baxter, S. Poole, and B. J. Eggleton, “Dispersion Trimming in a Reconfigurable Wavelength Selective Switch,” J. Lightwave Technol.26, 73–78 (2008).
    [CrossRef]
  13. E. Frumker and Y. Silverberg, “Phase and amplitude pulse shaping with two-dimensional phase-only spatial light modulators,”, J. Opt. Soc. Am. B24, 2940–2947 (2007).
    [CrossRef]
  14. J. W. Wilson, P. Schlup, and R. A. Bartels, “Ultrafast phase and amplitude pulse shaping with a single, one-dimensional, high-resolution phase mask.,” Opt. Express15, 8979–87 (2007).
    [CrossRef] [PubMed]
  15. S. Wright and J. Nocedal, “Numerical Optimization” (2006).
  16. D. Hillerkuss, M. Winter, M. Teschke, A. Marculescu, J. Li, G. Sigurdsson, K. Worms, S. Ben Ezra, N. Narkiss, W. Freude, and J. Leuthold, “Simple all-optical FFT scheme enabling Tbit/s real-time signal processing.” Opt. Express18, 9324–40 (2010).
    [CrossRef] [PubMed]
  17. A. J. Lowery, “Design of Arrayed-Waveguide Grating Routers for use as optical OFDM demultiplexers.” Opt. Express18, 14129–43 (2010).
    [CrossRef] [PubMed]
  18. L. B. Du, J. Schröder, B. J. Eggleton, and A. J. Lowery, “Reconfigurable optical OFDM transmitter using an inverse optical Fourier transform.” in “Opto-Electronics and Communications Conference (OECC),” (2012), paper PDP1-1.

2010 (4)

2008 (2)

2007 (2)

2006 (1)

G.-H. Lee, S. Xiao, and A. Weiner, “Optical Dispersion Compensator With 4000-ps/nm Tuning Range Using a Virtually Imaged Phased Array (VIPA) and Spatial Light Modulator (SLM),” IEEE Photonic Tech. Lett.18, 1819–1821 (2006).
[CrossRef]

2003 (1)

2002 (1)

N. Dudovich, D. Oron, and Y. Silberberg, “Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy,” Nature418, 512–514 (2002).
[CrossRef] [PubMed]

2001 (1)

T. Brixner, N. H. Damrauer, P. Niklaus, and G. Gerber, “Photoselective adaptive femtosecond quantum control in the liquid phase,” Nature414, 57–60 (2001).
[CrossRef] [PubMed]

2000 (1)

A. M. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum.71, 1929–1960 (2000).
[CrossRef]

Abakoumov, D.

M. A. F. Roelens, S. Frisken, J. A. Bolger, D. Abakoumov, G. Baxter, S. Poole, and B. J. Eggleton, “Dispersion Trimming in a Reconfigurable Wavelength Selective Switch,” J. Lightwave Technol.26, 73–78 (2008).
[CrossRef]

S. J. Frisken, H. Zhou, D. Abakoumov, G. Baxter, S. Poole, H. Ereifej, and P. Hallemeier, “High performance ’Drop and Continue’ Functionality in a Wavelength Selective Switch,” in “Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference,” (Optical Society of America, 2006), paper PDP14.

G. Baxter, S. Frisken, D. Abakoumov, H. Zhou, I. Clarke, A. Bartos, and S. Poole, “Highly Programmable Wavelength Selective Switch Based on Liquid Crystal on Silicon Switching Elements,” in “Optical Fiber Communication Conference Engineers Conference,” (Optical Society of America, 2006), paper OTuF2.

Bartels, R. A.

Bartos, A.

G. Baxter, S. Frisken, D. Abakoumov, H. Zhou, I. Clarke, A. Bartos, and S. Poole, “Highly Programmable Wavelength Selective Switch Based on Liquid Crystal on Silicon Switching Elements,” in “Optical Fiber Communication Conference Engineers Conference,” (Optical Society of America, 2006), paper OTuF2.

Baxter, G.

M. A. F. Roelens, S. Frisken, J. A. Bolger, D. Abakoumov, G. Baxter, S. Poole, and B. J. Eggleton, “Dispersion Trimming in a Reconfigurable Wavelength Selective Switch,” J. Lightwave Technol.26, 73–78 (2008).
[CrossRef]

G. Baxter, S. Frisken, D. Abakoumov, H. Zhou, I. Clarke, A. Bartos, and S. Poole, “Highly Programmable Wavelength Selective Switch Based on Liquid Crystal on Silicon Switching Elements,” in “Optical Fiber Communication Conference Engineers Conference,” (Optical Society of America, 2006), paper OTuF2.

S. J. Frisken, H. Zhou, D. Abakoumov, G. Baxter, S. Poole, H. Ereifej, and P. Hallemeier, “High performance ’Drop and Continue’ Functionality in a Wavelength Selective Switch,” in “Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference,” (Optical Society of America, 2006), paper PDP14.

Ben Ezra, S.

Bolger, J. A.

Brasier, O.

Brixner, T.

T. Brixner, N. H. Damrauer, P. Niklaus, and G. Gerber, “Photoselective adaptive femtosecond quantum control in the liquid phase,” Nature414, 57–60 (2001).
[CrossRef] [PubMed]

Clarke, I.

G. Baxter, S. Frisken, D. Abakoumov, H. Zhou, I. Clarke, A. Bartos, and S. Poole, “Highly Programmable Wavelength Selective Switch Based on Liquid Crystal on Silicon Switching Elements,” in “Optical Fiber Communication Conference Engineers Conference,” (Optical Society of America, 2006), paper OTuF2.

Damrauer, N. H.

T. Brixner, N. H. Damrauer, P. Niklaus, and G. Gerber, “Photoselective adaptive femtosecond quantum control in the liquid phase,” Nature414, 57–60 (2001).
[CrossRef] [PubMed]

Degert, J.

Du, L. B.

J. Schröder, L. B. Du, M. A. Roelens, B. J. Eggleton, and A. J. Lowery, “Reconfigurable all-optical Discrete Fourier Transform in a Wavelength Selective Switch for Optical OFDM demultiplexing,” in “Optical Fiber Communication Conference (OFC),” (Optical Society of America2012), paper OTh1G.6.

L. B. Du, J. Schröder, B. J. Eggleton, and A. J. Lowery, “Reconfigurable optical OFDM transmitter using an inverse optical Fourier transform.” in “Opto-Electronics and Communications Conference (OECC),” (2012), paper PDP1-1.

Dudovich, N.

N. Dudovich, D. Oron, and Y. Silberberg, “Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy,” Nature418, 512–514 (2002).
[CrossRef] [PubMed]

Eggleton, B. J.

J. Schröder, O. Brasier, T. D. Vo, M. A. F. Roelens, S. Frisken, and B. J. Eggleton, “Simultaneous multi-channel OSNR monitoring with a wavelength selective switch,” Opt. Express18, 22299–22304 (2010).
[CrossRef] [PubMed]

M. A. F. Roelens, S. Frisken, J. A. Bolger, D. Abakoumov, G. Baxter, S. Poole, and B. J. Eggleton, “Dispersion Trimming in a Reconfigurable Wavelength Selective Switch,” J. Lightwave Technol.26, 73–78 (2008).
[CrossRef]

L. B. Du, J. Schröder, B. J. Eggleton, and A. J. Lowery, “Reconfigurable optical OFDM transmitter using an inverse optical Fourier transform.” in “Opto-Electronics and Communications Conference (OECC),” (2012), paper PDP1-1.

J. Schröder, L. B. Du, M. A. Roelens, B. J. Eggleton, and A. J. Lowery, “Reconfigurable all-optical Discrete Fourier Transform in a Wavelength Selective Switch for Optical OFDM demultiplexing,” in “Optical Fiber Communication Conference (OFC),” (Optical Society of America2012), paper OTh1G.6.

Ereifej, H.

S. J. Frisken, H. Zhou, D. Abakoumov, G. Baxter, S. Poole, H. Ereifej, and P. Hallemeier, “High performance ’Drop and Continue’ Functionality in a Wavelength Selective Switch,” in “Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference,” (Optical Society of America, 2006), paper PDP14.

Feurer, T.

Freude, W.

Freysz, E.

Frisken, S.

J. Schröder, O. Brasier, T. D. Vo, M. A. F. Roelens, S. Frisken, and B. J. Eggleton, “Simultaneous multi-channel OSNR monitoring with a wavelength selective switch,” Opt. Express18, 22299–22304 (2010).
[CrossRef] [PubMed]

M. A. F. Roelens, S. Frisken, J. A. Bolger, D. Abakoumov, G. Baxter, S. Poole, and B. J. Eggleton, “Dispersion Trimming in a Reconfigurable Wavelength Selective Switch,” J. Lightwave Technol.26, 73–78 (2008).
[CrossRef]

G. Baxter, S. Frisken, D. Abakoumov, H. Zhou, I. Clarke, A. Bartos, and S. Poole, “Highly Programmable Wavelength Selective Switch Based on Liquid Crystal on Silicon Switching Elements,” in “Optical Fiber Communication Conference Engineers Conference,” (Optical Society of America, 2006), paper OTuF2.

Frisken, S. J.

S. J. Frisken, H. Zhou, D. Abakoumov, G. Baxter, S. Poole, H. Ereifej, and P. Hallemeier, “High performance ’Drop and Continue’ Functionality in a Wavelength Selective Switch,” in “Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference,” (Optical Society of America, 2006), paper PDP14.

Frumker, E.

Gerber, G.

T. Brixner, N. H. Damrauer, P. Niklaus, and G. Gerber, “Photoselective adaptive femtosecond quantum control in the liquid phase,” Nature414, 57–60 (2001).
[CrossRef] [PubMed]

Hallemeier, P.

S. J. Frisken, H. Zhou, D. Abakoumov, G. Baxter, S. Poole, H. Ereifej, and P. Hallemeier, “High performance ’Drop and Continue’ Functionality in a Wavelength Selective Switch,” in “Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference,” (Optical Society of America, 2006), paper PDP14.

Hillerkuss, D.

Huang, C.-B.

Leaird, D. E.

Lee, G.-H.

G.-H. Lee, S. Xiao, and A. Weiner, “Optical Dispersion Compensator With 4000-ps/nm Tuning Range Using a Virtually Imaged Phased Array (VIPA) and Spatial Light Modulator (SLM),” IEEE Photonic Tech. Lett.18, 1819–1821 (2006).
[CrossRef]

Leuthold, J.

Li, J.

Lowery, A. J.

A. J. Lowery, “Design of Arrayed-Waveguide Grating Routers for use as optical OFDM demultiplexers.” Opt. Express18, 14129–43 (2010).
[CrossRef] [PubMed]

L. B. Du, J. Schröder, B. J. Eggleton, and A. J. Lowery, “Reconfigurable optical OFDM transmitter using an inverse optical Fourier transform.” in “Opto-Electronics and Communications Conference (OECC),” (2012), paper PDP1-1.

J. Schröder, L. B. Du, M. A. Roelens, B. J. Eggleton, and A. J. Lowery, “Reconfigurable all-optical Discrete Fourier Transform in a Wavelength Selective Switch for Optical OFDM demultiplexing,” in “Optical Fiber Communication Conference (OFC),” (Optical Society of America2012), paper OTh1G.6.

Marculescu, A.

Narkiss, N.

Nelson, K. A.

Niklaus, P.

T. Brixner, N. H. Damrauer, P. Niklaus, and G. Gerber, “Photoselective adaptive femtosecond quantum control in the liquid phase,” Nature414, 57–60 (2001).
[CrossRef] [PubMed]

Nocedal, J.

S. Wright and J. Nocedal, “Numerical Optimization” (2006).

Oberlé, J.

Oron, D.

N. Dudovich, D. Oron, and Y. Silberberg, “Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy,” Nature418, 512–514 (2002).
[CrossRef] [PubMed]

Poole, S.

M. A. F. Roelens, S. Frisken, J. A. Bolger, D. Abakoumov, G. Baxter, S. Poole, and B. J. Eggleton, “Dispersion Trimming in a Reconfigurable Wavelength Selective Switch,” J. Lightwave Technol.26, 73–78 (2008).
[CrossRef]

S. J. Frisken, H. Zhou, D. Abakoumov, G. Baxter, S. Poole, H. Ereifej, and P. Hallemeier, “High performance ’Drop and Continue’ Functionality in a Wavelength Selective Switch,” in “Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference,” (Optical Society of America, 2006), paper PDP14.

G. Baxter, S. Frisken, D. Abakoumov, H. Zhou, I. Clarke, A. Bartos, and S. Poole, “Highly Programmable Wavelength Selective Switch Based on Liquid Crystal on Silicon Switching Elements,” in “Optical Fiber Communication Conference Engineers Conference,” (Optical Society of America, 2006), paper OTuF2.

Roelens, M. A.

J. Schröder, L. B. Du, M. A. Roelens, B. J. Eggleton, and A. J. Lowery, “Reconfigurable all-optical Discrete Fourier Transform in a Wavelength Selective Switch for Optical OFDM demultiplexing,” in “Optical Fiber Communication Conference (OFC),” (Optical Society of America2012), paper OTh1G.6.

Roelens, M. A. F.

Schlup, P.

Schröder, J.

J. Schröder, O. Brasier, T. D. Vo, M. A. F. Roelens, S. Frisken, and B. J. Eggleton, “Simultaneous multi-channel OSNR monitoring with a wavelength selective switch,” Opt. Express18, 22299–22304 (2010).
[CrossRef] [PubMed]

J. Schröder, L. B. Du, M. A. Roelens, B. J. Eggleton, and A. J. Lowery, “Reconfigurable all-optical Discrete Fourier Transform in a Wavelength Selective Switch for Optical OFDM demultiplexing,” in “Optical Fiber Communication Conference (OFC),” (Optical Society of America2012), paper OTh1G.6.

L. B. Du, J. Schröder, B. J. Eggleton, and A. J. Lowery, “Reconfigurable optical OFDM transmitter using an inverse optical Fourier transform.” in “Opto-Electronics and Communications Conference (OECC),” (2012), paper PDP1-1.

Sigurdsson, G.

Silberberg, Y.

N. Dudovich, D. Oron, and Y. Silberberg, “Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy,” Nature418, 512–514 (2002).
[CrossRef] [PubMed]

Silverberg, Y.

Supradeepa, V. R.

Teschke, M.

Vaughan, J. C.

Vidal, S.

Vo, T. D.

Weiner, A.

G.-H. Lee, S. Xiao, and A. Weiner, “Optical Dispersion Compensator With 4000-ps/nm Tuning Range Using a Virtually Imaged Phased Array (VIPA) and Spatial Light Modulator (SLM),” IEEE Photonic Tech. Lett.18, 1819–1821 (2006).
[CrossRef]

Weiner, A. M.

Wilson, J. W.

Winter, M.

Worms, K.

Wright, S.

S. Wright and J. Nocedal, “Numerical Optimization” (2006).

Xiao, S.

G.-H. Lee, S. Xiao, and A. Weiner, “Optical Dispersion Compensator With 4000-ps/nm Tuning Range Using a Virtually Imaged Phased Array (VIPA) and Spatial Light Modulator (SLM),” IEEE Photonic Tech. Lett.18, 1819–1821 (2006).
[CrossRef]

Zhou, H.

S. J. Frisken, H. Zhou, D. Abakoumov, G. Baxter, S. Poole, H. Ereifej, and P. Hallemeier, “High performance ’Drop and Continue’ Functionality in a Wavelength Selective Switch,” in “Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference,” (Optical Society of America, 2006), paper PDP14.

G. Baxter, S. Frisken, D. Abakoumov, H. Zhou, I. Clarke, A. Bartos, and S. Poole, “Highly Programmable Wavelength Selective Switch Based on Liquid Crystal on Silicon Switching Elements,” in “Optical Fiber Communication Conference Engineers Conference,” (Optical Society of America, 2006), paper OTuF2.

IEEE Photonic Tech. Lett. (1)

G.-H. Lee, S. Xiao, and A. Weiner, “Optical Dispersion Compensator With 4000-ps/nm Tuning Range Using a Virtually Imaged Phased Array (VIPA) and Spatial Light Modulator (SLM),” IEEE Photonic Tech. Lett.18, 1819–1821 (2006).
[CrossRef]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. B (2)

Nature (2)

T. Brixner, N. H. Damrauer, P. Niklaus, and G. Gerber, “Photoselective adaptive femtosecond quantum control in the liquid phase,” Nature414, 57–60 (2001).
[CrossRef] [PubMed]

N. Dudovich, D. Oron, and Y. Silberberg, “Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy,” Nature418, 512–514 (2002).
[CrossRef] [PubMed]

Opt. Express (5)

Opt. Lett. (1)

Rev. Sci. Instrum. (1)

A. M. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum.71, 1929–1960 (2000).
[CrossRef]

Other (5)

J. Schröder, L. B. Du, M. A. Roelens, B. J. Eggleton, and A. J. Lowery, “Reconfigurable all-optical Discrete Fourier Transform in a Wavelength Selective Switch for Optical OFDM demultiplexing,” in “Optical Fiber Communication Conference (OFC),” (Optical Society of America2012), paper OTh1G.6.

S. Wright and J. Nocedal, “Numerical Optimization” (2006).

L. B. Du, J. Schröder, B. J. Eggleton, and A. J. Lowery, “Reconfigurable optical OFDM transmitter using an inverse optical Fourier transform.” in “Opto-Electronics and Communications Conference (OECC),” (2012), paper PDP1-1.

G. Baxter, S. Frisken, D. Abakoumov, H. Zhou, I. Clarke, A. Bartos, and S. Poole, “Highly Programmable Wavelength Selective Switch Based on Liquid Crystal on Silicon Switching Elements,” in “Optical Fiber Communication Conference Engineers Conference,” (Optical Society of America, 2006), paper OTuF2.

S. J. Frisken, H. Zhou, D. Abakoumov, G. Baxter, S. Poole, H. Ereifej, and P. Hallemeier, “High performance ’Drop and Continue’ Functionality in a Wavelength Selective Switch,” in “Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference,” (Optical Society of America, 2006), paper PDP14.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Principle of the SPS with multiport splitting (LCOS: greyscale presentation of LCOS phase image for creating a MZI). (b) Top view of the actual device layout illustrating the optical path for the two orthogonal polarisations (GRISM: Grating Prism).

Fig. 2
Fig. 2

(a) Spatial intensity distribution of a single wavelength component at the LCOS (blue) and phase profile imposed by the LCOS (black, red (wrapped modulus 2π)). (b) Spatial intensity distribution at the fiber array plane of the SPS. The red and green dots indicate the positions of two output fibers (other fibers omitted for clarity). (1) Light directed to output 1, (2) light directed to output 2, (3) equal splitting of light between output 1 and 2.

Fig. 3
Fig. 3

(a) Transfer function of a 43-GHz FSR MZI filter: (solid black) insertion loss of constructive port, (dashed red) insertion loss of destructive port, (dotted black) phase response of constructive port, (dotted blue) theoretical insertion loss of destructive port. (b) Insertion loss of the four output ports of a DQPSK demodulator (solid black, dashed blue, dash-dot green, solid red), (dotted black) phase response of the first port. The theoretical response has been omitted for clarity. The single channel response should match the MZI filter single channel response.

Fig. 4
Fig. 4

(a) Insertion loss of the three drop ports (solid black, dashed red, dash-dot green) of an all-optical DFT filter, (dotted black) phase response of the first (solid black) drop port, (dotted blue) theoretical response of the second (dashed red) drop port. The fourth, continue port has been omitted for clarity. (b) Normalized linear insertion loss of the two outputs of a splitter with triangular variation of splitting ratio (black, dashed red), (dotted blue) theoretical response.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

φ combined ( y , λ ) = Arg { C 1 ( λ ) A ( y ) e i φ 1 ( y ) + i ϕ 1 ( λ ) + C 2 ( λ ) A ( y ) e i φ 2 ( y ) + i ϕ 2 ( λ ) + } ,
I ( y 1 ) = R 1
I ( y 2 ) = R 2
I ( y 1 ) + I ( y 2 ) = 1 L diffraction ,

Metrics