Abstract

An all-diode-pumped, multistage Nd:YAG amplifier is investigated as a means of extending the duration of high-power, burst-mode laser pulse sequences to an unprecedented 30 ms or more. The laser generates 120 mJ per pulse at 1064.3 nm with a repetition rate of 10 kHz, which is sufficient for a wide range of planar laser diagnostics based on fluorescence, Raman scattering, and Rayleigh scattering, among others. The utility of the technique is evaluated for image sequences of formaldehyde fluorescence in a lifted methane–air diffusion flame. The advantages and limitations of diode pumping are discussed, along with long-pulse diode-bar performance characteristics to guide future designs.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Cundy and V. Sick, “Hydroxyl radical imaging at kHz rates using a frequency-quadrupled Nd:YLF laser,” Appl. Phys. B96(2-3), 241–245 (2009).
    [CrossRef]
  2. I. Boxx, M. Stöhr, C. Carter, and W. Meier, “Sustained multi-kHz flamefront and 3-component velocity-field measurements for the study of turbulent flames,” Appl. Phys. B95(1), 23–29 (2009).
    [CrossRef]
  3. B. Böhm, C. Heeger, R. Gordon, and A. Dreizler, “New perspectives on turbulent combustion: multi-parameter high-speed planar laser diagnostics,” Flow, Turbul. Combust.86(3-4), 313–341 (2011).
    [CrossRef]
  4. M. Juddoo and A. R. Masri, “High-speed OH-PLIF imaging of extinction and re-ignition in non-premixed flames with various levels of oxygenation,” Combust. Flame158(5), 902–914 (2011).
    [CrossRef]
  5. A. Johchi, M. Tanahashi, M. Shimura, J.-M. Choi, and T. Miyauchi, “High repetition rate simultaneous CH/OH PLIF in turbulent jet flame,” in 16th Int. Symp. on Applications of Laser Techniques to Fluid Mechanics(Lisbon, Portugal, 2012).
  6. P. Weigand, W. Meier, X. Duan, R. Giezendanner-Thoben, and U. Meier, “Laser diagnostic study of the mechanism of a periodic combustion instability in a gas turbine model combustor,” Flow, Turbul. Combust.75(1-4), 275–292 (2005).
    [CrossRef]
  7. W. Paa, D. Müller, H. Stafast, and W. Triebel, “Flame turbulences recorded at 1 kHz using planar laser induced fluorescence upon hot band excitation of OH radicals,” Appl. Phys. B86(1), 1–5 (2006).
    [CrossRef]
  8. P. P. Wu and R. B. Miles, “High-energy pulse-burst laser system for megahertz-rate flow visualization,” Opt. Lett.25(22), 1639–1641 (2000).
    [CrossRef] [PubMed]
  9. B. Thurow, N. Jiang, M. Samimy, and W. Lempert, “Narrow-linewidth megahertz-rate pulse-burst laser for high-speed flow diagnostics,” Appl. Opt.43(26), 5064–5073 (2004).
    [CrossRef] [PubMed]
  10. J. D. Miller, M. Slipchenko, T. R. Meyer, N. Jiang, W. R. Lempert, and J. R. Gord, “Ultrahigh-frame-rate OH fluorescence imaging in turbulent flames using a burst-mode optical parametric oscillator,” Opt. Lett.34(9), 1309–1311 (2009).
    [CrossRef] [PubMed]
  11. B. S. Thurow, A. Satija, and K. Lynch, “Third-generation megahertz-rate pulse burst laser system,” Appl. Opt.48(11), 2086–2093 (2009).
    [CrossRef] [PubMed]
  12. N. Jiang, M. C. Webster, and W. R. Lempert, “Advances in generation of high-repetition-rate burst mode laser output,” Appl. Opt.48(4), B23–B31 (2009).
    [CrossRef] [PubMed]
  13. R. Patton, K. Gabet, N. Jiang, W. Lempert, and J. Sutton, “Multi-kHz temperature imaging in turbulent non-premixed flames using planar Rayleigh scattering,” Appl. Phys. B108(2), 377–392 (2012).
    [CrossRef]
  14. R. Patton, K. Gabet, N. Jiang, W. Lempert, and J. Sutton, “Multi-kHz mixture fraction imaging in turbulent jets using planar Rayleigh scattering,” Appl. Phys. B106(2), 457–471 (2012).
    [CrossRef]
  15. C. F. Kaminski, J. Hult, and M. Aldén, “High repetition rate planar laser induced fluorescence of OH in a turbulent non-premixed flame,” Appl. Phys. B68(4), 757–760 (1999).
    [CrossRef]
  16. N. Jiang and W. R. Lempert, “Ultrahigh-frame-rate nitric oxide planar laser-induced fluorescence imaging,” Opt. Lett.33(19), 2236–2238 (2008).
    [CrossRef] [PubMed]
  17. N. Jiang, M. Webster, W. R. Lempert, J. D. Miller, T. R. Meyer, C. B. Ivey, and P. M. Danehy, “MHz-rate nitric oxide planar laser-induced fluorescence imaging in a Mach 10 hypersonic wind tunnel,” Appl. Opt.50(4), A20–A28 (2011).
    [CrossRef] [PubMed]
  18. N. Jiang, R. A. Patton, W. R. Lempert, and J. A. Sutton, “Development of high-repetition rate CH PLIF imaging in turbulent nonpremixed flames,” Proc. Combust. Inst.33(1), 767–774 (2011).
    [CrossRef]
  19. J. D. Miller, S. R. Engel, J. W. Tröger, T. R. Meyer, T. Seeger, and A. Leipertz, “Characterization of a CH planar laser-induced fluorescence imaging system using a kHz-rate multimode-pumped optical parametric oscillator,” Appl. Opt.51(14), 2589–2600 (2012).
    [CrossRef] [PubMed]
  20. J. D. Miller, S. R. Engel, T. R. Meyer, T. Seeger, and A. Leipertz, “High-speed CH planar laser-induced fluorescence imaging using a multimode-pumped optical parametric oscillator,” Opt. Lett.36(19), 3927–3929 (2011).
    [CrossRef] [PubMed]
  21. K. Gabet, R. Patton, N. Jiang, W. Lempert, and J. Sutton, “High-speed CH2O PLIF imaging in turbulent flames using a pulse-burst laser system,” Appl. Phys. B106(3), 569–575 (2012).
    [CrossRef]
  22. M. N. Slipchenko, J. D. Miller, S. Roy, J. R. Gord, S. A. Danczyk, and T. R. Meyer, “Quasi-continuous burst-mode laser for high-speed planar imaging,” Opt. Lett.37(8), 1346–1348 (2012).
    [CrossRef] [PubMed]
  23. K. Gabet, N. Jiang, W. Lempert, and J. Sutton, “Demonstration of high-speed 1D Raman scattering line imaging,” Appl. Phys. B101(1-2), 1–5 (2010).
    [CrossRef]
  24. F. Fuest, M. J. Papageorge, W. R. Lempert, and J. A. Sutton, “Ultrahigh laser pulse energy and power generation at 10 kHz,” Opt. Lett.37(15), 3231–3233 (2012).
    [CrossRef] [PubMed]
  25. S. Kotake and K. Takamoto, “Combustion noise: effects of the velocity turbulence of unburned mixture,” J. Sound Vibrat.139(1), 9–20 (1990).
    [CrossRef]
  26. Y.-C. Chao, Y.-L. Chang, C.-Y. Wu, and T.-S. Cheng, “An experimental investigation of the blowout process of a jet flame,” Proc. Combust. Inst.28(1), 335–342 (2000).
    [CrossRef]
  27. T. Lieuwen, Y. Neumeier, and B. T. Zinn, “The role of unmixedness and chemical kinetics in driving combustion instabilities in lean premixed combustors,” Combust. Sci. Technol.135(1-6), 193–211 (1998).
    [CrossRef]
  28. W. Koechner, Solid-State Laser Engineering (Springer Science + Business Media, Inc., New York, 2006).
  29. W. Koechner, “Transient thermal profile in optically pumped laser rods,” J. Appl. Phys.44(7), 3162–3170 (1973).
    [CrossRef]
  30. S. Epstein, “Temperature-induced changes in optical path length for a Nd-doped glass rod during pumping,” J. Appl. Phys.38(7), 2715–2719 (1967).
    [CrossRef]
  31. G. D. Baldwin and E. P. Riedel, “Measurements of dynamic optical distortion in Nd-doped glass laser rods,” J. Appl. Phys.38(7), 2726–2738 (1967).
    [CrossRef]

2012 (6)

R. Patton, K. Gabet, N. Jiang, W. Lempert, and J. Sutton, “Multi-kHz temperature imaging in turbulent non-premixed flames using planar Rayleigh scattering,” Appl. Phys. B108(2), 377–392 (2012).
[CrossRef]

R. Patton, K. Gabet, N. Jiang, W. Lempert, and J. Sutton, “Multi-kHz mixture fraction imaging in turbulent jets using planar Rayleigh scattering,” Appl. Phys. B106(2), 457–471 (2012).
[CrossRef]

J. D. Miller, S. R. Engel, J. W. Tröger, T. R. Meyer, T. Seeger, and A. Leipertz, “Characterization of a CH planar laser-induced fluorescence imaging system using a kHz-rate multimode-pumped optical parametric oscillator,” Appl. Opt.51(14), 2589–2600 (2012).
[CrossRef] [PubMed]

K. Gabet, R. Patton, N. Jiang, W. Lempert, and J. Sutton, “High-speed CH2O PLIF imaging in turbulent flames using a pulse-burst laser system,” Appl. Phys. B106(3), 569–575 (2012).
[CrossRef]

M. N. Slipchenko, J. D. Miller, S. Roy, J. R. Gord, S. A. Danczyk, and T. R. Meyer, “Quasi-continuous burst-mode laser for high-speed planar imaging,” Opt. Lett.37(8), 1346–1348 (2012).
[CrossRef] [PubMed]

F. Fuest, M. J. Papageorge, W. R. Lempert, and J. A. Sutton, “Ultrahigh laser pulse energy and power generation at 10 kHz,” Opt. Lett.37(15), 3231–3233 (2012).
[CrossRef] [PubMed]

2011 (5)

J. D. Miller, S. R. Engel, T. R. Meyer, T. Seeger, and A. Leipertz, “High-speed CH planar laser-induced fluorescence imaging using a multimode-pumped optical parametric oscillator,” Opt. Lett.36(19), 3927–3929 (2011).
[CrossRef] [PubMed]

N. Jiang, M. Webster, W. R. Lempert, J. D. Miller, T. R. Meyer, C. B. Ivey, and P. M. Danehy, “MHz-rate nitric oxide planar laser-induced fluorescence imaging in a Mach 10 hypersonic wind tunnel,” Appl. Opt.50(4), A20–A28 (2011).
[CrossRef] [PubMed]

N. Jiang, R. A. Patton, W. R. Lempert, and J. A. Sutton, “Development of high-repetition rate CH PLIF imaging in turbulent nonpremixed flames,” Proc. Combust. Inst.33(1), 767–774 (2011).
[CrossRef]

B. Böhm, C. Heeger, R. Gordon, and A. Dreizler, “New perspectives on turbulent combustion: multi-parameter high-speed planar laser diagnostics,” Flow, Turbul. Combust.86(3-4), 313–341 (2011).
[CrossRef]

M. Juddoo and A. R. Masri, “High-speed OH-PLIF imaging of extinction and re-ignition in non-premixed flames with various levels of oxygenation,” Combust. Flame158(5), 902–914 (2011).
[CrossRef]

2010 (1)

K. Gabet, N. Jiang, W. Lempert, and J. Sutton, “Demonstration of high-speed 1D Raman scattering line imaging,” Appl. Phys. B101(1-2), 1–5 (2010).
[CrossRef]

2009 (5)

2008 (1)

2006 (1)

W. Paa, D. Müller, H. Stafast, and W. Triebel, “Flame turbulences recorded at 1 kHz using planar laser induced fluorescence upon hot band excitation of OH radicals,” Appl. Phys. B86(1), 1–5 (2006).
[CrossRef]

2005 (1)

P. Weigand, W. Meier, X. Duan, R. Giezendanner-Thoben, and U. Meier, “Laser diagnostic study of the mechanism of a periodic combustion instability in a gas turbine model combustor,” Flow, Turbul. Combust.75(1-4), 275–292 (2005).
[CrossRef]

2004 (1)

2000 (2)

P. P. Wu and R. B. Miles, “High-energy pulse-burst laser system for megahertz-rate flow visualization,” Opt. Lett.25(22), 1639–1641 (2000).
[CrossRef] [PubMed]

Y.-C. Chao, Y.-L. Chang, C.-Y. Wu, and T.-S. Cheng, “An experimental investigation of the blowout process of a jet flame,” Proc. Combust. Inst.28(1), 335–342 (2000).
[CrossRef]

1999 (1)

C. F. Kaminski, J. Hult, and M. Aldén, “High repetition rate planar laser induced fluorescence of OH in a turbulent non-premixed flame,” Appl. Phys. B68(4), 757–760 (1999).
[CrossRef]

1998 (1)

T. Lieuwen, Y. Neumeier, and B. T. Zinn, “The role of unmixedness and chemical kinetics in driving combustion instabilities in lean premixed combustors,” Combust. Sci. Technol.135(1-6), 193–211 (1998).
[CrossRef]

1990 (1)

S. Kotake and K. Takamoto, “Combustion noise: effects of the velocity turbulence of unburned mixture,” J. Sound Vibrat.139(1), 9–20 (1990).
[CrossRef]

1973 (1)

W. Koechner, “Transient thermal profile in optically pumped laser rods,” J. Appl. Phys.44(7), 3162–3170 (1973).
[CrossRef]

1967 (2)

S. Epstein, “Temperature-induced changes in optical path length for a Nd-doped glass rod during pumping,” J. Appl. Phys.38(7), 2715–2719 (1967).
[CrossRef]

G. D. Baldwin and E. P. Riedel, “Measurements of dynamic optical distortion in Nd-doped glass laser rods,” J. Appl. Phys.38(7), 2726–2738 (1967).
[CrossRef]

Aldén, M.

C. F. Kaminski, J. Hult, and M. Aldén, “High repetition rate planar laser induced fluorescence of OH in a turbulent non-premixed flame,” Appl. Phys. B68(4), 757–760 (1999).
[CrossRef]

Baldwin, G. D.

G. D. Baldwin and E. P. Riedel, “Measurements of dynamic optical distortion in Nd-doped glass laser rods,” J. Appl. Phys.38(7), 2726–2738 (1967).
[CrossRef]

Böhm, B.

B. Böhm, C. Heeger, R. Gordon, and A. Dreizler, “New perspectives on turbulent combustion: multi-parameter high-speed planar laser diagnostics,” Flow, Turbul. Combust.86(3-4), 313–341 (2011).
[CrossRef]

Boxx, I.

I. Boxx, M. Stöhr, C. Carter, and W. Meier, “Sustained multi-kHz flamefront and 3-component velocity-field measurements for the study of turbulent flames,” Appl. Phys. B95(1), 23–29 (2009).
[CrossRef]

Carter, C.

I. Boxx, M. Stöhr, C. Carter, and W. Meier, “Sustained multi-kHz flamefront and 3-component velocity-field measurements for the study of turbulent flames,” Appl. Phys. B95(1), 23–29 (2009).
[CrossRef]

Chang, Y.-L.

Y.-C. Chao, Y.-L. Chang, C.-Y. Wu, and T.-S. Cheng, “An experimental investigation of the blowout process of a jet flame,” Proc. Combust. Inst.28(1), 335–342 (2000).
[CrossRef]

Chao, Y.-C.

Y.-C. Chao, Y.-L. Chang, C.-Y. Wu, and T.-S. Cheng, “An experimental investigation of the blowout process of a jet flame,” Proc. Combust. Inst.28(1), 335–342 (2000).
[CrossRef]

Cheng, T.-S.

Y.-C. Chao, Y.-L. Chang, C.-Y. Wu, and T.-S. Cheng, “An experimental investigation of the blowout process of a jet flame,” Proc. Combust. Inst.28(1), 335–342 (2000).
[CrossRef]

Cundy, M.

M. Cundy and V. Sick, “Hydroxyl radical imaging at kHz rates using a frequency-quadrupled Nd:YLF laser,” Appl. Phys. B96(2-3), 241–245 (2009).
[CrossRef]

Danczyk, S. A.

Danehy, P. M.

Dreizler, A.

B. Böhm, C. Heeger, R. Gordon, and A. Dreizler, “New perspectives on turbulent combustion: multi-parameter high-speed planar laser diagnostics,” Flow, Turbul. Combust.86(3-4), 313–341 (2011).
[CrossRef]

Duan, X.

P. Weigand, W. Meier, X. Duan, R. Giezendanner-Thoben, and U. Meier, “Laser diagnostic study of the mechanism of a periodic combustion instability in a gas turbine model combustor,” Flow, Turbul. Combust.75(1-4), 275–292 (2005).
[CrossRef]

Engel, S. R.

Epstein, S.

S. Epstein, “Temperature-induced changes in optical path length for a Nd-doped glass rod during pumping,” J. Appl. Phys.38(7), 2715–2719 (1967).
[CrossRef]

Fuest, F.

Gabet, K.

R. Patton, K. Gabet, N. Jiang, W. Lempert, and J. Sutton, “Multi-kHz temperature imaging in turbulent non-premixed flames using planar Rayleigh scattering,” Appl. Phys. B108(2), 377–392 (2012).
[CrossRef]

K. Gabet, R. Patton, N. Jiang, W. Lempert, and J. Sutton, “High-speed CH2O PLIF imaging in turbulent flames using a pulse-burst laser system,” Appl. Phys. B106(3), 569–575 (2012).
[CrossRef]

R. Patton, K. Gabet, N. Jiang, W. Lempert, and J. Sutton, “Multi-kHz mixture fraction imaging in turbulent jets using planar Rayleigh scattering,” Appl. Phys. B106(2), 457–471 (2012).
[CrossRef]

K. Gabet, N. Jiang, W. Lempert, and J. Sutton, “Demonstration of high-speed 1D Raman scattering line imaging,” Appl. Phys. B101(1-2), 1–5 (2010).
[CrossRef]

Giezendanner-Thoben, R.

P. Weigand, W. Meier, X. Duan, R. Giezendanner-Thoben, and U. Meier, “Laser diagnostic study of the mechanism of a periodic combustion instability in a gas turbine model combustor,” Flow, Turbul. Combust.75(1-4), 275–292 (2005).
[CrossRef]

Gord, J. R.

Gordon, R.

B. Böhm, C. Heeger, R. Gordon, and A. Dreizler, “New perspectives on turbulent combustion: multi-parameter high-speed planar laser diagnostics,” Flow, Turbul. Combust.86(3-4), 313–341 (2011).
[CrossRef]

Heeger, C.

B. Böhm, C. Heeger, R. Gordon, and A. Dreizler, “New perspectives on turbulent combustion: multi-parameter high-speed planar laser diagnostics,” Flow, Turbul. Combust.86(3-4), 313–341 (2011).
[CrossRef]

Hult, J.

C. F. Kaminski, J. Hult, and M. Aldén, “High repetition rate planar laser induced fluorescence of OH in a turbulent non-premixed flame,” Appl. Phys. B68(4), 757–760 (1999).
[CrossRef]

Ivey, C. B.

Jiang, N.

K. Gabet, R. Patton, N. Jiang, W. Lempert, and J. Sutton, “High-speed CH2O PLIF imaging in turbulent flames using a pulse-burst laser system,” Appl. Phys. B106(3), 569–575 (2012).
[CrossRef]

R. Patton, K. Gabet, N. Jiang, W. Lempert, and J. Sutton, “Multi-kHz temperature imaging in turbulent non-premixed flames using planar Rayleigh scattering,” Appl. Phys. B108(2), 377–392 (2012).
[CrossRef]

R. Patton, K. Gabet, N. Jiang, W. Lempert, and J. Sutton, “Multi-kHz mixture fraction imaging in turbulent jets using planar Rayleigh scattering,” Appl. Phys. B106(2), 457–471 (2012).
[CrossRef]

N. Jiang, R. A. Patton, W. R. Lempert, and J. A. Sutton, “Development of high-repetition rate CH PLIF imaging in turbulent nonpremixed flames,” Proc. Combust. Inst.33(1), 767–774 (2011).
[CrossRef]

N. Jiang, M. Webster, W. R. Lempert, J. D. Miller, T. R. Meyer, C. B. Ivey, and P. M. Danehy, “MHz-rate nitric oxide planar laser-induced fluorescence imaging in a Mach 10 hypersonic wind tunnel,” Appl. Opt.50(4), A20–A28 (2011).
[CrossRef] [PubMed]

K. Gabet, N. Jiang, W. Lempert, and J. Sutton, “Demonstration of high-speed 1D Raman scattering line imaging,” Appl. Phys. B101(1-2), 1–5 (2010).
[CrossRef]

J. D. Miller, M. Slipchenko, T. R. Meyer, N. Jiang, W. R. Lempert, and J. R. Gord, “Ultrahigh-frame-rate OH fluorescence imaging in turbulent flames using a burst-mode optical parametric oscillator,” Opt. Lett.34(9), 1309–1311 (2009).
[CrossRef] [PubMed]

N. Jiang, M. C. Webster, and W. R. Lempert, “Advances in generation of high-repetition-rate burst mode laser output,” Appl. Opt.48(4), B23–B31 (2009).
[CrossRef] [PubMed]

N. Jiang and W. R. Lempert, “Ultrahigh-frame-rate nitric oxide planar laser-induced fluorescence imaging,” Opt. Lett.33(19), 2236–2238 (2008).
[CrossRef] [PubMed]

B. Thurow, N. Jiang, M. Samimy, and W. Lempert, “Narrow-linewidth megahertz-rate pulse-burst laser for high-speed flow diagnostics,” Appl. Opt.43(26), 5064–5073 (2004).
[CrossRef] [PubMed]

Juddoo, M.

M. Juddoo and A. R. Masri, “High-speed OH-PLIF imaging of extinction and re-ignition in non-premixed flames with various levels of oxygenation,” Combust. Flame158(5), 902–914 (2011).
[CrossRef]

Kaminski, C. F.

C. F. Kaminski, J. Hult, and M. Aldén, “High repetition rate planar laser induced fluorescence of OH in a turbulent non-premixed flame,” Appl. Phys. B68(4), 757–760 (1999).
[CrossRef]

Koechner, W.

W. Koechner, “Transient thermal profile in optically pumped laser rods,” J. Appl. Phys.44(7), 3162–3170 (1973).
[CrossRef]

Kotake, S.

S. Kotake and K. Takamoto, “Combustion noise: effects of the velocity turbulence of unburned mixture,” J. Sound Vibrat.139(1), 9–20 (1990).
[CrossRef]

Leipertz, A.

Lempert, W.

R. Patton, K. Gabet, N. Jiang, W. Lempert, and J. Sutton, “Multi-kHz mixture fraction imaging in turbulent jets using planar Rayleigh scattering,” Appl. Phys. B106(2), 457–471 (2012).
[CrossRef]

K. Gabet, R. Patton, N. Jiang, W. Lempert, and J. Sutton, “High-speed CH2O PLIF imaging in turbulent flames using a pulse-burst laser system,” Appl. Phys. B106(3), 569–575 (2012).
[CrossRef]

R. Patton, K. Gabet, N. Jiang, W. Lempert, and J. Sutton, “Multi-kHz temperature imaging in turbulent non-premixed flames using planar Rayleigh scattering,” Appl. Phys. B108(2), 377–392 (2012).
[CrossRef]

K. Gabet, N. Jiang, W. Lempert, and J. Sutton, “Demonstration of high-speed 1D Raman scattering line imaging,” Appl. Phys. B101(1-2), 1–5 (2010).
[CrossRef]

B. Thurow, N. Jiang, M. Samimy, and W. Lempert, “Narrow-linewidth megahertz-rate pulse-burst laser for high-speed flow diagnostics,” Appl. Opt.43(26), 5064–5073 (2004).
[CrossRef] [PubMed]

Lempert, W. R.

Lieuwen, T.

T. Lieuwen, Y. Neumeier, and B. T. Zinn, “The role of unmixedness and chemical kinetics in driving combustion instabilities in lean premixed combustors,” Combust. Sci. Technol.135(1-6), 193–211 (1998).
[CrossRef]

Lynch, K.

Masri, A. R.

M. Juddoo and A. R. Masri, “High-speed OH-PLIF imaging of extinction and re-ignition in non-premixed flames with various levels of oxygenation,” Combust. Flame158(5), 902–914 (2011).
[CrossRef]

Meier, U.

P. Weigand, W. Meier, X. Duan, R. Giezendanner-Thoben, and U. Meier, “Laser diagnostic study of the mechanism of a periodic combustion instability in a gas turbine model combustor,” Flow, Turbul. Combust.75(1-4), 275–292 (2005).
[CrossRef]

Meier, W.

I. Boxx, M. Stöhr, C. Carter, and W. Meier, “Sustained multi-kHz flamefront and 3-component velocity-field measurements for the study of turbulent flames,” Appl. Phys. B95(1), 23–29 (2009).
[CrossRef]

P. Weigand, W. Meier, X. Duan, R. Giezendanner-Thoben, and U. Meier, “Laser diagnostic study of the mechanism of a periodic combustion instability in a gas turbine model combustor,” Flow, Turbul. Combust.75(1-4), 275–292 (2005).
[CrossRef]

Meyer, T. R.

Miles, R. B.

Miller, J. D.

Müller, D.

W. Paa, D. Müller, H. Stafast, and W. Triebel, “Flame turbulences recorded at 1 kHz using planar laser induced fluorescence upon hot band excitation of OH radicals,” Appl. Phys. B86(1), 1–5 (2006).
[CrossRef]

Neumeier, Y.

T. Lieuwen, Y. Neumeier, and B. T. Zinn, “The role of unmixedness and chemical kinetics in driving combustion instabilities in lean premixed combustors,” Combust. Sci. Technol.135(1-6), 193–211 (1998).
[CrossRef]

Paa, W.

W. Paa, D. Müller, H. Stafast, and W. Triebel, “Flame turbulences recorded at 1 kHz using planar laser induced fluorescence upon hot band excitation of OH radicals,” Appl. Phys. B86(1), 1–5 (2006).
[CrossRef]

Papageorge, M. J.

Patton, R.

R. Patton, K. Gabet, N. Jiang, W. Lempert, and J. Sutton, “Multi-kHz temperature imaging in turbulent non-premixed flames using planar Rayleigh scattering,” Appl. Phys. B108(2), 377–392 (2012).
[CrossRef]

K. Gabet, R. Patton, N. Jiang, W. Lempert, and J. Sutton, “High-speed CH2O PLIF imaging in turbulent flames using a pulse-burst laser system,” Appl. Phys. B106(3), 569–575 (2012).
[CrossRef]

R. Patton, K. Gabet, N. Jiang, W. Lempert, and J. Sutton, “Multi-kHz mixture fraction imaging in turbulent jets using planar Rayleigh scattering,” Appl. Phys. B106(2), 457–471 (2012).
[CrossRef]

Patton, R. A.

N. Jiang, R. A. Patton, W. R. Lempert, and J. A. Sutton, “Development of high-repetition rate CH PLIF imaging in turbulent nonpremixed flames,” Proc. Combust. Inst.33(1), 767–774 (2011).
[CrossRef]

Riedel, E. P.

G. D. Baldwin and E. P. Riedel, “Measurements of dynamic optical distortion in Nd-doped glass laser rods,” J. Appl. Phys.38(7), 2726–2738 (1967).
[CrossRef]

Roy, S.

Samimy, M.

Satija, A.

Seeger, T.

Sick, V.

M. Cundy and V. Sick, “Hydroxyl radical imaging at kHz rates using a frequency-quadrupled Nd:YLF laser,” Appl. Phys. B96(2-3), 241–245 (2009).
[CrossRef]

Slipchenko, M.

Slipchenko, M. N.

Stafast, H.

W. Paa, D. Müller, H. Stafast, and W. Triebel, “Flame turbulences recorded at 1 kHz using planar laser induced fluorescence upon hot band excitation of OH radicals,” Appl. Phys. B86(1), 1–5 (2006).
[CrossRef]

Stöhr, M.

I. Boxx, M. Stöhr, C. Carter, and W. Meier, “Sustained multi-kHz flamefront and 3-component velocity-field measurements for the study of turbulent flames,” Appl. Phys. B95(1), 23–29 (2009).
[CrossRef]

Sutton, J.

K. Gabet, R. Patton, N. Jiang, W. Lempert, and J. Sutton, “High-speed CH2O PLIF imaging in turbulent flames using a pulse-burst laser system,” Appl. Phys. B106(3), 569–575 (2012).
[CrossRef]

R. Patton, K. Gabet, N. Jiang, W. Lempert, and J. Sutton, “Multi-kHz temperature imaging in turbulent non-premixed flames using planar Rayleigh scattering,” Appl. Phys. B108(2), 377–392 (2012).
[CrossRef]

R. Patton, K. Gabet, N. Jiang, W. Lempert, and J. Sutton, “Multi-kHz mixture fraction imaging in turbulent jets using planar Rayleigh scattering,” Appl. Phys. B106(2), 457–471 (2012).
[CrossRef]

K. Gabet, N. Jiang, W. Lempert, and J. Sutton, “Demonstration of high-speed 1D Raman scattering line imaging,” Appl. Phys. B101(1-2), 1–5 (2010).
[CrossRef]

Sutton, J. A.

F. Fuest, M. J. Papageorge, W. R. Lempert, and J. A. Sutton, “Ultrahigh laser pulse energy and power generation at 10 kHz,” Opt. Lett.37(15), 3231–3233 (2012).
[CrossRef] [PubMed]

N. Jiang, R. A. Patton, W. R. Lempert, and J. A. Sutton, “Development of high-repetition rate CH PLIF imaging in turbulent nonpremixed flames,” Proc. Combust. Inst.33(1), 767–774 (2011).
[CrossRef]

Takamoto, K.

S. Kotake and K. Takamoto, “Combustion noise: effects of the velocity turbulence of unburned mixture,” J. Sound Vibrat.139(1), 9–20 (1990).
[CrossRef]

Thurow, B.

Thurow, B. S.

Triebel, W.

W. Paa, D. Müller, H. Stafast, and W. Triebel, “Flame turbulences recorded at 1 kHz using planar laser induced fluorescence upon hot band excitation of OH radicals,” Appl. Phys. B86(1), 1–5 (2006).
[CrossRef]

Tröger, J. W.

Webster, M.

Webster, M. C.

Weigand, P.

P. Weigand, W. Meier, X. Duan, R. Giezendanner-Thoben, and U. Meier, “Laser diagnostic study of the mechanism of a periodic combustion instability in a gas turbine model combustor,” Flow, Turbul. Combust.75(1-4), 275–292 (2005).
[CrossRef]

Wu, C.-Y.

Y.-C. Chao, Y.-L. Chang, C.-Y. Wu, and T.-S. Cheng, “An experimental investigation of the blowout process of a jet flame,” Proc. Combust. Inst.28(1), 335–342 (2000).
[CrossRef]

Wu, P. P.

Zinn, B. T.

T. Lieuwen, Y. Neumeier, and B. T. Zinn, “The role of unmixedness and chemical kinetics in driving combustion instabilities in lean premixed combustors,” Combust. Sci. Technol.135(1-6), 193–211 (1998).
[CrossRef]

Appl. Opt. (5)

Appl. Phys. B (8)

M. Cundy and V. Sick, “Hydroxyl radical imaging at kHz rates using a frequency-quadrupled Nd:YLF laser,” Appl. Phys. B96(2-3), 241–245 (2009).
[CrossRef]

I. Boxx, M. Stöhr, C. Carter, and W. Meier, “Sustained multi-kHz flamefront and 3-component velocity-field measurements for the study of turbulent flames,” Appl. Phys. B95(1), 23–29 (2009).
[CrossRef]

W. Paa, D. Müller, H. Stafast, and W. Triebel, “Flame turbulences recorded at 1 kHz using planar laser induced fluorescence upon hot band excitation of OH radicals,” Appl. Phys. B86(1), 1–5 (2006).
[CrossRef]

R. Patton, K. Gabet, N. Jiang, W. Lempert, and J. Sutton, “Multi-kHz temperature imaging in turbulent non-premixed flames using planar Rayleigh scattering,” Appl. Phys. B108(2), 377–392 (2012).
[CrossRef]

R. Patton, K. Gabet, N. Jiang, W. Lempert, and J. Sutton, “Multi-kHz mixture fraction imaging in turbulent jets using planar Rayleigh scattering,” Appl. Phys. B106(2), 457–471 (2012).
[CrossRef]

C. F. Kaminski, J. Hult, and M. Aldén, “High repetition rate planar laser induced fluorescence of OH in a turbulent non-premixed flame,” Appl. Phys. B68(4), 757–760 (1999).
[CrossRef]

K. Gabet, R. Patton, N. Jiang, W. Lempert, and J. Sutton, “High-speed CH2O PLIF imaging in turbulent flames using a pulse-burst laser system,” Appl. Phys. B106(3), 569–575 (2012).
[CrossRef]

K. Gabet, N. Jiang, W. Lempert, and J. Sutton, “Demonstration of high-speed 1D Raman scattering line imaging,” Appl. Phys. B101(1-2), 1–5 (2010).
[CrossRef]

Combust. Flame (1)

M. Juddoo and A. R. Masri, “High-speed OH-PLIF imaging of extinction and re-ignition in non-premixed flames with various levels of oxygenation,” Combust. Flame158(5), 902–914 (2011).
[CrossRef]

Combust. Sci. Technol. (1)

T. Lieuwen, Y. Neumeier, and B. T. Zinn, “The role of unmixedness and chemical kinetics in driving combustion instabilities in lean premixed combustors,” Combust. Sci. Technol.135(1-6), 193–211 (1998).
[CrossRef]

Flow, Turbul. Combust. (2)

P. Weigand, W. Meier, X. Duan, R. Giezendanner-Thoben, and U. Meier, “Laser diagnostic study of the mechanism of a periodic combustion instability in a gas turbine model combustor,” Flow, Turbul. Combust.75(1-4), 275–292 (2005).
[CrossRef]

B. Böhm, C. Heeger, R. Gordon, and A. Dreizler, “New perspectives on turbulent combustion: multi-parameter high-speed planar laser diagnostics,” Flow, Turbul. Combust.86(3-4), 313–341 (2011).
[CrossRef]

J. Appl. Phys. (3)

W. Koechner, “Transient thermal profile in optically pumped laser rods,” J. Appl. Phys.44(7), 3162–3170 (1973).
[CrossRef]

S. Epstein, “Temperature-induced changes in optical path length for a Nd-doped glass rod during pumping,” J. Appl. Phys.38(7), 2715–2719 (1967).
[CrossRef]

G. D. Baldwin and E. P. Riedel, “Measurements of dynamic optical distortion in Nd-doped glass laser rods,” J. Appl. Phys.38(7), 2726–2738 (1967).
[CrossRef]

J. Sound Vibrat. (1)

S. Kotake and K. Takamoto, “Combustion noise: effects of the velocity turbulence of unburned mixture,” J. Sound Vibrat.139(1), 9–20 (1990).
[CrossRef]

Opt. Lett. (6)

Proc. Combust. Inst. (2)

Y.-C. Chao, Y.-L. Chang, C.-Y. Wu, and T.-S. Cheng, “An experimental investigation of the blowout process of a jet flame,” Proc. Combust. Inst.28(1), 335–342 (2000).
[CrossRef]

N. Jiang, R. A. Patton, W. R. Lempert, and J. A. Sutton, “Development of high-repetition rate CH PLIF imaging in turbulent nonpremixed flames,” Proc. Combust. Inst.33(1), 767–774 (2011).
[CrossRef]

Other (2)

A. Johchi, M. Tanahashi, M. Shimura, J.-M. Choi, and T. Miyauchi, “High repetition rate simultaneous CH/OH PLIF in turbulent jet flame,” in 16th Int. Symp. on Applications of Laser Techniques to Fluid Mechanics(Lisbon, Portugal, 2012).

W. Koechner, Solid-State Laser Engineering (Springer Science + Business Media, Inc., New York, 2006).

Supplementary Material (2)

» Media 1: AVI (4391 KB)     
» Media 2: AVI (1338 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Optical layout of all-diode-pumped quasi-continuous burst-mode laser system. Symbols: OI - optical isolator, EOM - electro-optic modulator, PH - pinhole, HWP - half-wave plate, DWP - dual-wavelength wave plate, QR - quartz rotator, HS - harmonic separator, and BD - beam dump. Numbers are focal lengths of spherical lenses. (b) Dependence of the single-pass and double-pass gain of amplifier #3 on driving current. (c) Dependence of energy per pulse on repetition rate within the burst. Fitting parameters a = 646, b = 0.81.

Fig. 2
Fig. 2

Output power of the three types of diode bars measured at four different driving-pulse conditions as indicated. Six diode bars of each type were tested. The noise is due to detector.

Fig. 3
Fig. 3

Spontaneous emission (SE) for amplifier #3 as a function of time. (a–e) SE profile for driving-pulse current ranging from 40 A to 80 A. Black and Red curves correspond to 20°C and 30°C cooling water, respectively.

Fig. 4
Fig. 4

Beam-intensity distribution during a single burst for a driving current of 45 A for the first two amplifiers and 60 A for the third amplifier. The intensity distribution in the color scale is normalized by the peak intensity. The full sequence is available online as Media 1.

Fig. 5
Fig. 5

Beam-diameter and intensity time profiles. (a–b) Beam-diameter time profiles at 20°C and 30°C diode-bar cooling-water temperature. Beam diameter is 1/e2. (c–d) Pulse-intensity profiles at 20°C and 30°C diode-bar cooling water temperature. Driving currents for the first two amplifiers and for the third amplifier are indicated.

Fig. 6
Fig. 6

Direct photograph (left) and 30-ms-duration PLIF imaging of CH2O in a lifted CH4–air diffusion flame at 5 kHz showing every third image (right). False-color scales indicate non-normalized, background-subtracted camera counts. The full sequence is available online as Media 2. The field of view is indicated on the photograph by the dashed line.

Metrics