Abstract

An all-diode-pumped, multistage Nd:YAG amplifier is investigated as a means of extending the duration of high-power, burst-mode laser pulse sequences to an unprecedented 30 ms or more. The laser generates 120 mJ per pulse at 1064.3 nm with a repetition rate of 10 kHz, which is sufficient for a wide range of planar laser diagnostics based on fluorescence, Raman scattering, and Rayleigh scattering, among others. The utility of the technique is evaluated for image sequences of formaldehyde fluorescence in a lifted methane–air diffusion flame. The advantages and limitations of diode pumping are discussed, along with long-pulse diode-bar performance characteristics to guide future designs.

©2013 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Quasi-continuous burst-mode laser for high-speed planar imaging

Mikhail N. Slipchenko, Joseph D. Miller, Sukesh Roy, James R. Gord, Stephen A. Danczyk, and Terrence R. Meyer
Opt. Lett. 37(8) 1346-1348 (2012)

100  kHz thousand-frame burst-mode planar imaging in turbulent flames

James B. Michael, Prabhakar Venkateswaran, Joseph D. Miller, Mikhail N. Slipchenko, James R. Gord, Sukesh Roy, and Terrence R. Meyer
Opt. Lett. 39(4) 739-742 (2014)

Development of a three-legged, high-speed, burst-mode laser system for simultaneous measurements of velocity and scalars in reacting flows

Sukesh Roy, Naibo Jiang, Paul S. Hsu, Tongxun Yi, Mikhail N. Slipchenko, Josef J. Felver, Jordi Estevadeordal, and James R. Gord
Opt. Lett. 43(11) 2704-2707 (2018)

References

  • View by:
  • |
  • |
  • |

  1. M. Cundy and V. Sick, “Hydroxyl radical imaging at kHz rates using a frequency-quadrupled Nd:YLF laser,” Appl. Phys. B 96(2-3), 241–245 (2009).
    [Crossref]
  2. I. Boxx, M. Stöhr, C. Carter, and W. Meier, “Sustained multi-kHz flamefront and 3-component velocity-field measurements for the study of turbulent flames,” Appl. Phys. B 95(1), 23–29 (2009).
    [Crossref]
  3. B. Böhm, C. Heeger, R. Gordon, and A. Dreizler, “New perspectives on turbulent combustion: multi-parameter high-speed planar laser diagnostics,” Flow, Turbul. Combust. 86(3-4), 313–341 (2011).
    [Crossref]
  4. M. Juddoo and A. R. Masri, “High-speed OH-PLIF imaging of extinction and re-ignition in non-premixed flames with various levels of oxygenation,” Combust. Flame 158(5), 902–914 (2011).
    [Crossref]
  5. A. Johchi, M. Tanahashi, M. Shimura, J.-M. Choi, and T. Miyauchi, “High repetition rate simultaneous CH/OH PLIF in turbulent jet flame,” in 16th Int. Symp. on Applications of Laser Techniques to Fluid Mechanics(Lisbon, Portugal, 2012).
  6. P. Weigand, W. Meier, X. Duan, R. Giezendanner-Thoben, and U. Meier, “Laser diagnostic study of the mechanism of a periodic combustion instability in a gas turbine model combustor,” Flow, Turbul. Combust. 75(1-4), 275–292 (2005).
    [Crossref]
  7. W. Paa, D. Müller, H. Stafast, and W. Triebel, “Flame turbulences recorded at 1 kHz using planar laser induced fluorescence upon hot band excitation of OH radicals,” Appl. Phys. B 86(1), 1–5 (2006).
    [Crossref]
  8. P. P. Wu and R. B. Miles, “High-energy pulse-burst laser system for megahertz-rate flow visualization,” Opt. Lett. 25(22), 1639–1641 (2000).
    [Crossref] [PubMed]
  9. B. Thurow, N. Jiang, M. Samimy, and W. Lempert, “Narrow-linewidth megahertz-rate pulse-burst laser for high-speed flow diagnostics,” Appl. Opt. 43(26), 5064–5073 (2004).
    [Crossref] [PubMed]
  10. J. D. Miller, M. Slipchenko, T. R. Meyer, N. Jiang, W. R. Lempert, and J. R. Gord, “Ultrahigh-frame-rate OH fluorescence imaging in turbulent flames using a burst-mode optical parametric oscillator,” Opt. Lett. 34(9), 1309–1311 (2009).
    [Crossref] [PubMed]
  11. B. S. Thurow, A. Satija, and K. Lynch, “Third-generation megahertz-rate pulse burst laser system,” Appl. Opt. 48(11), 2086–2093 (2009).
    [Crossref] [PubMed]
  12. N. Jiang, M. C. Webster, and W. R. Lempert, “Advances in generation of high-repetition-rate burst mode laser output,” Appl. Opt. 48(4), B23–B31 (2009).
    [Crossref] [PubMed]
  13. R. Patton, K. Gabet, N. Jiang, W. Lempert, and J. Sutton, “Multi-kHz temperature imaging in turbulent non-premixed flames using planar Rayleigh scattering,” Appl. Phys. B 108(2), 377–392 (2012).
    [Crossref]
  14. R. Patton, K. Gabet, N. Jiang, W. Lempert, and J. Sutton, “Multi-kHz mixture fraction imaging in turbulent jets using planar Rayleigh scattering,” Appl. Phys. B 106(2), 457–471 (2012).
    [Crossref]
  15. C. F. Kaminski, J. Hult, and M. Aldén, “High repetition rate planar laser induced fluorescence of OH in a turbulent non-premixed flame,” Appl. Phys. B 68(4), 757–760 (1999).
    [Crossref]
  16. N. Jiang and W. R. Lempert, “Ultrahigh-frame-rate nitric oxide planar laser-induced fluorescence imaging,” Opt. Lett. 33(19), 2236–2238 (2008).
    [Crossref] [PubMed]
  17. N. Jiang, M. Webster, W. R. Lempert, J. D. Miller, T. R. Meyer, C. B. Ivey, and P. M. Danehy, “MHz-rate nitric oxide planar laser-induced fluorescence imaging in a Mach 10 hypersonic wind tunnel,” Appl. Opt. 50(4), A20–A28 (2011).
    [Crossref] [PubMed]
  18. N. Jiang, R. A. Patton, W. R. Lempert, and J. A. Sutton, “Development of high-repetition rate CH PLIF imaging in turbulent nonpremixed flames,” Proc. Combust. Inst. 33(1), 767–774 (2011).
    [Crossref]
  19. J. D. Miller, S. R. Engel, J. W. Tröger, T. R. Meyer, T. Seeger, and A. Leipertz, “Characterization of a CH planar laser-induced fluorescence imaging system using a kHz-rate multimode-pumped optical parametric oscillator,” Appl. Opt. 51(14), 2589–2600 (2012).
    [Crossref] [PubMed]
  20. J. D. Miller, S. R. Engel, T. R. Meyer, T. Seeger, and A. Leipertz, “High-speed CH planar laser-induced fluorescence imaging using a multimode-pumped optical parametric oscillator,” Opt. Lett. 36(19), 3927–3929 (2011).
    [Crossref] [PubMed]
  21. K. Gabet, R. Patton, N. Jiang, W. Lempert, and J. Sutton, “High-speed CH2O PLIF imaging in turbulent flames using a pulse-burst laser system,” Appl. Phys. B 106(3), 569–575 (2012).
    [Crossref]
  22. M. N. Slipchenko, J. D. Miller, S. Roy, J. R. Gord, S. A. Danczyk, and T. R. Meyer, “Quasi-continuous burst-mode laser for high-speed planar imaging,” Opt. Lett. 37(8), 1346–1348 (2012).
    [Crossref] [PubMed]
  23. K. Gabet, N. Jiang, W. Lempert, and J. Sutton, “Demonstration of high-speed 1D Raman scattering line imaging,” Appl. Phys. B 101(1-2), 1–5 (2010).
    [Crossref]
  24. F. Fuest, M. J. Papageorge, W. R. Lempert, and J. A. Sutton, “Ultrahigh laser pulse energy and power generation at 10 kHz,” Opt. Lett. 37(15), 3231–3233 (2012).
    [Crossref] [PubMed]
  25. S. Kotake and K. Takamoto, “Combustion noise: effects of the velocity turbulence of unburned mixture,” J. Sound Vibrat. 139(1), 9–20 (1990).
    [Crossref]
  26. Y.-C. Chao, Y.-L. Chang, C.-Y. Wu, and T.-S. Cheng, “An experimental investigation of the blowout process of a jet flame,” Proc. Combust. Inst. 28(1), 335–342 (2000).
    [Crossref]
  27. T. Lieuwen, Y. Neumeier, and B. T. Zinn, “The role of unmixedness and chemical kinetics in driving combustion instabilities in lean premixed combustors,” Combust. Sci. Technol. 135(1-6), 193–211 (1998).
    [Crossref]
  28. W. Koechner, Solid-State Laser Engineering (Springer Science + Business Media, Inc., New York, 2006).
  29. W. Koechner, “Transient thermal profile in optically pumped laser rods,” J. Appl. Phys. 44(7), 3162–3170 (1973).
    [Crossref]
  30. S. Epstein, “Temperature-induced changes in optical path length for a Nd-doped glass rod during pumping,” J. Appl. Phys. 38(7), 2715–2719 (1967).
    [Crossref]
  31. G. D. Baldwin and E. P. Riedel, “Measurements of dynamic optical distortion in Nd-doped glass laser rods,” J. Appl. Phys. 38(7), 2726–2738 (1967).
    [Crossref]

2012 (6)

R. Patton, K. Gabet, N. Jiang, W. Lempert, and J. Sutton, “Multi-kHz temperature imaging in turbulent non-premixed flames using planar Rayleigh scattering,” Appl. Phys. B 108(2), 377–392 (2012).
[Crossref]

R. Patton, K. Gabet, N. Jiang, W. Lempert, and J. Sutton, “Multi-kHz mixture fraction imaging in turbulent jets using planar Rayleigh scattering,” Appl. Phys. B 106(2), 457–471 (2012).
[Crossref]

J. D. Miller, S. R. Engel, J. W. Tröger, T. R. Meyer, T. Seeger, and A. Leipertz, “Characterization of a CH planar laser-induced fluorescence imaging system using a kHz-rate multimode-pumped optical parametric oscillator,” Appl. Opt. 51(14), 2589–2600 (2012).
[Crossref] [PubMed]

K. Gabet, R. Patton, N. Jiang, W. Lempert, and J. Sutton, “High-speed CH2O PLIF imaging in turbulent flames using a pulse-burst laser system,” Appl. Phys. B 106(3), 569–575 (2012).
[Crossref]

M. N. Slipchenko, J. D. Miller, S. Roy, J. R. Gord, S. A. Danczyk, and T. R. Meyer, “Quasi-continuous burst-mode laser for high-speed planar imaging,” Opt. Lett. 37(8), 1346–1348 (2012).
[Crossref] [PubMed]

F. Fuest, M. J. Papageorge, W. R. Lempert, and J. A. Sutton, “Ultrahigh laser pulse energy and power generation at 10 kHz,” Opt. Lett. 37(15), 3231–3233 (2012).
[Crossref] [PubMed]

2011 (5)

J. D. Miller, S. R. Engel, T. R. Meyer, T. Seeger, and A. Leipertz, “High-speed CH planar laser-induced fluorescence imaging using a multimode-pumped optical parametric oscillator,” Opt. Lett. 36(19), 3927–3929 (2011).
[Crossref] [PubMed]

N. Jiang, M. Webster, W. R. Lempert, J. D. Miller, T. R. Meyer, C. B. Ivey, and P. M. Danehy, “MHz-rate nitric oxide planar laser-induced fluorescence imaging in a Mach 10 hypersonic wind tunnel,” Appl. Opt. 50(4), A20–A28 (2011).
[Crossref] [PubMed]

N. Jiang, R. A. Patton, W. R. Lempert, and J. A. Sutton, “Development of high-repetition rate CH PLIF imaging in turbulent nonpremixed flames,” Proc. Combust. Inst. 33(1), 767–774 (2011).
[Crossref]

B. Böhm, C. Heeger, R. Gordon, and A. Dreizler, “New perspectives on turbulent combustion: multi-parameter high-speed planar laser diagnostics,” Flow, Turbul. Combust. 86(3-4), 313–341 (2011).
[Crossref]

M. Juddoo and A. R. Masri, “High-speed OH-PLIF imaging of extinction and re-ignition in non-premixed flames with various levels of oxygenation,” Combust. Flame 158(5), 902–914 (2011).
[Crossref]

2010 (1)

K. Gabet, N. Jiang, W. Lempert, and J. Sutton, “Demonstration of high-speed 1D Raman scattering line imaging,” Appl. Phys. B 101(1-2), 1–5 (2010).
[Crossref]

2009 (5)

2008 (1)

2006 (1)

W. Paa, D. Müller, H. Stafast, and W. Triebel, “Flame turbulences recorded at 1 kHz using planar laser induced fluorescence upon hot band excitation of OH radicals,” Appl. Phys. B 86(1), 1–5 (2006).
[Crossref]

2005 (1)

P. Weigand, W. Meier, X. Duan, R. Giezendanner-Thoben, and U. Meier, “Laser diagnostic study of the mechanism of a periodic combustion instability in a gas turbine model combustor,” Flow, Turbul. Combust. 75(1-4), 275–292 (2005).
[Crossref]

2004 (1)

2000 (2)

P. P. Wu and R. B. Miles, “High-energy pulse-burst laser system for megahertz-rate flow visualization,” Opt. Lett. 25(22), 1639–1641 (2000).
[Crossref] [PubMed]

Y.-C. Chao, Y.-L. Chang, C.-Y. Wu, and T.-S. Cheng, “An experimental investigation of the blowout process of a jet flame,” Proc. Combust. Inst. 28(1), 335–342 (2000).
[Crossref]

1999 (1)

C. F. Kaminski, J. Hult, and M. Aldén, “High repetition rate planar laser induced fluorescence of OH in a turbulent non-premixed flame,” Appl. Phys. B 68(4), 757–760 (1999).
[Crossref]

1998 (1)

T. Lieuwen, Y. Neumeier, and B. T. Zinn, “The role of unmixedness and chemical kinetics in driving combustion instabilities in lean premixed combustors,” Combust. Sci. Technol. 135(1-6), 193–211 (1998).
[Crossref]

1990 (1)

S. Kotake and K. Takamoto, “Combustion noise: effects of the velocity turbulence of unburned mixture,” J. Sound Vibrat. 139(1), 9–20 (1990).
[Crossref]

1973 (1)

W. Koechner, “Transient thermal profile in optically pumped laser rods,” J. Appl. Phys. 44(7), 3162–3170 (1973).
[Crossref]

1967 (2)

S. Epstein, “Temperature-induced changes in optical path length for a Nd-doped glass rod during pumping,” J. Appl. Phys. 38(7), 2715–2719 (1967).
[Crossref]

G. D. Baldwin and E. P. Riedel, “Measurements of dynamic optical distortion in Nd-doped glass laser rods,” J. Appl. Phys. 38(7), 2726–2738 (1967).
[Crossref]

Aldén, M.

C. F. Kaminski, J. Hult, and M. Aldén, “High repetition rate planar laser induced fluorescence of OH in a turbulent non-premixed flame,” Appl. Phys. B 68(4), 757–760 (1999).
[Crossref]

Baldwin, G. D.

G. D. Baldwin and E. P. Riedel, “Measurements of dynamic optical distortion in Nd-doped glass laser rods,” J. Appl. Phys. 38(7), 2726–2738 (1967).
[Crossref]

Böhm, B.

B. Böhm, C. Heeger, R. Gordon, and A. Dreizler, “New perspectives on turbulent combustion: multi-parameter high-speed planar laser diagnostics,” Flow, Turbul. Combust. 86(3-4), 313–341 (2011).
[Crossref]

Boxx, I.

I. Boxx, M. Stöhr, C. Carter, and W. Meier, “Sustained multi-kHz flamefront and 3-component velocity-field measurements for the study of turbulent flames,” Appl. Phys. B 95(1), 23–29 (2009).
[Crossref]

Carter, C.

I. Boxx, M. Stöhr, C. Carter, and W. Meier, “Sustained multi-kHz flamefront and 3-component velocity-field measurements for the study of turbulent flames,” Appl. Phys. B 95(1), 23–29 (2009).
[Crossref]

Chang, Y.-L.

Y.-C. Chao, Y.-L. Chang, C.-Y. Wu, and T.-S. Cheng, “An experimental investigation of the blowout process of a jet flame,” Proc. Combust. Inst. 28(1), 335–342 (2000).
[Crossref]

Chao, Y.-C.

Y.-C. Chao, Y.-L. Chang, C.-Y. Wu, and T.-S. Cheng, “An experimental investigation of the blowout process of a jet flame,” Proc. Combust. Inst. 28(1), 335–342 (2000).
[Crossref]

Cheng, T.-S.

Y.-C. Chao, Y.-L. Chang, C.-Y. Wu, and T.-S. Cheng, “An experimental investigation of the blowout process of a jet flame,” Proc. Combust. Inst. 28(1), 335–342 (2000).
[Crossref]

Cundy, M.

M. Cundy and V. Sick, “Hydroxyl radical imaging at kHz rates using a frequency-quadrupled Nd:YLF laser,” Appl. Phys. B 96(2-3), 241–245 (2009).
[Crossref]

Danczyk, S. A.

Danehy, P. M.

Dreizler, A.

B. Böhm, C. Heeger, R. Gordon, and A. Dreizler, “New perspectives on turbulent combustion: multi-parameter high-speed planar laser diagnostics,” Flow, Turbul. Combust. 86(3-4), 313–341 (2011).
[Crossref]

Duan, X.

P. Weigand, W. Meier, X. Duan, R. Giezendanner-Thoben, and U. Meier, “Laser diagnostic study of the mechanism of a periodic combustion instability in a gas turbine model combustor,” Flow, Turbul. Combust. 75(1-4), 275–292 (2005).
[Crossref]

Engel, S. R.

Epstein, S.

S. Epstein, “Temperature-induced changes in optical path length for a Nd-doped glass rod during pumping,” J. Appl. Phys. 38(7), 2715–2719 (1967).
[Crossref]

Fuest, F.

Gabet, K.

K. Gabet, R. Patton, N. Jiang, W. Lempert, and J. Sutton, “High-speed CH2O PLIF imaging in turbulent flames using a pulse-burst laser system,” Appl. Phys. B 106(3), 569–575 (2012).
[Crossref]

R. Patton, K. Gabet, N. Jiang, W. Lempert, and J. Sutton, “Multi-kHz temperature imaging in turbulent non-premixed flames using planar Rayleigh scattering,” Appl. Phys. B 108(2), 377–392 (2012).
[Crossref]

R. Patton, K. Gabet, N. Jiang, W. Lempert, and J. Sutton, “Multi-kHz mixture fraction imaging in turbulent jets using planar Rayleigh scattering,” Appl. Phys. B 106(2), 457–471 (2012).
[Crossref]

K. Gabet, N. Jiang, W. Lempert, and J. Sutton, “Demonstration of high-speed 1D Raman scattering line imaging,” Appl. Phys. B 101(1-2), 1–5 (2010).
[Crossref]

Giezendanner-Thoben, R.

P. Weigand, W. Meier, X. Duan, R. Giezendanner-Thoben, and U. Meier, “Laser diagnostic study of the mechanism of a periodic combustion instability in a gas turbine model combustor,” Flow, Turbul. Combust. 75(1-4), 275–292 (2005).
[Crossref]

Gord, J. R.

Gordon, R.

B. Böhm, C. Heeger, R. Gordon, and A. Dreizler, “New perspectives on turbulent combustion: multi-parameter high-speed planar laser diagnostics,” Flow, Turbul. Combust. 86(3-4), 313–341 (2011).
[Crossref]

Heeger, C.

B. Böhm, C. Heeger, R. Gordon, and A. Dreizler, “New perspectives on turbulent combustion: multi-parameter high-speed planar laser diagnostics,” Flow, Turbul. Combust. 86(3-4), 313–341 (2011).
[Crossref]

Hult, J.

C. F. Kaminski, J. Hult, and M. Aldén, “High repetition rate planar laser induced fluorescence of OH in a turbulent non-premixed flame,” Appl. Phys. B 68(4), 757–760 (1999).
[Crossref]

Ivey, C. B.

Jiang, N.

R. Patton, K. Gabet, N. Jiang, W. Lempert, and J. Sutton, “Multi-kHz mixture fraction imaging in turbulent jets using planar Rayleigh scattering,” Appl. Phys. B 106(2), 457–471 (2012).
[Crossref]

R. Patton, K. Gabet, N. Jiang, W. Lempert, and J. Sutton, “Multi-kHz temperature imaging in turbulent non-premixed flames using planar Rayleigh scattering,” Appl. Phys. B 108(2), 377–392 (2012).
[Crossref]

K. Gabet, R. Patton, N. Jiang, W. Lempert, and J. Sutton, “High-speed CH2O PLIF imaging in turbulent flames using a pulse-burst laser system,” Appl. Phys. B 106(3), 569–575 (2012).
[Crossref]

N. Jiang, R. A. Patton, W. R. Lempert, and J. A. Sutton, “Development of high-repetition rate CH PLIF imaging in turbulent nonpremixed flames,” Proc. Combust. Inst. 33(1), 767–774 (2011).
[Crossref]

N. Jiang, M. Webster, W. R. Lempert, J. D. Miller, T. R. Meyer, C. B. Ivey, and P. M. Danehy, “MHz-rate nitric oxide planar laser-induced fluorescence imaging in a Mach 10 hypersonic wind tunnel,” Appl. Opt. 50(4), A20–A28 (2011).
[Crossref] [PubMed]

K. Gabet, N. Jiang, W. Lempert, and J. Sutton, “Demonstration of high-speed 1D Raman scattering line imaging,” Appl. Phys. B 101(1-2), 1–5 (2010).
[Crossref]

J. D. Miller, M. Slipchenko, T. R. Meyer, N. Jiang, W. R. Lempert, and J. R. Gord, “Ultrahigh-frame-rate OH fluorescence imaging in turbulent flames using a burst-mode optical parametric oscillator,” Opt. Lett. 34(9), 1309–1311 (2009).
[Crossref] [PubMed]

N. Jiang, M. C. Webster, and W. R. Lempert, “Advances in generation of high-repetition-rate burst mode laser output,” Appl. Opt. 48(4), B23–B31 (2009).
[Crossref] [PubMed]

N. Jiang and W. R. Lempert, “Ultrahigh-frame-rate nitric oxide planar laser-induced fluorescence imaging,” Opt. Lett. 33(19), 2236–2238 (2008).
[Crossref] [PubMed]

B. Thurow, N. Jiang, M. Samimy, and W. Lempert, “Narrow-linewidth megahertz-rate pulse-burst laser for high-speed flow diagnostics,” Appl. Opt. 43(26), 5064–5073 (2004).
[Crossref] [PubMed]

Juddoo, M.

M. Juddoo and A. R. Masri, “High-speed OH-PLIF imaging of extinction and re-ignition in non-premixed flames with various levels of oxygenation,” Combust. Flame 158(5), 902–914 (2011).
[Crossref]

Kaminski, C. F.

C. F. Kaminski, J. Hult, and M. Aldén, “High repetition rate planar laser induced fluorescence of OH in a turbulent non-premixed flame,” Appl. Phys. B 68(4), 757–760 (1999).
[Crossref]

Koechner, W.

W. Koechner, “Transient thermal profile in optically pumped laser rods,” J. Appl. Phys. 44(7), 3162–3170 (1973).
[Crossref]

Kotake, S.

S. Kotake and K. Takamoto, “Combustion noise: effects of the velocity turbulence of unburned mixture,” J. Sound Vibrat. 139(1), 9–20 (1990).
[Crossref]

Leipertz, A.

Lempert, W.

K. Gabet, R. Patton, N. Jiang, W. Lempert, and J. Sutton, “High-speed CH2O PLIF imaging in turbulent flames using a pulse-burst laser system,” Appl. Phys. B 106(3), 569–575 (2012).
[Crossref]

R. Patton, K. Gabet, N. Jiang, W. Lempert, and J. Sutton, “Multi-kHz mixture fraction imaging in turbulent jets using planar Rayleigh scattering,” Appl. Phys. B 106(2), 457–471 (2012).
[Crossref]

R. Patton, K. Gabet, N. Jiang, W. Lempert, and J. Sutton, “Multi-kHz temperature imaging in turbulent non-premixed flames using planar Rayleigh scattering,” Appl. Phys. B 108(2), 377–392 (2012).
[Crossref]

K. Gabet, N. Jiang, W. Lempert, and J. Sutton, “Demonstration of high-speed 1D Raman scattering line imaging,” Appl. Phys. B 101(1-2), 1–5 (2010).
[Crossref]

B. Thurow, N. Jiang, M. Samimy, and W. Lempert, “Narrow-linewidth megahertz-rate pulse-burst laser for high-speed flow diagnostics,” Appl. Opt. 43(26), 5064–5073 (2004).
[Crossref] [PubMed]

Lempert, W. R.

Lieuwen, T.

T. Lieuwen, Y. Neumeier, and B. T. Zinn, “The role of unmixedness and chemical kinetics in driving combustion instabilities in lean premixed combustors,” Combust. Sci. Technol. 135(1-6), 193–211 (1998).
[Crossref]

Lynch, K.

Masri, A. R.

M. Juddoo and A. R. Masri, “High-speed OH-PLIF imaging of extinction and re-ignition in non-premixed flames with various levels of oxygenation,” Combust. Flame 158(5), 902–914 (2011).
[Crossref]

Meier, U.

P. Weigand, W. Meier, X. Duan, R. Giezendanner-Thoben, and U. Meier, “Laser diagnostic study of the mechanism of a periodic combustion instability in a gas turbine model combustor,” Flow, Turbul. Combust. 75(1-4), 275–292 (2005).
[Crossref]

Meier, W.

I. Boxx, M. Stöhr, C. Carter, and W. Meier, “Sustained multi-kHz flamefront and 3-component velocity-field measurements for the study of turbulent flames,” Appl. Phys. B 95(1), 23–29 (2009).
[Crossref]

P. Weigand, W. Meier, X. Duan, R. Giezendanner-Thoben, and U. Meier, “Laser diagnostic study of the mechanism of a periodic combustion instability in a gas turbine model combustor,” Flow, Turbul. Combust. 75(1-4), 275–292 (2005).
[Crossref]

Meyer, T. R.

Miles, R. B.

Miller, J. D.

Müller, D.

W. Paa, D. Müller, H. Stafast, and W. Triebel, “Flame turbulences recorded at 1 kHz using planar laser induced fluorescence upon hot band excitation of OH radicals,” Appl. Phys. B 86(1), 1–5 (2006).
[Crossref]

Neumeier, Y.

T. Lieuwen, Y. Neumeier, and B. T. Zinn, “The role of unmixedness and chemical kinetics in driving combustion instabilities in lean premixed combustors,” Combust. Sci. Technol. 135(1-6), 193–211 (1998).
[Crossref]

Paa, W.

W. Paa, D. Müller, H. Stafast, and W. Triebel, “Flame turbulences recorded at 1 kHz using planar laser induced fluorescence upon hot band excitation of OH radicals,” Appl. Phys. B 86(1), 1–5 (2006).
[Crossref]

Papageorge, M. J.

Patton, R.

R. Patton, K. Gabet, N. Jiang, W. Lempert, and J. Sutton, “Multi-kHz temperature imaging in turbulent non-premixed flames using planar Rayleigh scattering,” Appl. Phys. B 108(2), 377–392 (2012).
[Crossref]

R. Patton, K. Gabet, N. Jiang, W. Lempert, and J. Sutton, “Multi-kHz mixture fraction imaging in turbulent jets using planar Rayleigh scattering,” Appl. Phys. B 106(2), 457–471 (2012).
[Crossref]

K. Gabet, R. Patton, N. Jiang, W. Lempert, and J. Sutton, “High-speed CH2O PLIF imaging in turbulent flames using a pulse-burst laser system,” Appl. Phys. B 106(3), 569–575 (2012).
[Crossref]

Patton, R. A.

N. Jiang, R. A. Patton, W. R. Lempert, and J. A. Sutton, “Development of high-repetition rate CH PLIF imaging in turbulent nonpremixed flames,” Proc. Combust. Inst. 33(1), 767–774 (2011).
[Crossref]

Riedel, E. P.

G. D. Baldwin and E. P. Riedel, “Measurements of dynamic optical distortion in Nd-doped glass laser rods,” J. Appl. Phys. 38(7), 2726–2738 (1967).
[Crossref]

Roy, S.

Samimy, M.

Satija, A.

Seeger, T.

Sick, V.

M. Cundy and V. Sick, “Hydroxyl radical imaging at kHz rates using a frequency-quadrupled Nd:YLF laser,” Appl. Phys. B 96(2-3), 241–245 (2009).
[Crossref]

Slipchenko, M.

Slipchenko, M. N.

Stafast, H.

W. Paa, D. Müller, H. Stafast, and W. Triebel, “Flame turbulences recorded at 1 kHz using planar laser induced fluorescence upon hot band excitation of OH radicals,” Appl. Phys. B 86(1), 1–5 (2006).
[Crossref]

Stöhr, M.

I. Boxx, M. Stöhr, C. Carter, and W. Meier, “Sustained multi-kHz flamefront and 3-component velocity-field measurements for the study of turbulent flames,” Appl. Phys. B 95(1), 23–29 (2009).
[Crossref]

Sutton, J.

R. Patton, K. Gabet, N. Jiang, W. Lempert, and J. Sutton, “Multi-kHz temperature imaging in turbulent non-premixed flames using planar Rayleigh scattering,” Appl. Phys. B 108(2), 377–392 (2012).
[Crossref]

R. Patton, K. Gabet, N. Jiang, W. Lempert, and J. Sutton, “Multi-kHz mixture fraction imaging in turbulent jets using planar Rayleigh scattering,” Appl. Phys. B 106(2), 457–471 (2012).
[Crossref]

K. Gabet, R. Patton, N. Jiang, W. Lempert, and J. Sutton, “High-speed CH2O PLIF imaging in turbulent flames using a pulse-burst laser system,” Appl. Phys. B 106(3), 569–575 (2012).
[Crossref]

K. Gabet, N. Jiang, W. Lempert, and J. Sutton, “Demonstration of high-speed 1D Raman scattering line imaging,” Appl. Phys. B 101(1-2), 1–5 (2010).
[Crossref]

Sutton, J. A.

F. Fuest, M. J. Papageorge, W. R. Lempert, and J. A. Sutton, “Ultrahigh laser pulse energy and power generation at 10 kHz,” Opt. Lett. 37(15), 3231–3233 (2012).
[Crossref] [PubMed]

N. Jiang, R. A. Patton, W. R. Lempert, and J. A. Sutton, “Development of high-repetition rate CH PLIF imaging in turbulent nonpremixed flames,” Proc. Combust. Inst. 33(1), 767–774 (2011).
[Crossref]

Takamoto, K.

S. Kotake and K. Takamoto, “Combustion noise: effects of the velocity turbulence of unburned mixture,” J. Sound Vibrat. 139(1), 9–20 (1990).
[Crossref]

Thurow, B.

Thurow, B. S.

Triebel, W.

W. Paa, D. Müller, H. Stafast, and W. Triebel, “Flame turbulences recorded at 1 kHz using planar laser induced fluorescence upon hot band excitation of OH radicals,” Appl. Phys. B 86(1), 1–5 (2006).
[Crossref]

Tröger, J. W.

Webster, M.

Webster, M. C.

Weigand, P.

P. Weigand, W. Meier, X. Duan, R. Giezendanner-Thoben, and U. Meier, “Laser diagnostic study of the mechanism of a periodic combustion instability in a gas turbine model combustor,” Flow, Turbul. Combust. 75(1-4), 275–292 (2005).
[Crossref]

Wu, C.-Y.

Y.-C. Chao, Y.-L. Chang, C.-Y. Wu, and T.-S. Cheng, “An experimental investigation of the blowout process of a jet flame,” Proc. Combust. Inst. 28(1), 335–342 (2000).
[Crossref]

Wu, P. P.

Zinn, B. T.

T. Lieuwen, Y. Neumeier, and B. T. Zinn, “The role of unmixedness and chemical kinetics in driving combustion instabilities in lean premixed combustors,” Combust. Sci. Technol. 135(1-6), 193–211 (1998).
[Crossref]

Appl. Opt. (5)

Appl. Phys. B (8)

R. Patton, K. Gabet, N. Jiang, W. Lempert, and J. Sutton, “Multi-kHz temperature imaging in turbulent non-premixed flames using planar Rayleigh scattering,” Appl. Phys. B 108(2), 377–392 (2012).
[Crossref]

R. Patton, K. Gabet, N. Jiang, W. Lempert, and J. Sutton, “Multi-kHz mixture fraction imaging in turbulent jets using planar Rayleigh scattering,” Appl. Phys. B 106(2), 457–471 (2012).
[Crossref]

C. F. Kaminski, J. Hult, and M. Aldén, “High repetition rate planar laser induced fluorescence of OH in a turbulent non-premixed flame,” Appl. Phys. B 68(4), 757–760 (1999).
[Crossref]

W. Paa, D. Müller, H. Stafast, and W. Triebel, “Flame turbulences recorded at 1 kHz using planar laser induced fluorescence upon hot band excitation of OH radicals,” Appl. Phys. B 86(1), 1–5 (2006).
[Crossref]

M. Cundy and V. Sick, “Hydroxyl radical imaging at kHz rates using a frequency-quadrupled Nd:YLF laser,” Appl. Phys. B 96(2-3), 241–245 (2009).
[Crossref]

I. Boxx, M. Stöhr, C. Carter, and W. Meier, “Sustained multi-kHz flamefront and 3-component velocity-field measurements for the study of turbulent flames,” Appl. Phys. B 95(1), 23–29 (2009).
[Crossref]

K. Gabet, R. Patton, N. Jiang, W. Lempert, and J. Sutton, “High-speed CH2O PLIF imaging in turbulent flames using a pulse-burst laser system,” Appl. Phys. B 106(3), 569–575 (2012).
[Crossref]

K. Gabet, N. Jiang, W. Lempert, and J. Sutton, “Demonstration of high-speed 1D Raman scattering line imaging,” Appl. Phys. B 101(1-2), 1–5 (2010).
[Crossref]

Combust. Flame (1)

M. Juddoo and A. R. Masri, “High-speed OH-PLIF imaging of extinction and re-ignition in non-premixed flames with various levels of oxygenation,” Combust. Flame 158(5), 902–914 (2011).
[Crossref]

Combust. Sci. Technol. (1)

T. Lieuwen, Y. Neumeier, and B. T. Zinn, “The role of unmixedness and chemical kinetics in driving combustion instabilities in lean premixed combustors,” Combust. Sci. Technol. 135(1-6), 193–211 (1998).
[Crossref]

Flow, Turbul. Combust. (2)

P. Weigand, W. Meier, X. Duan, R. Giezendanner-Thoben, and U. Meier, “Laser diagnostic study of the mechanism of a periodic combustion instability in a gas turbine model combustor,” Flow, Turbul. Combust. 75(1-4), 275–292 (2005).
[Crossref]

B. Böhm, C. Heeger, R. Gordon, and A. Dreizler, “New perspectives on turbulent combustion: multi-parameter high-speed planar laser diagnostics,” Flow, Turbul. Combust. 86(3-4), 313–341 (2011).
[Crossref]

J. Appl. Phys. (3)

W. Koechner, “Transient thermal profile in optically pumped laser rods,” J. Appl. Phys. 44(7), 3162–3170 (1973).
[Crossref]

S. Epstein, “Temperature-induced changes in optical path length for a Nd-doped glass rod during pumping,” J. Appl. Phys. 38(7), 2715–2719 (1967).
[Crossref]

G. D. Baldwin and E. P. Riedel, “Measurements of dynamic optical distortion in Nd-doped glass laser rods,” J. Appl. Phys. 38(7), 2726–2738 (1967).
[Crossref]

J. Sound Vibrat. (1)

S. Kotake and K. Takamoto, “Combustion noise: effects of the velocity turbulence of unburned mixture,” J. Sound Vibrat. 139(1), 9–20 (1990).
[Crossref]

Opt. Lett. (6)

Proc. Combust. Inst. (2)

N. Jiang, R. A. Patton, W. R. Lempert, and J. A. Sutton, “Development of high-repetition rate CH PLIF imaging in turbulent nonpremixed flames,” Proc. Combust. Inst. 33(1), 767–774 (2011).
[Crossref]

Y.-C. Chao, Y.-L. Chang, C.-Y. Wu, and T.-S. Cheng, “An experimental investigation of the blowout process of a jet flame,” Proc. Combust. Inst. 28(1), 335–342 (2000).
[Crossref]

Other (2)

W. Koechner, Solid-State Laser Engineering (Springer Science + Business Media, Inc., New York, 2006).

A. Johchi, M. Tanahashi, M. Shimura, J.-M. Choi, and T. Miyauchi, “High repetition rate simultaneous CH/OH PLIF in turbulent jet flame,” in 16th Int. Symp. on Applications of Laser Techniques to Fluid Mechanics(Lisbon, Portugal, 2012).

Supplementary Material (2)

» Media 1: AVI (4391 KB)     
» Media 2: AVI (1338 KB)     

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) Optical layout of all-diode-pumped quasi-continuous burst-mode laser system. Symbols: OI - optical isolator, EOM - electro-optic modulator, PH - pinhole, HWP - half-wave plate, DWP - dual-wavelength wave plate, QR - quartz rotator, HS - harmonic separator, and BD - beam dump. Numbers are focal lengths of spherical lenses. (b) Dependence of the single-pass and double-pass gain of amplifier #3 on driving current. (c) Dependence of energy per pulse on repetition rate within the burst. Fitting parameters a = 646, b = 0.81.
Fig. 2
Fig. 2 Output power of the three types of diode bars measured at four different driving-pulse conditions as indicated. Six diode bars of each type were tested. The noise is due to detector.
Fig. 3
Fig. 3 Spontaneous emission (SE) for amplifier #3 as a function of time. (a–e) SE profile for driving-pulse current ranging from 40 A to 80 A. Black and Red curves correspond to 20°C and 30°C cooling water, respectively.
Fig. 4
Fig. 4 Beam-intensity distribution during a single burst for a driving current of 45 A for the first two amplifiers and 60 A for the third amplifier. The intensity distribution in the color scale is normalized by the peak intensity. The full sequence is available online as Media 1.
Fig. 5
Fig. 5 Beam-diameter and intensity time profiles. (a–b) Beam-diameter time profiles at 20°C and 30°C diode-bar cooling-water temperature. Beam diameter is 1/e2. (c–d) Pulse-intensity profiles at 20°C and 30°C diode-bar cooling water temperature. Driving currents for the first two amplifiers and for the third amplifier are indicated.
Fig. 6
Fig. 6 Direct photograph (left) and 30-ms-duration PLIF imaging of CH2O in a lifted CH4–air diffusion flame at 5 kHz showing every third image (right). False-color scales indicate non-normalized, background-subtracted camera counts. The full sequence is available online as Media 2. The field of view is indicated on the photograph by the dashed line.

Metrics