Abstract

A novel approach to photonically generate binary digital modulation radio frequency (RF) signals is proposed. In the proposed system, the short optical pulses are converted into high frequency RF signals based on optical pulse shaping followed by dispersion induced frequency-to-time mapping technique. And the generated signals are coded using a fast electro-optical switch based on polarization modulation. By properly configuring the system, binary digital modulation signals, including amplitude-shift keying (ASK), frequency-shift keying (FSK) and phase-shift keying (PSK) with required bit pattern are generated in the optical domain. A model describing the signal generation system is derived, which is verified via both simulations and a proof-of-concept experiment.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Proakis, Digital Communication (McGraw-Hill Press, 2003), Chap 3.
  2. K. Maruhashi, S. Kishimoto, M. Ito, K. Ohata, Y. Hamada, T. Morimoto, and H. Shimawaki, “Wireless uncompressed-HDTV-signal transmission system utilizing compact 60-GHz-band transmitter and receiver,” in IEEE MTT-S International Microwave Symposium Digest, 1867–1870(2005).
  3. M. Tarenghi, “The Atacana large millimeer/submillimeter array: overview & status,” Astrophys. Space Sci. 313(1-3), 1–7 (2008).
    [CrossRef]
  4. J. P. Yao, “Photonic generation of microwave arbitrary waveforms,” J. Opt. Comm 284(15), 3723–3736 (2011).
    [CrossRef]
  5. C. Wang and J. P. Yao, “Microwave and millimeter-wave arbitrary waveform generation and processing using fiber-optics-based techniques,” in Proceedings of IEEE International conference on Broadband Network & Multimedia Technology, 909–912 (2009).
  6. J. Chou, Y. Han, B. Jalali, “Adaptive RF-photonic arbitrary waveform generator,” IEEE Photon. Technol. Lett. 15(4), 581–583 (2003).
    [CrossRef]
  7. C. Wang, J. P. Yao, “Large time-bandwidth product microwave arbitrary waveform generation using a spatially discrete chirped fiber Bragg grating,” J. Lightwave Technol. 28(11), 1652–1660 (2010).
    [CrossRef]
  8. H. Chi, J. P. Yao, “An approach to photonic generation of high-frequency phase-coded RR pulses,” IEEE Photon. Technol. Lett. 19(10), 768–770 (2007).
    [CrossRef]
  9. H. Chi, J. P. Yao, “Photonic generation of phase-coded millimeter-wave signal using a polarization modulator,” IEEE Micro. Wire. Compon. Lett. 18(5), 371–373 (2008).
    [CrossRef]
  10. H. Chi, F. Zeng, J. P. Yao, “Photonic generation of microwave signals based on pulse shaping,” IEEE Photon. Technol. Lett. 19(9), 668–670 (2007).
    [CrossRef]
  11. Y. T. Dai, J. P. Yao, “Microwave pulse phase encoding using a photonic microwave delay-line filter,” Opt. Lett. 32(24), 3486–3488 (2007).
    [CrossRef] [PubMed]
  12. R. Ashrafi, Y. Park, J. Azaña, “Fiber-based photonic generation of high-frequency microwave pulses with reconfigurable linear chirp control,” IEEE Trans. Microw. Theory Tech. 58(11), 3312–3319 (2010).
    [CrossRef]
  13. Y. Ji, Y. Li, F. Z. Zhang, X. B. Hong, K. Xu, J. Wu, and J. T. Lin, “Arbitrary repetition-rate multiplication of high speed optical pulses using a programmable optical processor,” in Proceedings of International Topical Meeting on Microwave Photonics, 278 – 281(2011).

2011

J. P. Yao, “Photonic generation of microwave arbitrary waveforms,” J. Opt. Comm 284(15), 3723–3736 (2011).
[CrossRef]

2010

R. Ashrafi, Y. Park, J. Azaña, “Fiber-based photonic generation of high-frequency microwave pulses with reconfigurable linear chirp control,” IEEE Trans. Microw. Theory Tech. 58(11), 3312–3319 (2010).
[CrossRef]

C. Wang, J. P. Yao, “Large time-bandwidth product microwave arbitrary waveform generation using a spatially discrete chirped fiber Bragg grating,” J. Lightwave Technol. 28(11), 1652–1660 (2010).
[CrossRef]

2008

H. Chi, J. P. Yao, “Photonic generation of phase-coded millimeter-wave signal using a polarization modulator,” IEEE Micro. Wire. Compon. Lett. 18(5), 371–373 (2008).
[CrossRef]

M. Tarenghi, “The Atacana large millimeer/submillimeter array: overview & status,” Astrophys. Space Sci. 313(1-3), 1–7 (2008).
[CrossRef]

2007

H. Chi, J. P. Yao, “An approach to photonic generation of high-frequency phase-coded RR pulses,” IEEE Photon. Technol. Lett. 19(10), 768–770 (2007).
[CrossRef]

H. Chi, F. Zeng, J. P. Yao, “Photonic generation of microwave signals based on pulse shaping,” IEEE Photon. Technol. Lett. 19(9), 668–670 (2007).
[CrossRef]

Y. T. Dai, J. P. Yao, “Microwave pulse phase encoding using a photonic microwave delay-line filter,” Opt. Lett. 32(24), 3486–3488 (2007).
[CrossRef] [PubMed]

2003

J. Chou, Y. Han, B. Jalali, “Adaptive RF-photonic arbitrary waveform generator,” IEEE Photon. Technol. Lett. 15(4), 581–583 (2003).
[CrossRef]

Ashrafi, R.

R. Ashrafi, Y. Park, J. Azaña, “Fiber-based photonic generation of high-frequency microwave pulses with reconfigurable linear chirp control,” IEEE Trans. Microw. Theory Tech. 58(11), 3312–3319 (2010).
[CrossRef]

Azaña, J.

R. Ashrafi, Y. Park, J. Azaña, “Fiber-based photonic generation of high-frequency microwave pulses with reconfigurable linear chirp control,” IEEE Trans. Microw. Theory Tech. 58(11), 3312–3319 (2010).
[CrossRef]

Chi, H.

H. Chi, J. P. Yao, “Photonic generation of phase-coded millimeter-wave signal using a polarization modulator,” IEEE Micro. Wire. Compon. Lett. 18(5), 371–373 (2008).
[CrossRef]

H. Chi, F. Zeng, J. P. Yao, “Photonic generation of microwave signals based on pulse shaping,” IEEE Photon. Technol. Lett. 19(9), 668–670 (2007).
[CrossRef]

H. Chi, J. P. Yao, “An approach to photonic generation of high-frequency phase-coded RR pulses,” IEEE Photon. Technol. Lett. 19(10), 768–770 (2007).
[CrossRef]

Chou, J.

J. Chou, Y. Han, B. Jalali, “Adaptive RF-photonic arbitrary waveform generator,” IEEE Photon. Technol. Lett. 15(4), 581–583 (2003).
[CrossRef]

Dai, Y. T.

Han, Y.

J. Chou, Y. Han, B. Jalali, “Adaptive RF-photonic arbitrary waveform generator,” IEEE Photon. Technol. Lett. 15(4), 581–583 (2003).
[CrossRef]

Jalali, B.

J. Chou, Y. Han, B. Jalali, “Adaptive RF-photonic arbitrary waveform generator,” IEEE Photon. Technol. Lett. 15(4), 581–583 (2003).
[CrossRef]

Park, Y.

R. Ashrafi, Y. Park, J. Azaña, “Fiber-based photonic generation of high-frequency microwave pulses with reconfigurable linear chirp control,” IEEE Trans. Microw. Theory Tech. 58(11), 3312–3319 (2010).
[CrossRef]

Tarenghi, M.

M. Tarenghi, “The Atacana large millimeer/submillimeter array: overview & status,” Astrophys. Space Sci. 313(1-3), 1–7 (2008).
[CrossRef]

Wang, C.

Yao, J. P.

J. P. Yao, “Photonic generation of microwave arbitrary waveforms,” J. Opt. Comm 284(15), 3723–3736 (2011).
[CrossRef]

C. Wang, J. P. Yao, “Large time-bandwidth product microwave arbitrary waveform generation using a spatially discrete chirped fiber Bragg grating,” J. Lightwave Technol. 28(11), 1652–1660 (2010).
[CrossRef]

H. Chi, J. P. Yao, “Photonic generation of phase-coded millimeter-wave signal using a polarization modulator,” IEEE Micro. Wire. Compon. Lett. 18(5), 371–373 (2008).
[CrossRef]

Y. T. Dai, J. P. Yao, “Microwave pulse phase encoding using a photonic microwave delay-line filter,” Opt. Lett. 32(24), 3486–3488 (2007).
[CrossRef] [PubMed]

H. Chi, F. Zeng, J. P. Yao, “Photonic generation of microwave signals based on pulse shaping,” IEEE Photon. Technol. Lett. 19(9), 668–670 (2007).
[CrossRef]

H. Chi, J. P. Yao, “An approach to photonic generation of high-frequency phase-coded RR pulses,” IEEE Photon. Technol. Lett. 19(10), 768–770 (2007).
[CrossRef]

Zeng, F.

H. Chi, F. Zeng, J. P. Yao, “Photonic generation of microwave signals based on pulse shaping,” IEEE Photon. Technol. Lett. 19(9), 668–670 (2007).
[CrossRef]

Astrophys. Space Sci.

M. Tarenghi, “The Atacana large millimeer/submillimeter array: overview & status,” Astrophys. Space Sci. 313(1-3), 1–7 (2008).
[CrossRef]

IEEE Micro. Wire. Compon. Lett.

H. Chi, J. P. Yao, “Photonic generation of phase-coded millimeter-wave signal using a polarization modulator,” IEEE Micro. Wire. Compon. Lett. 18(5), 371–373 (2008).
[CrossRef]

IEEE Photon. Technol. Lett.

H. Chi, F. Zeng, J. P. Yao, “Photonic generation of microwave signals based on pulse shaping,” IEEE Photon. Technol. Lett. 19(9), 668–670 (2007).
[CrossRef]

J. Chou, Y. Han, B. Jalali, “Adaptive RF-photonic arbitrary waveform generator,” IEEE Photon. Technol. Lett. 15(4), 581–583 (2003).
[CrossRef]

H. Chi, J. P. Yao, “An approach to photonic generation of high-frequency phase-coded RR pulses,” IEEE Photon. Technol. Lett. 19(10), 768–770 (2007).
[CrossRef]

IEEE Trans. Microw. Theory Tech.

R. Ashrafi, Y. Park, J. Azaña, “Fiber-based photonic generation of high-frequency microwave pulses with reconfigurable linear chirp control,” IEEE Trans. Microw. Theory Tech. 58(11), 3312–3319 (2010).
[CrossRef]

J. Lightwave Technol.

J. Opt. Comm

J. P. Yao, “Photonic generation of microwave arbitrary waveforms,” J. Opt. Comm 284(15), 3723–3736 (2011).
[CrossRef]

Opt. Lett.

Other

C. Wang and J. P. Yao, “Microwave and millimeter-wave arbitrary waveform generation and processing using fiber-optics-based techniques,” in Proceedings of IEEE International conference on Broadband Network & Multimedia Technology, 909–912 (2009).

J. Proakis, Digital Communication (McGraw-Hill Press, 2003), Chap 3.

K. Maruhashi, S. Kishimoto, M. Ito, K. Ohata, Y. Hamada, T. Morimoto, and H. Shimawaki, “Wireless uncompressed-HDTV-signal transmission system utilizing compact 60-GHz-band transmitter and receiver,” in IEEE MTT-S International Microwave Symposium Digest, 1867–1870(2005).

Y. Ji, Y. Li, F. Z. Zhang, X. B. Hong, K. Xu, J. Wu, and J. T. Lin, “Arbitrary repetition-rate multiplication of high speed optical pulses using a programmable optical processor,” in Proceedings of International Topical Meeting on Microwave Photonics, 278 – 281(2011).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic diagram of the proposed RF signal generation system. (SPLS: short pulse laser source; PolM: polarization modulator; PBS: polarization beam splitter; MZI: Mach-Zehnder fiber Interferometer; PC: polarization controller; TODL: tunable optical delay line; OC: optical coupler; TOF: tunable optical filter; SMF: single mode fiber; PD: photodetector.)

Fig. 2
Fig. 2

Simulation model for the proposed system.

Fig. 3
Fig. 3

Simulation results. The generated PSK RF signals

Fig. 4
Fig. 4

Simulation results. The generated FSK RF signals (a) Signal waveforms (b) Power spectrum.

Fig. 5
Fig. 5

The generated binary FSK RF signals with a duty cycle of 50% (a) Signal waveforms (b) Power spectrum.

Fig. 6
Fig. 6

Simulation results of the generated ASK RF signals

Fig. 7
Fig. 7

Experiment results of the generated RF signals (a) binary PSK (b) binary FSK (c) binary ASK with τ a = 24.69 ps (d) binary ASK with τ c = 16.39 ps

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

h M ( t ) = 1 2 [ δ ( t ) + δ ( t τ ) ]
H T ( f ) = exp { ( ln 2 ) [ 2 f B W ] 2 }
H ( f ) = H M ( f ) H T ( f )
x ( t ) = exp ( t 2 / t 0 2 )
z ( t ) = y ( t ) exp ( j t 2 / 2 Φ ν ) = y ( τ ) exp [ j ( t τ ) 2 / 2 Φ ν ] d τ = exp ( j t 2 / 2 Φ ν ) y ( τ ) exp ( j τ 2 / 2 Φ ν ) exp ( j t τ / Φ ν ) d τ exp ( j t 2 / 2 Φ ν ) y ( τ ) exp ( j t τ / Φ ν ) d τ = exp ( j t 2 / 2 Φ ν ) Y ( f ) | f = t / Φ ν
s ( t ) | z ( t ) | 2 = g ( t ) [ 1 + cos ( τ Φ ν t ) ] exp { ( ln 2 ) [ 2 t B W Φ ν ] 2 }
f = τ 2 π Φ ν = 1 2 π F S R f Φ ν
T = 2 π F S R f Φ ν
Δ T = B W Φ ν

Metrics