Abstract

We fabricated a three-dimensional five-layered plasmonic resonant cavity by low-cost, efficient and high-throughput femtosecond laser-induced forward transfer (fs-LIFT) technique. The fabricated cavity was characterized by optical measurements, showing two different cavity modes within the measured wavelength region which is in good agreement with numerical simulations. The mode volume corresponding to each resonance is found to be squeezed over 104 smaller than the cube of incident wavelength. This property may facilitate many applications in integrated optics, optical nonlinearities, and luminescence enhancement, etc.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Akahane, M. Mochizuki, T. Asano, Y. Tanaka, and S. Noda, “Design of a channel drop filter by using a donor-type cavity with high-quality factor in a two-dimensional photonic crystal slab,” Appl. Phys. Lett.82(9), 1341–1343 (2003).
    [CrossRef]
  2. T. Gu, S. Kocaman, X. Yang, J. F. McMillan, M. B. Yu, G. Q. Lo, D. L. Kwong, and C. W. Wong, “Deterministic integrated tuning of multi-cavity resonances and phase for slow-light in coupled photonic crystal cavities,” Appl. Phys. Lett.98(12), 121103 (2011).
    [CrossRef]
  3. M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature460(7259), 1110–1112 (2009).
    [CrossRef] [PubMed]
  4. M. H. Huang, S. Mao, H. Feick, H. Q. Yan, Y. Y. Wu, H. Kind, E. Weber, R. Russo, and P. D. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science292(5523), 1897–1899 (2001).
    [CrossRef] [PubMed]
  5. D. M. Bagnall, B. Ullrich, H. Sakai, and Y. Segawa, “Micro-cavity lasing of optically excited CdS thin films at room temperature,” J. Cryst. Growth214, 1015–1018 (2000).
    [CrossRef]
  6. S. M. Spillane, T. J. Kippenberg, and K. J. Vahala, “Ultralow-threshold Raman laser using a spherical dielectric microcavity,” Nature415(6872), 621–623 (2002).
    [CrossRef] [PubMed]
  7. H. Saito, K. Nishi, I. Ogura, S. Sugou, and Y. Sugimoto, “Room-temperature lasing operation of a quantum-dot vertical-cavity surface-emitting laser,” Appl. Phys. Lett.69(21), 3140–3142 (1996).
    [CrossRef]
  8. E. F. Schubert, A. M. Vredenberg, N. E. J. Hunt, Y. H. Wong, P. C. Becker, J. M. Poate, D. C. Jacobson, L. C. Feldman, and G. J. Zydzik, “Giant enhancement of luminescence intensity in Er-doped Si/SiO2 resonant cavities,” Appl. Phys. Lett.61(12), 1381–1383 (1992).
    [CrossRef]
  9. K. Tanaka, E. Plum, J. Y. Ou, T. Uchino, and N. I. Zheludev, “Multifold enhancement of quantum dot luminescence in plasmonic metamaterials,” Phys. Rev. Lett.105(22), 227403 (2010).
    [CrossRef] [PubMed]
  10. J. S. Xia, Y. Ikegami, Y. Shiraki, N. Usami, and Y. Nakata, “Strong resonant luminescence from Ge quantum dots in photonic crystal microcavity at room temperature,” Appl. Phys. Lett.89(20), 201102 (2006).
    [CrossRef]
  11. V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, and L. Maleki, “Nonlinear optics and crystalline whispering gallery mode cavities,” Phys. Rev. Lett.92(4), 043903 (2004).
    [CrossRef] [PubMed]
  12. M. Soljacić and J. D. Joannopoulos, “Enhancement of nonlinear effects using photonic crystals,” Nat. Mater.3(4), 211–219 (2004).
    [CrossRef] [PubMed]
  13. D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature421(6926), 925–928 (2003).
    [CrossRef] [PubMed]
  14. M. T. Hill, Y. S. Oei, B. Smalbrugge, Y. Zhu, T. De Vries, P. J. Van Veldhoven, F. W. M. Van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. De Waardt, E. J. Geluk, S. H. Kwon, Y. H. Lee, R. Notzel, and M. K. Smit, “Lasing in metallic-coated nanocavities,” Nat. Photonics1(10), 589–594 (2007).
    [CrossRef]
  15. M. P. Nezhad, A. Simic, O. Bondarenko, B. Slutsky, A. Mizrahi, L. A. Feng, V. Lomakin, and Y. Fainman, “Room-temperature subwavelength metallo-dielectric lasers,” Nat. Photonics4(6), 395–399 (2010).
    [CrossRef]
  16. K. Yu, A. Lakhani, and M. C. Wu, “Subwavelength metal-optic semiconductor nanopatch lasers,” Opt. Express18(9), 8790–8799 (2010).
    [CrossRef] [PubMed]
  17. S. Noda, K. Tomoda, N. Yamamoto, and A. Chutinan, “Full three-dimensional photonic bandgap crystals at near-infrared wavelengths,” Science289(5479), 604–606 (2000).
    [CrossRef] [PubMed]
  18. Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature425(6961), 944–947 (2003).
    [CrossRef] [PubMed]
  19. K. J. Vahala, “Optical microcavities,” Nature424(6950), 839–846 (2003).
    [CrossRef] [PubMed]
  20. R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature461(7264), 629–632 (2009).
    [CrossRef] [PubMed]
  21. S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater.2(4), 229–232 (2003).
    [CrossRef] [PubMed]
  22. R. Ameling and H. Giessen, “Microcavity plasmonics: strong coupling of photonic cavities and plasmons,” Laser Photonics Rev. 1–29 (2012) /DOI .
    [CrossRef]
  23. S. Larouche, Y.-J. Tsai, T. Tyler, N. M. Jokerst, and D. R. Smith, “Infrared metamaterial phase holograms,” Nat. Mater.11(5), 450–454 (2012).
    [CrossRef] [PubMed]
  24. W. T. Chen, C. J. Chen, P. C. Wu, S. Sun, L. Zhou, G.-Y. Guo, C. T. Hsiao, K.-Y. Yang, N. I. Zheludev, and D. P. Tsai, “Optical magnetic response in three-dimensional metamaterial of upright plasmonic meta-molecules,” Opt. Express19(13), 12837–12842 (2011).
    [CrossRef] [PubMed]
  25. P. C. Wu, W. T. Chen, K.-Y. Yang, C. T. Hsiao, G. Sun, A. Q. Liu, N. I. Zheludev, and D. P. Tsai, “Magnetic plasmon induced transparency in three-dimensional metamolecules,” Nanophoton.1, 131–138 (2012).
  26. S. Juodkazis, V. Mizeikis, and H. Misawa, “Three-dimensional microfabrication of materials by femtosecond lasers for photonics applications,” J. Appl. Phys.106(5), 051101 (2009).
    [CrossRef]
  27. M. Malinauskas, P. Danilevičius, and S. Juodkazis, “Three-dimensional micro-/nano-structuring via direct write polymerization with picosecond laser pulses,” Opt. Express19(6), 5602–5610 (2011).
    [CrossRef] [PubMed]
  28. A. Vailionis, E. G. Gamaly, V. Mizeikis, W. Yang, A. V. Rode, and S. Juodkazis, “Evidence of superdense aluminium synthesized by ultrafast microexplosion,” Nat Commun2, 445 (2011).
    [CrossRef] [PubMed]
  29. C. M. Chang, M. L. Tseng, B. H. Cheng, C. H. C, Y. Z. Ho, H. W. Huang, Y.-C. Lan, D.-W. Huang, A. Q. Liu, and D. P. Tsai, “Three-dimensional plasmonic micro projector for light manipulation,” Adv. Mater. (2012)/ DOI: .
    [CrossRef]
  30. M. L. Tseng, Y.-W. Huang, M.-K. Hsiao, H. W. Huang, H. M. Chen, Y. L. Chen, C. H. Chu, N.-N. Chu, Y. J. He, C. M. Chang, W. C. Lin, D.-W. Huang, H.-P. Chiang, R.-S. Liu, G. Sun, and D. P. Tsai, “Fast fabrication of a Ag nanostructure substrate using the femtosecond laser for broad-band and tunable plasmonic enhancement,” ACS Nano6(6), 5190–5197 (2012).
    [CrossRef] [PubMed]
  31. C. H. Chu, C. D. Shiue, H. W. Cheng, M. L. Tseng, H.-P. Chiang, M. Mansuripur, and D. P. Tsai, “Laser-induced phase transitions of Ge2Sb2Te5 thin films used in optical and electronic data storage and in thermal lithography,” Opt. Express18(17), 18383–18393 (2010).
    [CrossRef] [PubMed]
  32. A. I. Kuznetsov, R. Kiyan, and B. N. Chichkov, “Laser fabrication of 2D and 3D metal nanoparticle structures and arrays,” Opt. Express18(20), 21198–21203 (2010).
    [CrossRef] [PubMed]
  33. K. S. Kaur, A. Z. Subramanian, Y. J. Ying, D. P. Banks, M. Feinaeugle, P. Horak, V. Apostolopoulos, C. L. Sones, S. Mailis, and R. W. Eason, “Waveguide mode filters fabricated using laser-induced forward transfer,” Opt. Express19(10), 9814–9819 (2011).
    [CrossRef] [PubMed]
  34. A. I. Kuznetsov, A. B. Evlyukhin, M. R. Gonçalves, C. Reinhardt, A. Koroleva, M. L. Arnedillo, R. Kiyan, O. Marti, and B. N. Chichkov, “Laser fabrication of large-scale nanoparticle arrays for sensing applications,” ACS Nano5(6), 4843–4849 (2011).
    [CrossRef] [PubMed]
  35. M. L. Tseng, P. C. Wu, S. Sun, C. M. Chang, W. T. Chen, C. H. Chu, P.-L. Chen, L. Zhou, D.-W. Huang, T.-J. Yen, and D. P. Tsai, “Fabrication of multilayer metamaterials by femtosecond laser-induced forward-transfer technique,” Laser Photon. Rev.6(5), 702–707 (2012).
    [CrossRef]
  36. M. L. Tseng, C. M. Chang, B. H. Chen, Y.-W. Huang, C. H. Chu, K. S. Chung, Y. J. Liu, H. G. Tsai, N.-N. Chu, D.-W. Huang, H.-P. Chiang, and D. P. Tsai, “Fabrication of plasmonic devices using femtosecond laser-induced forward transfer technique,” Nanotechnology23(44), 444013 (2012).
    [CrossRef] [PubMed]
  37. M. L. Tseng, B. H. Chen, C. H. Chu, C. M. Chang, W. C. Lin, N.-N. Chu, M. Mansuripur, A. Q. Liu, and D. P. Tsai, “Fabrication of phase-change chalcogenide Ge2Sb2Te5 patterns by laser-induced forward transfer,” Opt. Express19(18), 16975–16984 (2011).
    [CrossRef] [PubMed]
  38. M. Feinaeugle, A. P. Alloncle, P. Delaporte, C. L. Sones, and R. W. Eason, “Time-resolved shadowgraph imaging of femtosecond laser-induced forward transfer of solid materials,” Appl. Surf. Sci.258(22), 8475–8483 (2012).
    [CrossRef]
  39. C. B. Arnold, P. Serra, and A. Pique, “Laser direct-write techniques for printing of complex materials,” MRS Bull.32(01), 23–32 (2007).
    [CrossRef]
  40. M. Colina, P. Serra, J. M. Fernández-Pradas, L. Sevilla, and J. L. Morenza, “DNA deposition through laser induced forward transfer,” Biosens. Bioelectron.20(8), 1638–1642 (2005).
    [CrossRef] [PubMed]
  41. J. Xu, J. Liu, D. H. Cui, M. Gerhold, A. Y. Wang, M. Nagel, and T. K. Lippert, “Laser-assisted forward transfer of multi-spectral nanocrystal quantum dot emitters,” Nanotechnology18(2), 025403 (2007).
    [CrossRef]
  42. S. Mailis, I. Zergioti, G. Koundourakis, A. Ikiades, A. Patentalaki, P. Papakonstantinou, N. A. Vainos, and C. Fotakis, “Etching and printing of diffractive optical microstructures by a femtosecond excimer laser,” Appl. Opt.38(11), 2301–2308 (1999).
    [CrossRef] [PubMed]
  43. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6(12), 4370–4379 (1972).
    [CrossRef]
  44. X. Yang, J. Yao, J. Rho, X. Yin, and X. Zhang, “Experimental realization of three-dimensional indefinite cavities at the nanoscale with anomalous scaling laws,” Nat. Photonics6(7), 450–454 (2012).
    [CrossRef]
  45. J. Yao, X. D. Yang, X. B. Yin, G. Bartal, and X. Zhang, “Three-dimensional nanometer-scale optical cavities of indefinite medium,” Proc. Natl. Acad. Sci. U.S.A.108(28), 11327–11331 (2011).
    [CrossRef] [PubMed]
  46. R. Loudon, “The propagation of electromagnetic energy through an absorbing dielectric,” J. Phys. A.3(3), 233–245 (1970).
    [CrossRef]
  47. R. Ruppin, “Electromagnetic energy density in a dispersive and absorptive material,” Phys. Lett. A299(2-3), 309–312 (2002).
    [CrossRef]
  48. N. R. Han, Z. C. Chen, C. S. Lim, B. Ng, and M. H. Hong, “Broadband multi-layer terahertz metamaterials fabrication and characterization on flexible substrates,” Opt. Express19(8), 6990–6998 (2011).
    [CrossRef] [PubMed]
  49. D. P. Banks, C. Grivas, I. Zergioti, and R. W. Eason, “Ballistic laser-assisted solid transfer (BLAST) from a thin film precursor,” Opt. Express16(5), 3249–3254 (2008).
    [CrossRef] [PubMed]

2012 (9)

R. Ameling and H. Giessen, “Microcavity plasmonics: strong coupling of photonic cavities and plasmons,” Laser Photonics Rev. 1–29 (2012) /DOI .
[CrossRef]

S. Larouche, Y.-J. Tsai, T. Tyler, N. M. Jokerst, and D. R. Smith, “Infrared metamaterial phase holograms,” Nat. Mater.11(5), 450–454 (2012).
[CrossRef] [PubMed]

M. L. Tseng, P. C. Wu, S. Sun, C. M. Chang, W. T. Chen, C. H. Chu, P.-L. Chen, L. Zhou, D.-W. Huang, T.-J. Yen, and D. P. Tsai, “Fabrication of multilayer metamaterials by femtosecond laser-induced forward-transfer technique,” Laser Photon. Rev.6(5), 702–707 (2012).
[CrossRef]

M. L. Tseng, C. M. Chang, B. H. Chen, Y.-W. Huang, C. H. Chu, K. S. Chung, Y. J. Liu, H. G. Tsai, N.-N. Chu, D.-W. Huang, H.-P. Chiang, and D. P. Tsai, “Fabrication of plasmonic devices using femtosecond laser-induced forward transfer technique,” Nanotechnology23(44), 444013 (2012).
[CrossRef] [PubMed]

M. Feinaeugle, A. P. Alloncle, P. Delaporte, C. L. Sones, and R. W. Eason, “Time-resolved shadowgraph imaging of femtosecond laser-induced forward transfer of solid materials,” Appl. Surf. Sci.258(22), 8475–8483 (2012).
[CrossRef]

C. M. Chang, M. L. Tseng, B. H. Cheng, C. H. C, Y. Z. Ho, H. W. Huang, Y.-C. Lan, D.-W. Huang, A. Q. Liu, and D. P. Tsai, “Three-dimensional plasmonic micro projector for light manipulation,” Adv. Mater. (2012)/ DOI: .
[CrossRef]

M. L. Tseng, Y.-W. Huang, M.-K. Hsiao, H. W. Huang, H. M. Chen, Y. L. Chen, C. H. Chu, N.-N. Chu, Y. J. He, C. M. Chang, W. C. Lin, D.-W. Huang, H.-P. Chiang, R.-S. Liu, G. Sun, and D. P. Tsai, “Fast fabrication of a Ag nanostructure substrate using the femtosecond laser for broad-band and tunable plasmonic enhancement,” ACS Nano6(6), 5190–5197 (2012).
[CrossRef] [PubMed]

X. Yang, J. Yao, J. Rho, X. Yin, and X. Zhang, “Experimental realization of three-dimensional indefinite cavities at the nanoscale with anomalous scaling laws,” Nat. Photonics6(7), 450–454 (2012).
[CrossRef]

P. C. Wu, W. T. Chen, K.-Y. Yang, C. T. Hsiao, G. Sun, A. Q. Liu, N. I. Zheludev, and D. P. Tsai, “Magnetic plasmon induced transparency in three-dimensional metamolecules,” Nanophoton.1, 131–138 (2012).

2011 (9)

J. Yao, X. D. Yang, X. B. Yin, G. Bartal, and X. Zhang, “Three-dimensional nanometer-scale optical cavities of indefinite medium,” Proc. Natl. Acad. Sci. U.S.A.108(28), 11327–11331 (2011).
[CrossRef] [PubMed]

A. I. Kuznetsov, A. B. Evlyukhin, M. R. Gonçalves, C. Reinhardt, A. Koroleva, M. L. Arnedillo, R. Kiyan, O. Marti, and B. N. Chichkov, “Laser fabrication of large-scale nanoparticle arrays for sensing applications,” ACS Nano5(6), 4843–4849 (2011).
[CrossRef] [PubMed]

A. Vailionis, E. G. Gamaly, V. Mizeikis, W. Yang, A. V. Rode, and S. Juodkazis, “Evidence of superdense aluminium synthesized by ultrafast microexplosion,” Nat Commun2, 445 (2011).
[CrossRef] [PubMed]

T. Gu, S. Kocaman, X. Yang, J. F. McMillan, M. B. Yu, G. Q. Lo, D. L. Kwong, and C. W. Wong, “Deterministic integrated tuning of multi-cavity resonances and phase for slow-light in coupled photonic crystal cavities,” Appl. Phys. Lett.98(12), 121103 (2011).
[CrossRef]

M. Malinauskas, P. Danilevičius, and S. Juodkazis, “Three-dimensional micro-/nano-structuring via direct write polymerization with picosecond laser pulses,” Opt. Express19(6), 5602–5610 (2011).
[CrossRef] [PubMed]

N. R. Han, Z. C. Chen, C. S. Lim, B. Ng, and M. H. Hong, “Broadband multi-layer terahertz metamaterials fabrication and characterization on flexible substrates,” Opt. Express19(8), 6990–6998 (2011).
[CrossRef] [PubMed]

K. S. Kaur, A. Z. Subramanian, Y. J. Ying, D. P. Banks, M. Feinaeugle, P. Horak, V. Apostolopoulos, C. L. Sones, S. Mailis, and R. W. Eason, “Waveguide mode filters fabricated using laser-induced forward transfer,” Opt. Express19(10), 9814–9819 (2011).
[CrossRef] [PubMed]

W. T. Chen, C. J. Chen, P. C. Wu, S. Sun, L. Zhou, G.-Y. Guo, C. T. Hsiao, K.-Y. Yang, N. I. Zheludev, and D. P. Tsai, “Optical magnetic response in three-dimensional metamaterial of upright plasmonic meta-molecules,” Opt. Express19(13), 12837–12842 (2011).
[CrossRef] [PubMed]

M. L. Tseng, B. H. Chen, C. H. Chu, C. M. Chang, W. C. Lin, N.-N. Chu, M. Mansuripur, A. Q. Liu, and D. P. Tsai, “Fabrication of phase-change chalcogenide Ge2Sb2Te5 patterns by laser-induced forward transfer,” Opt. Express19(18), 16975–16984 (2011).
[CrossRef] [PubMed]

2010 (5)

2009 (3)

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature460(7259), 1110–1112 (2009).
[CrossRef] [PubMed]

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature461(7264), 629–632 (2009).
[CrossRef] [PubMed]

S. Juodkazis, V. Mizeikis, and H. Misawa, “Three-dimensional microfabrication of materials by femtosecond lasers for photonics applications,” J. Appl. Phys.106(5), 051101 (2009).
[CrossRef]

2008 (1)

2007 (3)

J. Xu, J. Liu, D. H. Cui, M. Gerhold, A. Y. Wang, M. Nagel, and T. K. Lippert, “Laser-assisted forward transfer of multi-spectral nanocrystal quantum dot emitters,” Nanotechnology18(2), 025403 (2007).
[CrossRef]

C. B. Arnold, P. Serra, and A. Pique, “Laser direct-write techniques for printing of complex materials,” MRS Bull.32(01), 23–32 (2007).
[CrossRef]

M. T. Hill, Y. S. Oei, B. Smalbrugge, Y. Zhu, T. De Vries, P. J. Van Veldhoven, F. W. M. Van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. De Waardt, E. J. Geluk, S. H. Kwon, Y. H. Lee, R. Notzel, and M. K. Smit, “Lasing in metallic-coated nanocavities,” Nat. Photonics1(10), 589–594 (2007).
[CrossRef]

2006 (1)

J. S. Xia, Y. Ikegami, Y. Shiraki, N. Usami, and Y. Nakata, “Strong resonant luminescence from Ge quantum dots in photonic crystal microcavity at room temperature,” Appl. Phys. Lett.89(20), 201102 (2006).
[CrossRef]

2005 (1)

M. Colina, P. Serra, J. M. Fernández-Pradas, L. Sevilla, and J. L. Morenza, “DNA deposition through laser induced forward transfer,” Biosens. Bioelectron.20(8), 1638–1642 (2005).
[CrossRef] [PubMed]

2004 (2)

V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, and L. Maleki, “Nonlinear optics and crystalline whispering gallery mode cavities,” Phys. Rev. Lett.92(4), 043903 (2004).
[CrossRef] [PubMed]

M. Soljacić and J. D. Joannopoulos, “Enhancement of nonlinear effects using photonic crystals,” Nat. Mater.3(4), 211–219 (2004).
[CrossRef] [PubMed]

2003 (5)

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature421(6926), 925–928 (2003).
[CrossRef] [PubMed]

Y. Akahane, M. Mochizuki, T. Asano, Y. Tanaka, and S. Noda, “Design of a channel drop filter by using a donor-type cavity with high-quality factor in a two-dimensional photonic crystal slab,” Appl. Phys. Lett.82(9), 1341–1343 (2003).
[CrossRef]

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature425(6961), 944–947 (2003).
[CrossRef] [PubMed]

K. J. Vahala, “Optical microcavities,” Nature424(6950), 839–846 (2003).
[CrossRef] [PubMed]

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater.2(4), 229–232 (2003).
[CrossRef] [PubMed]

2002 (2)

S. M. Spillane, T. J. Kippenberg, and K. J. Vahala, “Ultralow-threshold Raman laser using a spherical dielectric microcavity,” Nature415(6872), 621–623 (2002).
[CrossRef] [PubMed]

R. Ruppin, “Electromagnetic energy density in a dispersive and absorptive material,” Phys. Lett. A299(2-3), 309–312 (2002).
[CrossRef]

2001 (1)

M. H. Huang, S. Mao, H. Feick, H. Q. Yan, Y. Y. Wu, H. Kind, E. Weber, R. Russo, and P. D. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science292(5523), 1897–1899 (2001).
[CrossRef] [PubMed]

2000 (2)

D. M. Bagnall, B. Ullrich, H. Sakai, and Y. Segawa, “Micro-cavity lasing of optically excited CdS thin films at room temperature,” J. Cryst. Growth214, 1015–1018 (2000).
[CrossRef]

S. Noda, K. Tomoda, N. Yamamoto, and A. Chutinan, “Full three-dimensional photonic bandgap crystals at near-infrared wavelengths,” Science289(5479), 604–606 (2000).
[CrossRef] [PubMed]

1999 (1)

1996 (1)

H. Saito, K. Nishi, I. Ogura, S. Sugou, and Y. Sugimoto, “Room-temperature lasing operation of a quantum-dot vertical-cavity surface-emitting laser,” Appl. Phys. Lett.69(21), 3140–3142 (1996).
[CrossRef]

1992 (1)

E. F. Schubert, A. M. Vredenberg, N. E. J. Hunt, Y. H. Wong, P. C. Becker, J. M. Poate, D. C. Jacobson, L. C. Feldman, and G. J. Zydzik, “Giant enhancement of luminescence intensity in Er-doped Si/SiO2 resonant cavities,” Appl. Phys. Lett.61(12), 1381–1383 (1992).
[CrossRef]

1972 (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6(12), 4370–4379 (1972).
[CrossRef]

1970 (1)

R. Loudon, “The propagation of electromagnetic energy through an absorbing dielectric,” J. Phys. A.3(3), 233–245 (1970).
[CrossRef]

Akahane, Y.

Y. Akahane, M. Mochizuki, T. Asano, Y. Tanaka, and S. Noda, “Design of a channel drop filter by using a donor-type cavity with high-quality factor in a two-dimensional photonic crystal slab,” Appl. Phys. Lett.82(9), 1341–1343 (2003).
[CrossRef]

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature425(6961), 944–947 (2003).
[CrossRef] [PubMed]

Alloncle, A. P.

M. Feinaeugle, A. P. Alloncle, P. Delaporte, C. L. Sones, and R. W. Eason, “Time-resolved shadowgraph imaging of femtosecond laser-induced forward transfer of solid materials,” Appl. Surf. Sci.258(22), 8475–8483 (2012).
[CrossRef]

Ameling, R.

R. Ameling and H. Giessen, “Microcavity plasmonics: strong coupling of photonic cavities and plasmons,” Laser Photonics Rev. 1–29 (2012) /DOI .
[CrossRef]

Apostolopoulos, V.

Armani, D. K.

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature421(6926), 925–928 (2003).
[CrossRef] [PubMed]

Arnedillo, M. L.

A. I. Kuznetsov, A. B. Evlyukhin, M. R. Gonçalves, C. Reinhardt, A. Koroleva, M. L. Arnedillo, R. Kiyan, O. Marti, and B. N. Chichkov, “Laser fabrication of large-scale nanoparticle arrays for sensing applications,” ACS Nano5(6), 4843–4849 (2011).
[CrossRef] [PubMed]

Arnold, C. B.

C. B. Arnold, P. Serra, and A. Pique, “Laser direct-write techniques for printing of complex materials,” MRS Bull.32(01), 23–32 (2007).
[CrossRef]

Asano, T.

Y. Akahane, M. Mochizuki, T. Asano, Y. Tanaka, and S. Noda, “Design of a channel drop filter by using a donor-type cavity with high-quality factor in a two-dimensional photonic crystal slab,” Appl. Phys. Lett.82(9), 1341–1343 (2003).
[CrossRef]

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature425(6961), 944–947 (2003).
[CrossRef] [PubMed]

Atwater, H. A.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater.2(4), 229–232 (2003).
[CrossRef] [PubMed]

Bagnall, D. M.

D. M. Bagnall, B. Ullrich, H. Sakai, and Y. Segawa, “Micro-cavity lasing of optically excited CdS thin films at room temperature,” J. Cryst. Growth214, 1015–1018 (2000).
[CrossRef]

Bakker, R.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature460(7259), 1110–1112 (2009).
[CrossRef] [PubMed]

Banks, D. P.

Bartal, G.

J. Yao, X. D. Yang, X. B. Yin, G. Bartal, and X. Zhang, “Three-dimensional nanometer-scale optical cavities of indefinite medium,” Proc. Natl. Acad. Sci. U.S.A.108(28), 11327–11331 (2011).
[CrossRef] [PubMed]

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature461(7264), 629–632 (2009).
[CrossRef] [PubMed]

Becker, P. C.

E. F. Schubert, A. M. Vredenberg, N. E. J. Hunt, Y. H. Wong, P. C. Becker, J. M. Poate, D. C. Jacobson, L. C. Feldman, and G. J. Zydzik, “Giant enhancement of luminescence intensity in Er-doped Si/SiO2 resonant cavities,” Appl. Phys. Lett.61(12), 1381–1383 (1992).
[CrossRef]

Belgrave, A. M.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature460(7259), 1110–1112 (2009).
[CrossRef] [PubMed]

Bondarenko, O.

M. P. Nezhad, A. Simic, O. Bondarenko, B. Slutsky, A. Mizrahi, L. A. Feng, V. Lomakin, and Y. Fainman, “Room-temperature subwavelength metallo-dielectric lasers,” Nat. Photonics4(6), 395–399 (2010).
[CrossRef]

C, C. H.

C. M. Chang, M. L. Tseng, B. H. Cheng, C. H. C, Y. Z. Ho, H. W. Huang, Y.-C. Lan, D.-W. Huang, A. Q. Liu, and D. P. Tsai, “Three-dimensional plasmonic micro projector for light manipulation,” Adv. Mater. (2012)/ DOI: .
[CrossRef]

Chang, C. M.

C. M. Chang, M. L. Tseng, B. H. Cheng, C. H. C, Y. Z. Ho, H. W. Huang, Y.-C. Lan, D.-W. Huang, A. Q. Liu, and D. P. Tsai, “Three-dimensional plasmonic micro projector for light manipulation,” Adv. Mater. (2012)/ DOI: .
[CrossRef]

M. L. Tseng, P. C. Wu, S. Sun, C. M. Chang, W. T. Chen, C. H. Chu, P.-L. Chen, L. Zhou, D.-W. Huang, T.-J. Yen, and D. P. Tsai, “Fabrication of multilayer metamaterials by femtosecond laser-induced forward-transfer technique,” Laser Photon. Rev.6(5), 702–707 (2012).
[CrossRef]

M. L. Tseng, C. M. Chang, B. H. Chen, Y.-W. Huang, C. H. Chu, K. S. Chung, Y. J. Liu, H. G. Tsai, N.-N. Chu, D.-W. Huang, H.-P. Chiang, and D. P. Tsai, “Fabrication of plasmonic devices using femtosecond laser-induced forward transfer technique,” Nanotechnology23(44), 444013 (2012).
[CrossRef] [PubMed]

M. L. Tseng, Y.-W. Huang, M.-K. Hsiao, H. W. Huang, H. M. Chen, Y. L. Chen, C. H. Chu, N.-N. Chu, Y. J. He, C. M. Chang, W. C. Lin, D.-W. Huang, H.-P. Chiang, R.-S. Liu, G. Sun, and D. P. Tsai, “Fast fabrication of a Ag nanostructure substrate using the femtosecond laser for broad-band and tunable plasmonic enhancement,” ACS Nano6(6), 5190–5197 (2012).
[CrossRef] [PubMed]

M. L. Tseng, B. H. Chen, C. H. Chu, C. M. Chang, W. C. Lin, N.-N. Chu, M. Mansuripur, A. Q. Liu, and D. P. Tsai, “Fabrication of phase-change chalcogenide Ge2Sb2Te5 patterns by laser-induced forward transfer,” Opt. Express19(18), 16975–16984 (2011).
[CrossRef] [PubMed]

Chen, B. H.

M. L. Tseng, C. M. Chang, B. H. Chen, Y.-W. Huang, C. H. Chu, K. S. Chung, Y. J. Liu, H. G. Tsai, N.-N. Chu, D.-W. Huang, H.-P. Chiang, and D. P. Tsai, “Fabrication of plasmonic devices using femtosecond laser-induced forward transfer technique,” Nanotechnology23(44), 444013 (2012).
[CrossRef] [PubMed]

M. L. Tseng, B. H. Chen, C. H. Chu, C. M. Chang, W. C. Lin, N.-N. Chu, M. Mansuripur, A. Q. Liu, and D. P. Tsai, “Fabrication of phase-change chalcogenide Ge2Sb2Te5 patterns by laser-induced forward transfer,” Opt. Express19(18), 16975–16984 (2011).
[CrossRef] [PubMed]

Chen, C. J.

Chen, H. M.

M. L. Tseng, Y.-W. Huang, M.-K. Hsiao, H. W. Huang, H. M. Chen, Y. L. Chen, C. H. Chu, N.-N. Chu, Y. J. He, C. M. Chang, W. C. Lin, D.-W. Huang, H.-P. Chiang, R.-S. Liu, G. Sun, and D. P. Tsai, “Fast fabrication of a Ag nanostructure substrate using the femtosecond laser for broad-band and tunable plasmonic enhancement,” ACS Nano6(6), 5190–5197 (2012).
[CrossRef] [PubMed]

Chen, P.-L.

M. L. Tseng, P. C. Wu, S. Sun, C. M. Chang, W. T. Chen, C. H. Chu, P.-L. Chen, L. Zhou, D.-W. Huang, T.-J. Yen, and D. P. Tsai, “Fabrication of multilayer metamaterials by femtosecond laser-induced forward-transfer technique,” Laser Photon. Rev.6(5), 702–707 (2012).
[CrossRef]

Chen, W. T.

M. L. Tseng, P. C. Wu, S. Sun, C. M. Chang, W. T. Chen, C. H. Chu, P.-L. Chen, L. Zhou, D.-W. Huang, T.-J. Yen, and D. P. Tsai, “Fabrication of multilayer metamaterials by femtosecond laser-induced forward-transfer technique,” Laser Photon. Rev.6(5), 702–707 (2012).
[CrossRef]

P. C. Wu, W. T. Chen, K.-Y. Yang, C. T. Hsiao, G. Sun, A. Q. Liu, N. I. Zheludev, and D. P. Tsai, “Magnetic plasmon induced transparency in three-dimensional metamolecules,” Nanophoton.1, 131–138 (2012).

W. T. Chen, C. J. Chen, P. C. Wu, S. Sun, L. Zhou, G.-Y. Guo, C. T. Hsiao, K.-Y. Yang, N. I. Zheludev, and D. P. Tsai, “Optical magnetic response in three-dimensional metamaterial of upright plasmonic meta-molecules,” Opt. Express19(13), 12837–12842 (2011).
[CrossRef] [PubMed]

Chen, Y. L.

M. L. Tseng, Y.-W. Huang, M.-K. Hsiao, H. W. Huang, H. M. Chen, Y. L. Chen, C. H. Chu, N.-N. Chu, Y. J. He, C. M. Chang, W. C. Lin, D.-W. Huang, H.-P. Chiang, R.-S. Liu, G. Sun, and D. P. Tsai, “Fast fabrication of a Ag nanostructure substrate using the femtosecond laser for broad-band and tunable plasmonic enhancement,” ACS Nano6(6), 5190–5197 (2012).
[CrossRef] [PubMed]

Chen, Z. C.

Cheng, B. H.

C. M. Chang, M. L. Tseng, B. H. Cheng, C. H. C, Y. Z. Ho, H. W. Huang, Y.-C. Lan, D.-W. Huang, A. Q. Liu, and D. P. Tsai, “Three-dimensional plasmonic micro projector for light manipulation,” Adv. Mater. (2012)/ DOI: .
[CrossRef]

Cheng, H. W.

Chiang, H.-P.

M. L. Tseng, Y.-W. Huang, M.-K. Hsiao, H. W. Huang, H. M. Chen, Y. L. Chen, C. H. Chu, N.-N. Chu, Y. J. He, C. M. Chang, W. C. Lin, D.-W. Huang, H.-P. Chiang, R.-S. Liu, G. Sun, and D. P. Tsai, “Fast fabrication of a Ag nanostructure substrate using the femtosecond laser for broad-band and tunable plasmonic enhancement,” ACS Nano6(6), 5190–5197 (2012).
[CrossRef] [PubMed]

M. L. Tseng, C. M. Chang, B. H. Chen, Y.-W. Huang, C. H. Chu, K. S. Chung, Y. J. Liu, H. G. Tsai, N.-N. Chu, D.-W. Huang, H.-P. Chiang, and D. P. Tsai, “Fabrication of plasmonic devices using femtosecond laser-induced forward transfer technique,” Nanotechnology23(44), 444013 (2012).
[CrossRef] [PubMed]

C. H. Chu, C. D. Shiue, H. W. Cheng, M. L. Tseng, H.-P. Chiang, M. Mansuripur, and D. P. Tsai, “Laser-induced phase transitions of Ge2Sb2Te5 thin films used in optical and electronic data storage and in thermal lithography,” Opt. Express18(17), 18383–18393 (2010).
[CrossRef] [PubMed]

Chichkov, B. N.

A. I. Kuznetsov, A. B. Evlyukhin, M. R. Gonçalves, C. Reinhardt, A. Koroleva, M. L. Arnedillo, R. Kiyan, O. Marti, and B. N. Chichkov, “Laser fabrication of large-scale nanoparticle arrays for sensing applications,” ACS Nano5(6), 4843–4849 (2011).
[CrossRef] [PubMed]

A. I. Kuznetsov, R. Kiyan, and B. N. Chichkov, “Laser fabrication of 2D and 3D metal nanoparticle structures and arrays,” Opt. Express18(20), 21198–21203 (2010).
[CrossRef] [PubMed]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6(12), 4370–4379 (1972).
[CrossRef]

Chu, C. H.

M. L. Tseng, Y.-W. Huang, M.-K. Hsiao, H. W. Huang, H. M. Chen, Y. L. Chen, C. H. Chu, N.-N. Chu, Y. J. He, C. M. Chang, W. C. Lin, D.-W. Huang, H.-P. Chiang, R.-S. Liu, G. Sun, and D. P. Tsai, “Fast fabrication of a Ag nanostructure substrate using the femtosecond laser for broad-band and tunable plasmonic enhancement,” ACS Nano6(6), 5190–5197 (2012).
[CrossRef] [PubMed]

M. L. Tseng, C. M. Chang, B. H. Chen, Y.-W. Huang, C. H. Chu, K. S. Chung, Y. J. Liu, H. G. Tsai, N.-N. Chu, D.-W. Huang, H.-P. Chiang, and D. P. Tsai, “Fabrication of plasmonic devices using femtosecond laser-induced forward transfer technique,” Nanotechnology23(44), 444013 (2012).
[CrossRef] [PubMed]

M. L. Tseng, P. C. Wu, S. Sun, C. M. Chang, W. T. Chen, C. H. Chu, P.-L. Chen, L. Zhou, D.-W. Huang, T.-J. Yen, and D. P. Tsai, “Fabrication of multilayer metamaterials by femtosecond laser-induced forward-transfer technique,” Laser Photon. Rev.6(5), 702–707 (2012).
[CrossRef]

M. L. Tseng, B. H. Chen, C. H. Chu, C. M. Chang, W. C. Lin, N.-N. Chu, M. Mansuripur, A. Q. Liu, and D. P. Tsai, “Fabrication of phase-change chalcogenide Ge2Sb2Te5 patterns by laser-induced forward transfer,” Opt. Express19(18), 16975–16984 (2011).
[CrossRef] [PubMed]

C. H. Chu, C. D. Shiue, H. W. Cheng, M. L. Tseng, H.-P. Chiang, M. Mansuripur, and D. P. Tsai, “Laser-induced phase transitions of Ge2Sb2Te5 thin films used in optical and electronic data storage and in thermal lithography,” Opt. Express18(17), 18383–18393 (2010).
[CrossRef] [PubMed]

Chu, N.-N.

M. L. Tseng, C. M. Chang, B. H. Chen, Y.-W. Huang, C. H. Chu, K. S. Chung, Y. J. Liu, H. G. Tsai, N.-N. Chu, D.-W. Huang, H.-P. Chiang, and D. P. Tsai, “Fabrication of plasmonic devices using femtosecond laser-induced forward transfer technique,” Nanotechnology23(44), 444013 (2012).
[CrossRef] [PubMed]

M. L. Tseng, Y.-W. Huang, M.-K. Hsiao, H. W. Huang, H. M. Chen, Y. L. Chen, C. H. Chu, N.-N. Chu, Y. J. He, C. M. Chang, W. C. Lin, D.-W. Huang, H.-P. Chiang, R.-S. Liu, G. Sun, and D. P. Tsai, “Fast fabrication of a Ag nanostructure substrate using the femtosecond laser for broad-band and tunable plasmonic enhancement,” ACS Nano6(6), 5190–5197 (2012).
[CrossRef] [PubMed]

M. L. Tseng, B. H. Chen, C. H. Chu, C. M. Chang, W. C. Lin, N.-N. Chu, M. Mansuripur, A. Q. Liu, and D. P. Tsai, “Fabrication of phase-change chalcogenide Ge2Sb2Te5 patterns by laser-induced forward transfer,” Opt. Express19(18), 16975–16984 (2011).
[CrossRef] [PubMed]

Chung, K. S.

M. L. Tseng, C. M. Chang, B. H. Chen, Y.-W. Huang, C. H. Chu, K. S. Chung, Y. J. Liu, H. G. Tsai, N.-N. Chu, D.-W. Huang, H.-P. Chiang, and D. P. Tsai, “Fabrication of plasmonic devices using femtosecond laser-induced forward transfer technique,” Nanotechnology23(44), 444013 (2012).
[CrossRef] [PubMed]

Chutinan, A.

S. Noda, K. Tomoda, N. Yamamoto, and A. Chutinan, “Full three-dimensional photonic bandgap crystals at near-infrared wavelengths,” Science289(5479), 604–606 (2000).
[CrossRef] [PubMed]

Colina, M.

M. Colina, P. Serra, J. M. Fernández-Pradas, L. Sevilla, and J. L. Morenza, “DNA deposition through laser induced forward transfer,” Biosens. Bioelectron.20(8), 1638–1642 (2005).
[CrossRef] [PubMed]

Cui, D. H.

J. Xu, J. Liu, D. H. Cui, M. Gerhold, A. Y. Wang, M. Nagel, and T. K. Lippert, “Laser-assisted forward transfer of multi-spectral nanocrystal quantum dot emitters,” Nanotechnology18(2), 025403 (2007).
[CrossRef]

Dai, L.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature461(7264), 629–632 (2009).
[CrossRef] [PubMed]

Danilevicius, P.

De Vries, T.

M. T. Hill, Y. S. Oei, B. Smalbrugge, Y. Zhu, T. De Vries, P. J. Van Veldhoven, F. W. M. Van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. De Waardt, E. J. Geluk, S. H. Kwon, Y. H. Lee, R. Notzel, and M. K. Smit, “Lasing in metallic-coated nanocavities,” Nat. Photonics1(10), 589–594 (2007).
[CrossRef]

De Waardt, H.

M. T. Hill, Y. S. Oei, B. Smalbrugge, Y. Zhu, T. De Vries, P. J. Van Veldhoven, F. W. M. Van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. De Waardt, E. J. Geluk, S. H. Kwon, Y. H. Lee, R. Notzel, and M. K. Smit, “Lasing in metallic-coated nanocavities,” Nat. Photonics1(10), 589–594 (2007).
[CrossRef]

Delaporte, P.

M. Feinaeugle, A. P. Alloncle, P. Delaporte, C. L. Sones, and R. W. Eason, “Time-resolved shadowgraph imaging of femtosecond laser-induced forward transfer of solid materials,” Appl. Surf. Sci.258(22), 8475–8483 (2012).
[CrossRef]

Eason, R. W.

Eijkemans, T. J.

M. T. Hill, Y. S. Oei, B. Smalbrugge, Y. Zhu, T. De Vries, P. J. Van Veldhoven, F. W. M. Van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. De Waardt, E. J. Geluk, S. H. Kwon, Y. H. Lee, R. Notzel, and M. K. Smit, “Lasing in metallic-coated nanocavities,” Nat. Photonics1(10), 589–594 (2007).
[CrossRef]

Evlyukhin, A. B.

A. I. Kuznetsov, A. B. Evlyukhin, M. R. Gonçalves, C. Reinhardt, A. Koroleva, M. L. Arnedillo, R. Kiyan, O. Marti, and B. N. Chichkov, “Laser fabrication of large-scale nanoparticle arrays for sensing applications,” ACS Nano5(6), 4843–4849 (2011).
[CrossRef] [PubMed]

Fainman, Y.

M. P. Nezhad, A. Simic, O. Bondarenko, B. Slutsky, A. Mizrahi, L. A. Feng, V. Lomakin, and Y. Fainman, “Room-temperature subwavelength metallo-dielectric lasers,” Nat. Photonics4(6), 395–399 (2010).
[CrossRef]

Feick, H.

M. H. Huang, S. Mao, H. Feick, H. Q. Yan, Y. Y. Wu, H. Kind, E. Weber, R. Russo, and P. D. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science292(5523), 1897–1899 (2001).
[CrossRef] [PubMed]

Feinaeugle, M.

M. Feinaeugle, A. P. Alloncle, P. Delaporte, C. L. Sones, and R. W. Eason, “Time-resolved shadowgraph imaging of femtosecond laser-induced forward transfer of solid materials,” Appl. Surf. Sci.258(22), 8475–8483 (2012).
[CrossRef]

K. S. Kaur, A. Z. Subramanian, Y. J. Ying, D. P. Banks, M. Feinaeugle, P. Horak, V. Apostolopoulos, C. L. Sones, S. Mailis, and R. W. Eason, “Waveguide mode filters fabricated using laser-induced forward transfer,” Opt. Express19(10), 9814–9819 (2011).
[CrossRef] [PubMed]

Feldman, L. C.

E. F. Schubert, A. M. Vredenberg, N. E. J. Hunt, Y. H. Wong, P. C. Becker, J. M. Poate, D. C. Jacobson, L. C. Feldman, and G. J. Zydzik, “Giant enhancement of luminescence intensity in Er-doped Si/SiO2 resonant cavities,” Appl. Phys. Lett.61(12), 1381–1383 (1992).
[CrossRef]

Feng, L. A.

M. P. Nezhad, A. Simic, O. Bondarenko, B. Slutsky, A. Mizrahi, L. A. Feng, V. Lomakin, and Y. Fainman, “Room-temperature subwavelength metallo-dielectric lasers,” Nat. Photonics4(6), 395–399 (2010).
[CrossRef]

Fernández-Pradas, J. M.

M. Colina, P. Serra, J. M. Fernández-Pradas, L. Sevilla, and J. L. Morenza, “DNA deposition through laser induced forward transfer,” Biosens. Bioelectron.20(8), 1638–1642 (2005).
[CrossRef] [PubMed]

Fotakis, C.

Gamaly, E. G.

A. Vailionis, E. G. Gamaly, V. Mizeikis, W. Yang, A. V. Rode, and S. Juodkazis, “Evidence of superdense aluminium synthesized by ultrafast microexplosion,” Nat Commun2, 445 (2011).
[CrossRef] [PubMed]

Geluk, E. J.

M. T. Hill, Y. S. Oei, B. Smalbrugge, Y. Zhu, T. De Vries, P. J. Van Veldhoven, F. W. M. Van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. De Waardt, E. J. Geluk, S. H. Kwon, Y. H. Lee, R. Notzel, and M. K. Smit, “Lasing in metallic-coated nanocavities,” Nat. Photonics1(10), 589–594 (2007).
[CrossRef]

Gerhold, M.

J. Xu, J. Liu, D. H. Cui, M. Gerhold, A. Y. Wang, M. Nagel, and T. K. Lippert, “Laser-assisted forward transfer of multi-spectral nanocrystal quantum dot emitters,” Nanotechnology18(2), 025403 (2007).
[CrossRef]

Giessen, H.

R. Ameling and H. Giessen, “Microcavity plasmonics: strong coupling of photonic cavities and plasmons,” Laser Photonics Rev. 1–29 (2012) /DOI .
[CrossRef]

Gladden, C.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature461(7264), 629–632 (2009).
[CrossRef] [PubMed]

Gonçalves, M. R.

A. I. Kuznetsov, A. B. Evlyukhin, M. R. Gonçalves, C. Reinhardt, A. Koroleva, M. L. Arnedillo, R. Kiyan, O. Marti, and B. N. Chichkov, “Laser fabrication of large-scale nanoparticle arrays for sensing applications,” ACS Nano5(6), 4843–4849 (2011).
[CrossRef] [PubMed]

Grivas, C.

Gu, T.

T. Gu, S. Kocaman, X. Yang, J. F. McMillan, M. B. Yu, G. Q. Lo, D. L. Kwong, and C. W. Wong, “Deterministic integrated tuning of multi-cavity resonances and phase for slow-light in coupled photonic crystal cavities,” Appl. Phys. Lett.98(12), 121103 (2011).
[CrossRef]

Guo, G.-Y.

Han, N. R.

Harel, E.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater.2(4), 229–232 (2003).
[CrossRef] [PubMed]

He, Y. J.

M. L. Tseng, Y.-W. Huang, M.-K. Hsiao, H. W. Huang, H. M. Chen, Y. L. Chen, C. H. Chu, N.-N. Chu, Y. J. He, C. M. Chang, W. C. Lin, D.-W. Huang, H.-P. Chiang, R.-S. Liu, G. Sun, and D. P. Tsai, “Fast fabrication of a Ag nanostructure substrate using the femtosecond laser for broad-band and tunable plasmonic enhancement,” ACS Nano6(6), 5190–5197 (2012).
[CrossRef] [PubMed]

Herz, E.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature460(7259), 1110–1112 (2009).
[CrossRef] [PubMed]

Hill, M. T.

M. T. Hill, Y. S. Oei, B. Smalbrugge, Y. Zhu, T. De Vries, P. J. Van Veldhoven, F. W. M. Van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. De Waardt, E. J. Geluk, S. H. Kwon, Y. H. Lee, R. Notzel, and M. K. Smit, “Lasing in metallic-coated nanocavities,” Nat. Photonics1(10), 589–594 (2007).
[CrossRef]

Ho, Y. Z.

C. M. Chang, M. L. Tseng, B. H. Cheng, C. H. C, Y. Z. Ho, H. W. Huang, Y.-C. Lan, D.-W. Huang, A. Q. Liu, and D. P. Tsai, “Three-dimensional plasmonic micro projector for light manipulation,” Adv. Mater. (2012)/ DOI: .
[CrossRef]

Hong, M. H.

Horak, P.

Hsiao, C. T.

P. C. Wu, W. T. Chen, K.-Y. Yang, C. T. Hsiao, G. Sun, A. Q. Liu, N. I. Zheludev, and D. P. Tsai, “Magnetic plasmon induced transparency in three-dimensional metamolecules,” Nanophoton.1, 131–138 (2012).

W. T. Chen, C. J. Chen, P. C. Wu, S. Sun, L. Zhou, G.-Y. Guo, C. T. Hsiao, K.-Y. Yang, N. I. Zheludev, and D. P. Tsai, “Optical magnetic response in three-dimensional metamaterial of upright plasmonic meta-molecules,” Opt. Express19(13), 12837–12842 (2011).
[CrossRef] [PubMed]

Hsiao, M.-K.

M. L. Tseng, Y.-W. Huang, M.-K. Hsiao, H. W. Huang, H. M. Chen, Y. L. Chen, C. H. Chu, N.-N. Chu, Y. J. He, C. M. Chang, W. C. Lin, D.-W. Huang, H.-P. Chiang, R.-S. Liu, G. Sun, and D. P. Tsai, “Fast fabrication of a Ag nanostructure substrate using the femtosecond laser for broad-band and tunable plasmonic enhancement,” ACS Nano6(6), 5190–5197 (2012).
[CrossRef] [PubMed]

Huang, D.-W.

M. L. Tseng, Y.-W. Huang, M.-K. Hsiao, H. W. Huang, H. M. Chen, Y. L. Chen, C. H. Chu, N.-N. Chu, Y. J. He, C. M. Chang, W. C. Lin, D.-W. Huang, H.-P. Chiang, R.-S. Liu, G. Sun, and D. P. Tsai, “Fast fabrication of a Ag nanostructure substrate using the femtosecond laser for broad-band and tunable plasmonic enhancement,” ACS Nano6(6), 5190–5197 (2012).
[CrossRef] [PubMed]

M. L. Tseng, C. M. Chang, B. H. Chen, Y.-W. Huang, C. H. Chu, K. S. Chung, Y. J. Liu, H. G. Tsai, N.-N. Chu, D.-W. Huang, H.-P. Chiang, and D. P. Tsai, “Fabrication of plasmonic devices using femtosecond laser-induced forward transfer technique,” Nanotechnology23(44), 444013 (2012).
[CrossRef] [PubMed]

M. L. Tseng, P. C. Wu, S. Sun, C. M. Chang, W. T. Chen, C. H. Chu, P.-L. Chen, L. Zhou, D.-W. Huang, T.-J. Yen, and D. P. Tsai, “Fabrication of multilayer metamaterials by femtosecond laser-induced forward-transfer technique,” Laser Photon. Rev.6(5), 702–707 (2012).
[CrossRef]

C. M. Chang, M. L. Tseng, B. H. Cheng, C. H. C, Y. Z. Ho, H. W. Huang, Y.-C. Lan, D.-W. Huang, A. Q. Liu, and D. P. Tsai, “Three-dimensional plasmonic micro projector for light manipulation,” Adv. Mater. (2012)/ DOI: .
[CrossRef]

Huang, H. W.

C. M. Chang, M. L. Tseng, B. H. Cheng, C. H. C, Y. Z. Ho, H. W. Huang, Y.-C. Lan, D.-W. Huang, A. Q. Liu, and D. P. Tsai, “Three-dimensional plasmonic micro projector for light manipulation,” Adv. Mater. (2012)/ DOI: .
[CrossRef]

M. L. Tseng, Y.-W. Huang, M.-K. Hsiao, H. W. Huang, H. M. Chen, Y. L. Chen, C. H. Chu, N.-N. Chu, Y. J. He, C. M. Chang, W. C. Lin, D.-W. Huang, H.-P. Chiang, R.-S. Liu, G. Sun, and D. P. Tsai, “Fast fabrication of a Ag nanostructure substrate using the femtosecond laser for broad-band and tunable plasmonic enhancement,” ACS Nano6(6), 5190–5197 (2012).
[CrossRef] [PubMed]

Huang, M. H.

M. H. Huang, S. Mao, H. Feick, H. Q. Yan, Y. Y. Wu, H. Kind, E. Weber, R. Russo, and P. D. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science292(5523), 1897–1899 (2001).
[CrossRef] [PubMed]

Huang, Y.-W.

M. L. Tseng, C. M. Chang, B. H. Chen, Y.-W. Huang, C. H. Chu, K. S. Chung, Y. J. Liu, H. G. Tsai, N.-N. Chu, D.-W. Huang, H.-P. Chiang, and D. P. Tsai, “Fabrication of plasmonic devices using femtosecond laser-induced forward transfer technique,” Nanotechnology23(44), 444013 (2012).
[CrossRef] [PubMed]

M. L. Tseng, Y.-W. Huang, M.-K. Hsiao, H. W. Huang, H. M. Chen, Y. L. Chen, C. H. Chu, N.-N. Chu, Y. J. He, C. M. Chang, W. C. Lin, D.-W. Huang, H.-P. Chiang, R.-S. Liu, G. Sun, and D. P. Tsai, “Fast fabrication of a Ag nanostructure substrate using the femtosecond laser for broad-band and tunable plasmonic enhancement,” ACS Nano6(6), 5190–5197 (2012).
[CrossRef] [PubMed]

Hunt, N. E. J.

E. F. Schubert, A. M. Vredenberg, N. E. J. Hunt, Y. H. Wong, P. C. Becker, J. M. Poate, D. C. Jacobson, L. C. Feldman, and G. J. Zydzik, “Giant enhancement of luminescence intensity in Er-doped Si/SiO2 resonant cavities,” Appl. Phys. Lett.61(12), 1381–1383 (1992).
[CrossRef]

Ikegami, Y.

J. S. Xia, Y. Ikegami, Y. Shiraki, N. Usami, and Y. Nakata, “Strong resonant luminescence from Ge quantum dots in photonic crystal microcavity at room temperature,” Appl. Phys. Lett.89(20), 201102 (2006).
[CrossRef]

Ikiades, A.

Ilchenko, V. S.

V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, and L. Maleki, “Nonlinear optics and crystalline whispering gallery mode cavities,” Phys. Rev. Lett.92(4), 043903 (2004).
[CrossRef] [PubMed]

Jacobson, D. C.

E. F. Schubert, A. M. Vredenberg, N. E. J. Hunt, Y. H. Wong, P. C. Becker, J. M. Poate, D. C. Jacobson, L. C. Feldman, and G. J. Zydzik, “Giant enhancement of luminescence intensity in Er-doped Si/SiO2 resonant cavities,” Appl. Phys. Lett.61(12), 1381–1383 (1992).
[CrossRef]

Joannopoulos, J. D.

M. Soljacić and J. D. Joannopoulos, “Enhancement of nonlinear effects using photonic crystals,” Nat. Mater.3(4), 211–219 (2004).
[CrossRef] [PubMed]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6(12), 4370–4379 (1972).
[CrossRef]

Jokerst, N. M.

S. Larouche, Y.-J. Tsai, T. Tyler, N. M. Jokerst, and D. R. Smith, “Infrared metamaterial phase holograms,” Nat. Mater.11(5), 450–454 (2012).
[CrossRef] [PubMed]

Juodkazis, S.

M. Malinauskas, P. Danilevičius, and S. Juodkazis, “Three-dimensional micro-/nano-structuring via direct write polymerization with picosecond laser pulses,” Opt. Express19(6), 5602–5610 (2011).
[CrossRef] [PubMed]

A. Vailionis, E. G. Gamaly, V. Mizeikis, W. Yang, A. V. Rode, and S. Juodkazis, “Evidence of superdense aluminium synthesized by ultrafast microexplosion,” Nat Commun2, 445 (2011).
[CrossRef] [PubMed]

S. Juodkazis, V. Mizeikis, and H. Misawa, “Three-dimensional microfabrication of materials by femtosecond lasers for photonics applications,” J. Appl. Phys.106(5), 051101 (2009).
[CrossRef]

Kaur, K. S.

Kik, P. G.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater.2(4), 229–232 (2003).
[CrossRef] [PubMed]

Kind, H.

M. H. Huang, S. Mao, H. Feick, H. Q. Yan, Y. Y. Wu, H. Kind, E. Weber, R. Russo, and P. D. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science292(5523), 1897–1899 (2001).
[CrossRef] [PubMed]

Kippenberg, T. J.

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature421(6926), 925–928 (2003).
[CrossRef] [PubMed]

S. M. Spillane, T. J. Kippenberg, and K. J. Vahala, “Ultralow-threshold Raman laser using a spherical dielectric microcavity,” Nature415(6872), 621–623 (2002).
[CrossRef] [PubMed]

Kiyan, R.

A. I. Kuznetsov, A. B. Evlyukhin, M. R. Gonçalves, C. Reinhardt, A. Koroleva, M. L. Arnedillo, R. Kiyan, O. Marti, and B. N. Chichkov, “Laser fabrication of large-scale nanoparticle arrays for sensing applications,” ACS Nano5(6), 4843–4849 (2011).
[CrossRef] [PubMed]

A. I. Kuznetsov, R. Kiyan, and B. N. Chichkov, “Laser fabrication of 2D and 3D metal nanoparticle structures and arrays,” Opt. Express18(20), 21198–21203 (2010).
[CrossRef] [PubMed]

Kocaman, S.

T. Gu, S. Kocaman, X. Yang, J. F. McMillan, M. B. Yu, G. Q. Lo, D. L. Kwong, and C. W. Wong, “Deterministic integrated tuning of multi-cavity resonances and phase for slow-light in coupled photonic crystal cavities,” Appl. Phys. Lett.98(12), 121103 (2011).
[CrossRef]

Koel, B. E.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater.2(4), 229–232 (2003).
[CrossRef] [PubMed]

Koroleva, A.

A. I. Kuznetsov, A. B. Evlyukhin, M. R. Gonçalves, C. Reinhardt, A. Koroleva, M. L. Arnedillo, R. Kiyan, O. Marti, and B. N. Chichkov, “Laser fabrication of large-scale nanoparticle arrays for sensing applications,” ACS Nano5(6), 4843–4849 (2011).
[CrossRef] [PubMed]

Koundourakis, G.

Kuznetsov, A. I.

A. I. Kuznetsov, A. B. Evlyukhin, M. R. Gonçalves, C. Reinhardt, A. Koroleva, M. L. Arnedillo, R. Kiyan, O. Marti, and B. N. Chichkov, “Laser fabrication of large-scale nanoparticle arrays for sensing applications,” ACS Nano5(6), 4843–4849 (2011).
[CrossRef] [PubMed]

A. I. Kuznetsov, R. Kiyan, and B. N. Chichkov, “Laser fabrication of 2D and 3D metal nanoparticle structures and arrays,” Opt. Express18(20), 21198–21203 (2010).
[CrossRef] [PubMed]

Kwon, S. H.

M. T. Hill, Y. S. Oei, B. Smalbrugge, Y. Zhu, T. De Vries, P. J. Van Veldhoven, F. W. M. Van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. De Waardt, E. J. Geluk, S. H. Kwon, Y. H. Lee, R. Notzel, and M. K. Smit, “Lasing in metallic-coated nanocavities,” Nat. Photonics1(10), 589–594 (2007).
[CrossRef]

Kwong, D. L.

T. Gu, S. Kocaman, X. Yang, J. F. McMillan, M. B. Yu, G. Q. Lo, D. L. Kwong, and C. W. Wong, “Deterministic integrated tuning of multi-cavity resonances and phase for slow-light in coupled photonic crystal cavities,” Appl. Phys. Lett.98(12), 121103 (2011).
[CrossRef]

Lakhani, A.

Lan, Y.-C.

C. M. Chang, M. L. Tseng, B. H. Cheng, C. H. C, Y. Z. Ho, H. W. Huang, Y.-C. Lan, D.-W. Huang, A. Q. Liu, and D. P. Tsai, “Three-dimensional plasmonic micro projector for light manipulation,” Adv. Mater. (2012)/ DOI: .
[CrossRef]

Larouche, S.

S. Larouche, Y.-J. Tsai, T. Tyler, N. M. Jokerst, and D. R. Smith, “Infrared metamaterial phase holograms,” Nat. Mater.11(5), 450–454 (2012).
[CrossRef] [PubMed]

Lee, Y. H.

M. T. Hill, Y. S. Oei, B. Smalbrugge, Y. Zhu, T. De Vries, P. J. Van Veldhoven, F. W. M. Van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. De Waardt, E. J. Geluk, S. H. Kwon, Y. H. Lee, R. Notzel, and M. K. Smit, “Lasing in metallic-coated nanocavities,” Nat. Photonics1(10), 589–594 (2007).
[CrossRef]

Lim, C. S.

Lin, W. C.

M. L. Tseng, Y.-W. Huang, M.-K. Hsiao, H. W. Huang, H. M. Chen, Y. L. Chen, C. H. Chu, N.-N. Chu, Y. J. He, C. M. Chang, W. C. Lin, D.-W. Huang, H.-P. Chiang, R.-S. Liu, G. Sun, and D. P. Tsai, “Fast fabrication of a Ag nanostructure substrate using the femtosecond laser for broad-band and tunable plasmonic enhancement,” ACS Nano6(6), 5190–5197 (2012).
[CrossRef] [PubMed]

M. L. Tseng, B. H. Chen, C. H. Chu, C. M. Chang, W. C. Lin, N.-N. Chu, M. Mansuripur, A. Q. Liu, and D. P. Tsai, “Fabrication of phase-change chalcogenide Ge2Sb2Te5 patterns by laser-induced forward transfer,” Opt. Express19(18), 16975–16984 (2011).
[CrossRef] [PubMed]

Lippert, T. K.

J. Xu, J. Liu, D. H. Cui, M. Gerhold, A. Y. Wang, M. Nagel, and T. K. Lippert, “Laser-assisted forward transfer of multi-spectral nanocrystal quantum dot emitters,” Nanotechnology18(2), 025403 (2007).
[CrossRef]

Liu, A. Q.

P. C. Wu, W. T. Chen, K.-Y. Yang, C. T. Hsiao, G. Sun, A. Q. Liu, N. I. Zheludev, and D. P. Tsai, “Magnetic plasmon induced transparency in three-dimensional metamolecules,” Nanophoton.1, 131–138 (2012).

C. M. Chang, M. L. Tseng, B. H. Cheng, C. H. C, Y. Z. Ho, H. W. Huang, Y.-C. Lan, D.-W. Huang, A. Q. Liu, and D. P. Tsai, “Three-dimensional plasmonic micro projector for light manipulation,” Adv. Mater. (2012)/ DOI: .
[CrossRef]

M. L. Tseng, B. H. Chen, C. H. Chu, C. M. Chang, W. C. Lin, N.-N. Chu, M. Mansuripur, A. Q. Liu, and D. P. Tsai, “Fabrication of phase-change chalcogenide Ge2Sb2Te5 patterns by laser-induced forward transfer,” Opt. Express19(18), 16975–16984 (2011).
[CrossRef] [PubMed]

Liu, J.

J. Xu, J. Liu, D. H. Cui, M. Gerhold, A. Y. Wang, M. Nagel, and T. K. Lippert, “Laser-assisted forward transfer of multi-spectral nanocrystal quantum dot emitters,” Nanotechnology18(2), 025403 (2007).
[CrossRef]

Liu, R.-S.

M. L. Tseng, Y.-W. Huang, M.-K. Hsiao, H. W. Huang, H. M. Chen, Y. L. Chen, C. H. Chu, N.-N. Chu, Y. J. He, C. M. Chang, W. C. Lin, D.-W. Huang, H.-P. Chiang, R.-S. Liu, G. Sun, and D. P. Tsai, “Fast fabrication of a Ag nanostructure substrate using the femtosecond laser for broad-band and tunable plasmonic enhancement,” ACS Nano6(6), 5190–5197 (2012).
[CrossRef] [PubMed]

Liu, Y. J.

M. L. Tseng, C. M. Chang, B. H. Chen, Y.-W. Huang, C. H. Chu, K. S. Chung, Y. J. Liu, H. G. Tsai, N.-N. Chu, D.-W. Huang, H.-P. Chiang, and D. P. Tsai, “Fabrication of plasmonic devices using femtosecond laser-induced forward transfer technique,” Nanotechnology23(44), 444013 (2012).
[CrossRef] [PubMed]

Lo, G. Q.

T. Gu, S. Kocaman, X. Yang, J. F. McMillan, M. B. Yu, G. Q. Lo, D. L. Kwong, and C. W. Wong, “Deterministic integrated tuning of multi-cavity resonances and phase for slow-light in coupled photonic crystal cavities,” Appl. Phys. Lett.98(12), 121103 (2011).
[CrossRef]

Lomakin, V.

M. P. Nezhad, A. Simic, O. Bondarenko, B. Slutsky, A. Mizrahi, L. A. Feng, V. Lomakin, and Y. Fainman, “Room-temperature subwavelength metallo-dielectric lasers,” Nat. Photonics4(6), 395–399 (2010).
[CrossRef]

Loudon, R.

R. Loudon, “The propagation of electromagnetic energy through an absorbing dielectric,” J. Phys. A.3(3), 233–245 (1970).
[CrossRef]

Ma, R. M.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature461(7264), 629–632 (2009).
[CrossRef] [PubMed]

Maier, S. A.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater.2(4), 229–232 (2003).
[CrossRef] [PubMed]

Mailis, S.

Maleki, L.

V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, and L. Maleki, “Nonlinear optics and crystalline whispering gallery mode cavities,” Phys. Rev. Lett.92(4), 043903 (2004).
[CrossRef] [PubMed]

Malinauskas, M.

Mansuripur, M.

Mao, S.

M. H. Huang, S. Mao, H. Feick, H. Q. Yan, Y. Y. Wu, H. Kind, E. Weber, R. Russo, and P. D. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science292(5523), 1897–1899 (2001).
[CrossRef] [PubMed]

Marti, O.

A. I. Kuznetsov, A. B. Evlyukhin, M. R. Gonçalves, C. Reinhardt, A. Koroleva, M. L. Arnedillo, R. Kiyan, O. Marti, and B. N. Chichkov, “Laser fabrication of large-scale nanoparticle arrays for sensing applications,” ACS Nano5(6), 4843–4849 (2011).
[CrossRef] [PubMed]

Matsko, A. B.

V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, and L. Maleki, “Nonlinear optics and crystalline whispering gallery mode cavities,” Phys. Rev. Lett.92(4), 043903 (2004).
[CrossRef] [PubMed]

McMillan, J. F.

T. Gu, S. Kocaman, X. Yang, J. F. McMillan, M. B. Yu, G. Q. Lo, D. L. Kwong, and C. W. Wong, “Deterministic integrated tuning of multi-cavity resonances and phase for slow-light in coupled photonic crystal cavities,” Appl. Phys. Lett.98(12), 121103 (2011).
[CrossRef]

Meltzer, S.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater.2(4), 229–232 (2003).
[CrossRef] [PubMed]

Misawa, H.

S. Juodkazis, V. Mizeikis, and H. Misawa, “Three-dimensional microfabrication of materials by femtosecond lasers for photonics applications,” J. Appl. Phys.106(5), 051101 (2009).
[CrossRef]

Mizeikis, V.

A. Vailionis, E. G. Gamaly, V. Mizeikis, W. Yang, A. V. Rode, and S. Juodkazis, “Evidence of superdense aluminium synthesized by ultrafast microexplosion,” Nat Commun2, 445 (2011).
[CrossRef] [PubMed]

S. Juodkazis, V. Mizeikis, and H. Misawa, “Three-dimensional microfabrication of materials by femtosecond lasers for photonics applications,” J. Appl. Phys.106(5), 051101 (2009).
[CrossRef]

Mizrahi, A.

M. P. Nezhad, A. Simic, O. Bondarenko, B. Slutsky, A. Mizrahi, L. A. Feng, V. Lomakin, and Y. Fainman, “Room-temperature subwavelength metallo-dielectric lasers,” Nat. Photonics4(6), 395–399 (2010).
[CrossRef]

Mochizuki, M.

Y. Akahane, M. Mochizuki, T. Asano, Y. Tanaka, and S. Noda, “Design of a channel drop filter by using a donor-type cavity with high-quality factor in a two-dimensional photonic crystal slab,” Appl. Phys. Lett.82(9), 1341–1343 (2003).
[CrossRef]

Morenza, J. L.

M. Colina, P. Serra, J. M. Fernández-Pradas, L. Sevilla, and J. L. Morenza, “DNA deposition through laser induced forward transfer,” Biosens. Bioelectron.20(8), 1638–1642 (2005).
[CrossRef] [PubMed]

Nagel, M.

J. Xu, J. Liu, D. H. Cui, M. Gerhold, A. Y. Wang, M. Nagel, and T. K. Lippert, “Laser-assisted forward transfer of multi-spectral nanocrystal quantum dot emitters,” Nanotechnology18(2), 025403 (2007).
[CrossRef]

Nakata, Y.

J. S. Xia, Y. Ikegami, Y. Shiraki, N. Usami, and Y. Nakata, “Strong resonant luminescence from Ge quantum dots in photonic crystal microcavity at room temperature,” Appl. Phys. Lett.89(20), 201102 (2006).
[CrossRef]

Narimanov, E. E.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature460(7259), 1110–1112 (2009).
[CrossRef] [PubMed]

Nezhad, M. P.

M. P. Nezhad, A. Simic, O. Bondarenko, B. Slutsky, A. Mizrahi, L. A. Feng, V. Lomakin, and Y. Fainman, “Room-temperature subwavelength metallo-dielectric lasers,” Nat. Photonics4(6), 395–399 (2010).
[CrossRef]

Ng, B.

Nishi, K.

H. Saito, K. Nishi, I. Ogura, S. Sugou, and Y. Sugimoto, “Room-temperature lasing operation of a quantum-dot vertical-cavity surface-emitting laser,” Appl. Phys. Lett.69(21), 3140–3142 (1996).
[CrossRef]

Noda, S.

Y. Akahane, M. Mochizuki, T. Asano, Y. Tanaka, and S. Noda, “Design of a channel drop filter by using a donor-type cavity with high-quality factor in a two-dimensional photonic crystal slab,” Appl. Phys. Lett.82(9), 1341–1343 (2003).
[CrossRef]

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature425(6961), 944–947 (2003).
[CrossRef] [PubMed]

S. Noda, K. Tomoda, N. Yamamoto, and A. Chutinan, “Full three-dimensional photonic bandgap crystals at near-infrared wavelengths,” Science289(5479), 604–606 (2000).
[CrossRef] [PubMed]

Noginov, M. A.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature460(7259), 1110–1112 (2009).
[CrossRef] [PubMed]

Notzel, R.

M. T. Hill, Y. S. Oei, B. Smalbrugge, Y. Zhu, T. De Vries, P. J. Van Veldhoven, F. W. M. Van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. De Waardt, E. J. Geluk, S. H. Kwon, Y. H. Lee, R. Notzel, and M. K. Smit, “Lasing in metallic-coated nanocavities,” Nat. Photonics1(10), 589–594 (2007).
[CrossRef]

Oei, Y. S.

M. T. Hill, Y. S. Oei, B. Smalbrugge, Y. Zhu, T. De Vries, P. J. Van Veldhoven, F. W. M. Van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. De Waardt, E. J. Geluk, S. H. Kwon, Y. H. Lee, R. Notzel, and M. K. Smit, “Lasing in metallic-coated nanocavities,” Nat. Photonics1(10), 589–594 (2007).
[CrossRef]

Ogura, I.

H. Saito, K. Nishi, I. Ogura, S. Sugou, and Y. Sugimoto, “Room-temperature lasing operation of a quantum-dot vertical-cavity surface-emitting laser,” Appl. Phys. Lett.69(21), 3140–3142 (1996).
[CrossRef]

Ou, J. Y.

K. Tanaka, E. Plum, J. Y. Ou, T. Uchino, and N. I. Zheludev, “Multifold enhancement of quantum dot luminescence in plasmonic metamaterials,” Phys. Rev. Lett.105(22), 227403 (2010).
[CrossRef] [PubMed]

Oulton, R. F.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature461(7264), 629–632 (2009).
[CrossRef] [PubMed]

Papakonstantinou, P.

Patentalaki, A.

Pique, A.

C. B. Arnold, P. Serra, and A. Pique, “Laser direct-write techniques for printing of complex materials,” MRS Bull.32(01), 23–32 (2007).
[CrossRef]

Plum, E.

K. Tanaka, E. Plum, J. Y. Ou, T. Uchino, and N. I. Zheludev, “Multifold enhancement of quantum dot luminescence in plasmonic metamaterials,” Phys. Rev. Lett.105(22), 227403 (2010).
[CrossRef] [PubMed]

Poate, J. M.

E. F. Schubert, A. M. Vredenberg, N. E. J. Hunt, Y. H. Wong, P. C. Becker, J. M. Poate, D. C. Jacobson, L. C. Feldman, and G. J. Zydzik, “Giant enhancement of luminescence intensity in Er-doped Si/SiO2 resonant cavities,” Appl. Phys. Lett.61(12), 1381–1383 (1992).
[CrossRef]

Reinhardt, C.

A. I. Kuznetsov, A. B. Evlyukhin, M. R. Gonçalves, C. Reinhardt, A. Koroleva, M. L. Arnedillo, R. Kiyan, O. Marti, and B. N. Chichkov, “Laser fabrication of large-scale nanoparticle arrays for sensing applications,” ACS Nano5(6), 4843–4849 (2011).
[CrossRef] [PubMed]

Requicha, A. A. G.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater.2(4), 229–232 (2003).
[CrossRef] [PubMed]

Rho, J.

X. Yang, J. Yao, J. Rho, X. Yin, and X. Zhang, “Experimental realization of three-dimensional indefinite cavities at the nanoscale with anomalous scaling laws,” Nat. Photonics6(7), 450–454 (2012).
[CrossRef]

Rode, A. V.

A. Vailionis, E. G. Gamaly, V. Mizeikis, W. Yang, A. V. Rode, and S. Juodkazis, “Evidence of superdense aluminium synthesized by ultrafast microexplosion,” Nat Commun2, 445 (2011).
[CrossRef] [PubMed]

Ruppin, R.

R. Ruppin, “Electromagnetic energy density in a dispersive and absorptive material,” Phys. Lett. A299(2-3), 309–312 (2002).
[CrossRef]

Russo, R.

M. H. Huang, S. Mao, H. Feick, H. Q. Yan, Y. Y. Wu, H. Kind, E. Weber, R. Russo, and P. D. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science292(5523), 1897–1899 (2001).
[CrossRef] [PubMed]

Saito, H.

H. Saito, K. Nishi, I. Ogura, S. Sugou, and Y. Sugimoto, “Room-temperature lasing operation of a quantum-dot vertical-cavity surface-emitting laser,” Appl. Phys. Lett.69(21), 3140–3142 (1996).
[CrossRef]

Sakai, H.

D. M. Bagnall, B. Ullrich, H. Sakai, and Y. Segawa, “Micro-cavity lasing of optically excited CdS thin films at room temperature,” J. Cryst. Growth214, 1015–1018 (2000).
[CrossRef]

Savchenkov, A. A.

V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, and L. Maleki, “Nonlinear optics and crystalline whispering gallery mode cavities,” Phys. Rev. Lett.92(4), 043903 (2004).
[CrossRef] [PubMed]

Schubert, E. F.

E. F. Schubert, A. M. Vredenberg, N. E. J. Hunt, Y. H. Wong, P. C. Becker, J. M. Poate, D. C. Jacobson, L. C. Feldman, and G. J. Zydzik, “Giant enhancement of luminescence intensity in Er-doped Si/SiO2 resonant cavities,” Appl. Phys. Lett.61(12), 1381–1383 (1992).
[CrossRef]

Segawa, Y.

D. M. Bagnall, B. Ullrich, H. Sakai, and Y. Segawa, “Micro-cavity lasing of optically excited CdS thin films at room temperature,” J. Cryst. Growth214, 1015–1018 (2000).
[CrossRef]

Serra, P.

C. B. Arnold, P. Serra, and A. Pique, “Laser direct-write techniques for printing of complex materials,” MRS Bull.32(01), 23–32 (2007).
[CrossRef]

M. Colina, P. Serra, J. M. Fernández-Pradas, L. Sevilla, and J. L. Morenza, “DNA deposition through laser induced forward transfer,” Biosens. Bioelectron.20(8), 1638–1642 (2005).
[CrossRef] [PubMed]

Sevilla, L.

M. Colina, P. Serra, J. M. Fernández-Pradas, L. Sevilla, and J. L. Morenza, “DNA deposition through laser induced forward transfer,” Biosens. Bioelectron.20(8), 1638–1642 (2005).
[CrossRef] [PubMed]

Shalaev, V. M.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature460(7259), 1110–1112 (2009).
[CrossRef] [PubMed]

Shiraki, Y.

J. S. Xia, Y. Ikegami, Y. Shiraki, N. Usami, and Y. Nakata, “Strong resonant luminescence from Ge quantum dots in photonic crystal microcavity at room temperature,” Appl. Phys. Lett.89(20), 201102 (2006).
[CrossRef]

Shiue, C. D.

Simic, A.

M. P. Nezhad, A. Simic, O. Bondarenko, B. Slutsky, A. Mizrahi, L. A. Feng, V. Lomakin, and Y. Fainman, “Room-temperature subwavelength metallo-dielectric lasers,” Nat. Photonics4(6), 395–399 (2010).
[CrossRef]

Slutsky, B.

M. P. Nezhad, A. Simic, O. Bondarenko, B. Slutsky, A. Mizrahi, L. A. Feng, V. Lomakin, and Y. Fainman, “Room-temperature subwavelength metallo-dielectric lasers,” Nat. Photonics4(6), 395–399 (2010).
[CrossRef]

Smalbrugge, B.

M. T. Hill, Y. S. Oei, B. Smalbrugge, Y. Zhu, T. De Vries, P. J. Van Veldhoven, F. W. M. Van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. De Waardt, E. J. Geluk, S. H. Kwon, Y. H. Lee, R. Notzel, and M. K. Smit, “Lasing in metallic-coated nanocavities,” Nat. Photonics1(10), 589–594 (2007).
[CrossRef]

Smit, M. K.

M. T. Hill, Y. S. Oei, B. Smalbrugge, Y. Zhu, T. De Vries, P. J. Van Veldhoven, F. W. M. Van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. De Waardt, E. J. Geluk, S. H. Kwon, Y. H. Lee, R. Notzel, and M. K. Smit, “Lasing in metallic-coated nanocavities,” Nat. Photonics1(10), 589–594 (2007).
[CrossRef]

Smith, D. R.

S. Larouche, Y.-J. Tsai, T. Tyler, N. M. Jokerst, and D. R. Smith, “Infrared metamaterial phase holograms,” Nat. Mater.11(5), 450–454 (2012).
[CrossRef] [PubMed]

Soljacic, M.

M. Soljacić and J. D. Joannopoulos, “Enhancement of nonlinear effects using photonic crystals,” Nat. Mater.3(4), 211–219 (2004).
[CrossRef] [PubMed]

Sones, C. L.

M. Feinaeugle, A. P. Alloncle, P. Delaporte, C. L. Sones, and R. W. Eason, “Time-resolved shadowgraph imaging of femtosecond laser-induced forward transfer of solid materials,” Appl. Surf. Sci.258(22), 8475–8483 (2012).
[CrossRef]

K. S. Kaur, A. Z. Subramanian, Y. J. Ying, D. P. Banks, M. Feinaeugle, P. Horak, V. Apostolopoulos, C. L. Sones, S. Mailis, and R. W. Eason, “Waveguide mode filters fabricated using laser-induced forward transfer,” Opt. Express19(10), 9814–9819 (2011).
[CrossRef] [PubMed]

Song, B. S.

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature425(6961), 944–947 (2003).
[CrossRef] [PubMed]

Sorger, V. J.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature461(7264), 629–632 (2009).
[CrossRef] [PubMed]

Spillane, S. M.

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature421(6926), 925–928 (2003).
[CrossRef] [PubMed]

S. M. Spillane, T. J. Kippenberg, and K. J. Vahala, “Ultralow-threshold Raman laser using a spherical dielectric microcavity,” Nature415(6872), 621–623 (2002).
[CrossRef] [PubMed]

Stout, S.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature460(7259), 1110–1112 (2009).
[CrossRef] [PubMed]

Subramanian, A. Z.

Sugimoto, Y.

H. Saito, K. Nishi, I. Ogura, S. Sugou, and Y. Sugimoto, “Room-temperature lasing operation of a quantum-dot vertical-cavity surface-emitting laser,” Appl. Phys. Lett.69(21), 3140–3142 (1996).
[CrossRef]

Sugou, S.

H. Saito, K. Nishi, I. Ogura, S. Sugou, and Y. Sugimoto, “Room-temperature lasing operation of a quantum-dot vertical-cavity surface-emitting laser,” Appl. Phys. Lett.69(21), 3140–3142 (1996).
[CrossRef]

Sun, G.

M. L. Tseng, Y.-W. Huang, M.-K. Hsiao, H. W. Huang, H. M. Chen, Y. L. Chen, C. H. Chu, N.-N. Chu, Y. J. He, C. M. Chang, W. C. Lin, D.-W. Huang, H.-P. Chiang, R.-S. Liu, G. Sun, and D. P. Tsai, “Fast fabrication of a Ag nanostructure substrate using the femtosecond laser for broad-band and tunable plasmonic enhancement,” ACS Nano6(6), 5190–5197 (2012).
[CrossRef] [PubMed]

P. C. Wu, W. T. Chen, K.-Y. Yang, C. T. Hsiao, G. Sun, A. Q. Liu, N. I. Zheludev, and D. P. Tsai, “Magnetic plasmon induced transparency in three-dimensional metamolecules,” Nanophoton.1, 131–138 (2012).

Sun, S.

M. L. Tseng, P. C. Wu, S. Sun, C. M. Chang, W. T. Chen, C. H. Chu, P.-L. Chen, L. Zhou, D.-W. Huang, T.-J. Yen, and D. P. Tsai, “Fabrication of multilayer metamaterials by femtosecond laser-induced forward-transfer technique,” Laser Photon. Rev.6(5), 702–707 (2012).
[CrossRef]

W. T. Chen, C. J. Chen, P. C. Wu, S. Sun, L. Zhou, G.-Y. Guo, C. T. Hsiao, K.-Y. Yang, N. I. Zheludev, and D. P. Tsai, “Optical magnetic response in three-dimensional metamaterial of upright plasmonic meta-molecules,” Opt. Express19(13), 12837–12842 (2011).
[CrossRef] [PubMed]

Suteewong, T.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature460(7259), 1110–1112 (2009).
[CrossRef] [PubMed]

Tanaka, K.

K. Tanaka, E. Plum, J. Y. Ou, T. Uchino, and N. I. Zheludev, “Multifold enhancement of quantum dot luminescence in plasmonic metamaterials,” Phys. Rev. Lett.105(22), 227403 (2010).
[CrossRef] [PubMed]

Tanaka, Y.

Y. Akahane, M. Mochizuki, T. Asano, Y. Tanaka, and S. Noda, “Design of a channel drop filter by using a donor-type cavity with high-quality factor in a two-dimensional photonic crystal slab,” Appl. Phys. Lett.82(9), 1341–1343 (2003).
[CrossRef]

Tomoda, K.

S. Noda, K. Tomoda, N. Yamamoto, and A. Chutinan, “Full three-dimensional photonic bandgap crystals at near-infrared wavelengths,” Science289(5479), 604–606 (2000).
[CrossRef] [PubMed]

Tsai, D. P.

M. L. Tseng, P. C. Wu, S. Sun, C. M. Chang, W. T. Chen, C. H. Chu, P.-L. Chen, L. Zhou, D.-W. Huang, T.-J. Yen, and D. P. Tsai, “Fabrication of multilayer metamaterials by femtosecond laser-induced forward-transfer technique,” Laser Photon. Rev.6(5), 702–707 (2012).
[CrossRef]

P. C. Wu, W. T. Chen, K.-Y. Yang, C. T. Hsiao, G. Sun, A. Q. Liu, N. I. Zheludev, and D. P. Tsai, “Magnetic plasmon induced transparency in three-dimensional metamolecules,” Nanophoton.1, 131–138 (2012).

C. M. Chang, M. L. Tseng, B. H. Cheng, C. H. C, Y. Z. Ho, H. W. Huang, Y.-C. Lan, D.-W. Huang, A. Q. Liu, and D. P. Tsai, “Three-dimensional plasmonic micro projector for light manipulation,” Adv. Mater. (2012)/ DOI: .
[CrossRef]

M. L. Tseng, C. M. Chang, B. H. Chen, Y.-W. Huang, C. H. Chu, K. S. Chung, Y. J. Liu, H. G. Tsai, N.-N. Chu, D.-W. Huang, H.-P. Chiang, and D. P. Tsai, “Fabrication of plasmonic devices using femtosecond laser-induced forward transfer technique,” Nanotechnology23(44), 444013 (2012).
[CrossRef] [PubMed]

M. L. Tseng, Y.-W. Huang, M.-K. Hsiao, H. W. Huang, H. M. Chen, Y. L. Chen, C. H. Chu, N.-N. Chu, Y. J. He, C. M. Chang, W. C. Lin, D.-W. Huang, H.-P. Chiang, R.-S. Liu, G. Sun, and D. P. Tsai, “Fast fabrication of a Ag nanostructure substrate using the femtosecond laser for broad-band and tunable plasmonic enhancement,” ACS Nano6(6), 5190–5197 (2012).
[CrossRef] [PubMed]

M. L. Tseng, B. H. Chen, C. H. Chu, C. M. Chang, W. C. Lin, N.-N. Chu, M. Mansuripur, A. Q. Liu, and D. P. Tsai, “Fabrication of phase-change chalcogenide Ge2Sb2Te5 patterns by laser-induced forward transfer,” Opt. Express19(18), 16975–16984 (2011).
[CrossRef] [PubMed]

W. T. Chen, C. J. Chen, P. C. Wu, S. Sun, L. Zhou, G.-Y. Guo, C. T. Hsiao, K.-Y. Yang, N. I. Zheludev, and D. P. Tsai, “Optical magnetic response in three-dimensional metamaterial of upright plasmonic meta-molecules,” Opt. Express19(13), 12837–12842 (2011).
[CrossRef] [PubMed]

C. H. Chu, C. D. Shiue, H. W. Cheng, M. L. Tseng, H.-P. Chiang, M. Mansuripur, and D. P. Tsai, “Laser-induced phase transitions of Ge2Sb2Te5 thin films used in optical and electronic data storage and in thermal lithography,” Opt. Express18(17), 18383–18393 (2010).
[CrossRef] [PubMed]

Tsai, H. G.

M. L. Tseng, C. M. Chang, B. H. Chen, Y.-W. Huang, C. H. Chu, K. S. Chung, Y. J. Liu, H. G. Tsai, N.-N. Chu, D.-W. Huang, H.-P. Chiang, and D. P. Tsai, “Fabrication of plasmonic devices using femtosecond laser-induced forward transfer technique,” Nanotechnology23(44), 444013 (2012).
[CrossRef] [PubMed]

Tsai, Y.-J.

S. Larouche, Y.-J. Tsai, T. Tyler, N. M. Jokerst, and D. R. Smith, “Infrared metamaterial phase holograms,” Nat. Mater.11(5), 450–454 (2012).
[CrossRef] [PubMed]

Tseng, M. L.

C. M. Chang, M. L. Tseng, B. H. Cheng, C. H. C, Y. Z. Ho, H. W. Huang, Y.-C. Lan, D.-W. Huang, A. Q. Liu, and D. P. Tsai, “Three-dimensional plasmonic micro projector for light manipulation,” Adv. Mater. (2012)/ DOI: .
[CrossRef]

M. L. Tseng, P. C. Wu, S. Sun, C. M. Chang, W. T. Chen, C. H. Chu, P.-L. Chen, L. Zhou, D.-W. Huang, T.-J. Yen, and D. P. Tsai, “Fabrication of multilayer metamaterials by femtosecond laser-induced forward-transfer technique,” Laser Photon. Rev.6(5), 702–707 (2012).
[CrossRef]

M. L. Tseng, C. M. Chang, B. H. Chen, Y.-W. Huang, C. H. Chu, K. S. Chung, Y. J. Liu, H. G. Tsai, N.-N. Chu, D.-W. Huang, H.-P. Chiang, and D. P. Tsai, “Fabrication of plasmonic devices using femtosecond laser-induced forward transfer technique,” Nanotechnology23(44), 444013 (2012).
[CrossRef] [PubMed]

M. L. Tseng, Y.-W. Huang, M.-K. Hsiao, H. W. Huang, H. M. Chen, Y. L. Chen, C. H. Chu, N.-N. Chu, Y. J. He, C. M. Chang, W. C. Lin, D.-W. Huang, H.-P. Chiang, R.-S. Liu, G. Sun, and D. P. Tsai, “Fast fabrication of a Ag nanostructure substrate using the femtosecond laser for broad-band and tunable plasmonic enhancement,” ACS Nano6(6), 5190–5197 (2012).
[CrossRef] [PubMed]

M. L. Tseng, B. H. Chen, C. H. Chu, C. M. Chang, W. C. Lin, N.-N. Chu, M. Mansuripur, A. Q. Liu, and D. P. Tsai, “Fabrication of phase-change chalcogenide Ge2Sb2Te5 patterns by laser-induced forward transfer,” Opt. Express19(18), 16975–16984 (2011).
[CrossRef] [PubMed]

C. H. Chu, C. D. Shiue, H. W. Cheng, M. L. Tseng, H.-P. Chiang, M. Mansuripur, and D. P. Tsai, “Laser-induced phase transitions of Ge2Sb2Te5 thin films used in optical and electronic data storage and in thermal lithography,” Opt. Express18(17), 18383–18393 (2010).
[CrossRef] [PubMed]

Turkiewicz, J. P.

M. T. Hill, Y. S. Oei, B. Smalbrugge, Y. Zhu, T. De Vries, P. J. Van Veldhoven, F. W. M. Van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. De Waardt, E. J. Geluk, S. H. Kwon, Y. H. Lee, R. Notzel, and M. K. Smit, “Lasing in metallic-coated nanocavities,” Nat. Photonics1(10), 589–594 (2007).
[CrossRef]

Tyler, T.

S. Larouche, Y.-J. Tsai, T. Tyler, N. M. Jokerst, and D. R. Smith, “Infrared metamaterial phase holograms,” Nat. Mater.11(5), 450–454 (2012).
[CrossRef] [PubMed]

Uchino, T.

K. Tanaka, E. Plum, J. Y. Ou, T. Uchino, and N. I. Zheludev, “Multifold enhancement of quantum dot luminescence in plasmonic metamaterials,” Phys. Rev. Lett.105(22), 227403 (2010).
[CrossRef] [PubMed]

Ullrich, B.

D. M. Bagnall, B. Ullrich, H. Sakai, and Y. Segawa, “Micro-cavity lasing of optically excited CdS thin films at room temperature,” J. Cryst. Growth214, 1015–1018 (2000).
[CrossRef]

Usami, N.

J. S. Xia, Y. Ikegami, Y. Shiraki, N. Usami, and Y. Nakata, “Strong resonant luminescence from Ge quantum dots in photonic crystal microcavity at room temperature,” Appl. Phys. Lett.89(20), 201102 (2006).
[CrossRef]

Vahala, K. J.

K. J. Vahala, “Optical microcavities,” Nature424(6950), 839–846 (2003).
[CrossRef] [PubMed]

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature421(6926), 925–928 (2003).
[CrossRef] [PubMed]

S. M. Spillane, T. J. Kippenberg, and K. J. Vahala, “Ultralow-threshold Raman laser using a spherical dielectric microcavity,” Nature415(6872), 621–623 (2002).
[CrossRef] [PubMed]

Vailionis, A.

A. Vailionis, E. G. Gamaly, V. Mizeikis, W. Yang, A. V. Rode, and S. Juodkazis, “Evidence of superdense aluminium synthesized by ultrafast microexplosion,” Nat Commun2, 445 (2011).
[CrossRef] [PubMed]

Vainos, N. A.

Van Otten, F. W. M.

M. T. Hill, Y. S. Oei, B. Smalbrugge, Y. Zhu, T. De Vries, P. J. Van Veldhoven, F. W. M. Van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. De Waardt, E. J. Geluk, S. H. Kwon, Y. H. Lee, R. Notzel, and M. K. Smit, “Lasing in metallic-coated nanocavities,” Nat. Photonics1(10), 589–594 (2007).
[CrossRef]

Van Veldhoven, P. J.

M. T. Hill, Y. S. Oei, B. Smalbrugge, Y. Zhu, T. De Vries, P. J. Van Veldhoven, F. W. M. Van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. De Waardt, E. J. Geluk, S. H. Kwon, Y. H. Lee, R. Notzel, and M. K. Smit, “Lasing in metallic-coated nanocavities,” Nat. Photonics1(10), 589–594 (2007).
[CrossRef]

Vredenberg, A. M.

E. F. Schubert, A. M. Vredenberg, N. E. J. Hunt, Y. H. Wong, P. C. Becker, J. M. Poate, D. C. Jacobson, L. C. Feldman, and G. J. Zydzik, “Giant enhancement of luminescence intensity in Er-doped Si/SiO2 resonant cavities,” Appl. Phys. Lett.61(12), 1381–1383 (1992).
[CrossRef]

Wang, A. Y.

J. Xu, J. Liu, D. H. Cui, M. Gerhold, A. Y. Wang, M. Nagel, and T. K. Lippert, “Laser-assisted forward transfer of multi-spectral nanocrystal quantum dot emitters,” Nanotechnology18(2), 025403 (2007).
[CrossRef]

Weber, E.

M. H. Huang, S. Mao, H. Feick, H. Q. Yan, Y. Y. Wu, H. Kind, E. Weber, R. Russo, and P. D. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science292(5523), 1897–1899 (2001).
[CrossRef] [PubMed]

Wiesner, U.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature460(7259), 1110–1112 (2009).
[CrossRef] [PubMed]

Wong, C. W.

T. Gu, S. Kocaman, X. Yang, J. F. McMillan, M. B. Yu, G. Q. Lo, D. L. Kwong, and C. W. Wong, “Deterministic integrated tuning of multi-cavity resonances and phase for slow-light in coupled photonic crystal cavities,” Appl. Phys. Lett.98(12), 121103 (2011).
[CrossRef]

Wong, Y. H.

E. F. Schubert, A. M. Vredenberg, N. E. J. Hunt, Y. H. Wong, P. C. Becker, J. M. Poate, D. C. Jacobson, L. C. Feldman, and G. J. Zydzik, “Giant enhancement of luminescence intensity in Er-doped Si/SiO2 resonant cavities,” Appl. Phys. Lett.61(12), 1381–1383 (1992).
[CrossRef]

Wu, M. C.

Wu, P. C.

P. C. Wu, W. T. Chen, K.-Y. Yang, C. T. Hsiao, G. Sun, A. Q. Liu, N. I. Zheludev, and D. P. Tsai, “Magnetic plasmon induced transparency in three-dimensional metamolecules,” Nanophoton.1, 131–138 (2012).

M. L. Tseng, P. C. Wu, S. Sun, C. M. Chang, W. T. Chen, C. H. Chu, P.-L. Chen, L. Zhou, D.-W. Huang, T.-J. Yen, and D. P. Tsai, “Fabrication of multilayer metamaterials by femtosecond laser-induced forward-transfer technique,” Laser Photon. Rev.6(5), 702–707 (2012).
[CrossRef]

W. T. Chen, C. J. Chen, P. C. Wu, S. Sun, L. Zhou, G.-Y. Guo, C. T. Hsiao, K.-Y. Yang, N. I. Zheludev, and D. P. Tsai, “Optical magnetic response in three-dimensional metamaterial of upright plasmonic meta-molecules,” Opt. Express19(13), 12837–12842 (2011).
[CrossRef] [PubMed]

Wu, Y. Y.

M. H. Huang, S. Mao, H. Feick, H. Q. Yan, Y. Y. Wu, H. Kind, E. Weber, R. Russo, and P. D. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science292(5523), 1897–1899 (2001).
[CrossRef] [PubMed]

Xia, J. S.

J. S. Xia, Y. Ikegami, Y. Shiraki, N. Usami, and Y. Nakata, “Strong resonant luminescence from Ge quantum dots in photonic crystal microcavity at room temperature,” Appl. Phys. Lett.89(20), 201102 (2006).
[CrossRef]

Xu, J.

J. Xu, J. Liu, D. H. Cui, M. Gerhold, A. Y. Wang, M. Nagel, and T. K. Lippert, “Laser-assisted forward transfer of multi-spectral nanocrystal quantum dot emitters,” Nanotechnology18(2), 025403 (2007).
[CrossRef]

Yamamoto, N.

S. Noda, K. Tomoda, N. Yamamoto, and A. Chutinan, “Full three-dimensional photonic bandgap crystals at near-infrared wavelengths,” Science289(5479), 604–606 (2000).
[CrossRef] [PubMed]

Yan, H. Q.

M. H. Huang, S. Mao, H. Feick, H. Q. Yan, Y. Y. Wu, H. Kind, E. Weber, R. Russo, and P. D. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science292(5523), 1897–1899 (2001).
[CrossRef] [PubMed]

Yang, K.-Y.

P. C. Wu, W. T. Chen, K.-Y. Yang, C. T. Hsiao, G. Sun, A. Q. Liu, N. I. Zheludev, and D. P. Tsai, “Magnetic plasmon induced transparency in three-dimensional metamolecules,” Nanophoton.1, 131–138 (2012).

W. T. Chen, C. J. Chen, P. C. Wu, S. Sun, L. Zhou, G.-Y. Guo, C. T. Hsiao, K.-Y. Yang, N. I. Zheludev, and D. P. Tsai, “Optical magnetic response in three-dimensional metamaterial of upright plasmonic meta-molecules,” Opt. Express19(13), 12837–12842 (2011).
[CrossRef] [PubMed]

Yang, P. D.

M. H. Huang, S. Mao, H. Feick, H. Q. Yan, Y. Y. Wu, H. Kind, E. Weber, R. Russo, and P. D. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science292(5523), 1897–1899 (2001).
[CrossRef] [PubMed]

Yang, W.

A. Vailionis, E. G. Gamaly, V. Mizeikis, W. Yang, A. V. Rode, and S. Juodkazis, “Evidence of superdense aluminium synthesized by ultrafast microexplosion,” Nat Commun2, 445 (2011).
[CrossRef] [PubMed]

Yang, X.

X. Yang, J. Yao, J. Rho, X. Yin, and X. Zhang, “Experimental realization of three-dimensional indefinite cavities at the nanoscale with anomalous scaling laws,” Nat. Photonics6(7), 450–454 (2012).
[CrossRef]

T. Gu, S. Kocaman, X. Yang, J. F. McMillan, M. B. Yu, G. Q. Lo, D. L. Kwong, and C. W. Wong, “Deterministic integrated tuning of multi-cavity resonances and phase for slow-light in coupled photonic crystal cavities,” Appl. Phys. Lett.98(12), 121103 (2011).
[CrossRef]

Yang, X. D.

J. Yao, X. D. Yang, X. B. Yin, G. Bartal, and X. Zhang, “Three-dimensional nanometer-scale optical cavities of indefinite medium,” Proc. Natl. Acad. Sci. U.S.A.108(28), 11327–11331 (2011).
[CrossRef] [PubMed]

Yao, J.

X. Yang, J. Yao, J. Rho, X. Yin, and X. Zhang, “Experimental realization of three-dimensional indefinite cavities at the nanoscale with anomalous scaling laws,” Nat. Photonics6(7), 450–454 (2012).
[CrossRef]

J. Yao, X. D. Yang, X. B. Yin, G. Bartal, and X. Zhang, “Three-dimensional nanometer-scale optical cavities of indefinite medium,” Proc. Natl. Acad. Sci. U.S.A.108(28), 11327–11331 (2011).
[CrossRef] [PubMed]

Yen, T.-J.

M. L. Tseng, P. C. Wu, S. Sun, C. M. Chang, W. T. Chen, C. H. Chu, P.-L. Chen, L. Zhou, D.-W. Huang, T.-J. Yen, and D. P. Tsai, “Fabrication of multilayer metamaterials by femtosecond laser-induced forward-transfer technique,” Laser Photon. Rev.6(5), 702–707 (2012).
[CrossRef]

Yin, X.

X. Yang, J. Yao, J. Rho, X. Yin, and X. Zhang, “Experimental realization of three-dimensional indefinite cavities at the nanoscale with anomalous scaling laws,” Nat. Photonics6(7), 450–454 (2012).
[CrossRef]

Yin, X. B.

J. Yao, X. D. Yang, X. B. Yin, G. Bartal, and X. Zhang, “Three-dimensional nanometer-scale optical cavities of indefinite medium,” Proc. Natl. Acad. Sci. U.S.A.108(28), 11327–11331 (2011).
[CrossRef] [PubMed]

Ying, Y. J.

Yu, K.

Yu, M. B.

T. Gu, S. Kocaman, X. Yang, J. F. McMillan, M. B. Yu, G. Q. Lo, D. L. Kwong, and C. W. Wong, “Deterministic integrated tuning of multi-cavity resonances and phase for slow-light in coupled photonic crystal cavities,” Appl. Phys. Lett.98(12), 121103 (2011).
[CrossRef]

Zentgraf, T.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature461(7264), 629–632 (2009).
[CrossRef] [PubMed]

Zergioti, I.

Zhang, X.

X. Yang, J. Yao, J. Rho, X. Yin, and X. Zhang, “Experimental realization of three-dimensional indefinite cavities at the nanoscale with anomalous scaling laws,” Nat. Photonics6(7), 450–454 (2012).
[CrossRef]

J. Yao, X. D. Yang, X. B. Yin, G. Bartal, and X. Zhang, “Three-dimensional nanometer-scale optical cavities of indefinite medium,” Proc. Natl. Acad. Sci. U.S.A.108(28), 11327–11331 (2011).
[CrossRef] [PubMed]

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature461(7264), 629–632 (2009).
[CrossRef] [PubMed]

Zheludev, N. I.

P. C. Wu, W. T. Chen, K.-Y. Yang, C. T. Hsiao, G. Sun, A. Q. Liu, N. I. Zheludev, and D. P. Tsai, “Magnetic plasmon induced transparency in three-dimensional metamolecules,” Nanophoton.1, 131–138 (2012).

W. T. Chen, C. J. Chen, P. C. Wu, S. Sun, L. Zhou, G.-Y. Guo, C. T. Hsiao, K.-Y. Yang, N. I. Zheludev, and D. P. Tsai, “Optical magnetic response in three-dimensional metamaterial of upright plasmonic meta-molecules,” Opt. Express19(13), 12837–12842 (2011).
[CrossRef] [PubMed]

K. Tanaka, E. Plum, J. Y. Ou, T. Uchino, and N. I. Zheludev, “Multifold enhancement of quantum dot luminescence in plasmonic metamaterials,” Phys. Rev. Lett.105(22), 227403 (2010).
[CrossRef] [PubMed]

Zhou, L.

M. L. Tseng, P. C. Wu, S. Sun, C. M. Chang, W. T. Chen, C. H. Chu, P.-L. Chen, L. Zhou, D.-W. Huang, T.-J. Yen, and D. P. Tsai, “Fabrication of multilayer metamaterials by femtosecond laser-induced forward-transfer technique,” Laser Photon. Rev.6(5), 702–707 (2012).
[CrossRef]

W. T. Chen, C. J. Chen, P. C. Wu, S. Sun, L. Zhou, G.-Y. Guo, C. T. Hsiao, K.-Y. Yang, N. I. Zheludev, and D. P. Tsai, “Optical magnetic response in three-dimensional metamaterial of upright plasmonic meta-molecules,” Opt. Express19(13), 12837–12842 (2011).
[CrossRef] [PubMed]

Zhu, G.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature460(7259), 1110–1112 (2009).
[CrossRef] [PubMed]

Zhu, Y.

M. T. Hill, Y. S. Oei, B. Smalbrugge, Y. Zhu, T. De Vries, P. J. Van Veldhoven, F. W. M. Van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. De Waardt, E. J. Geluk, S. H. Kwon, Y. H. Lee, R. Notzel, and M. K. Smit, “Lasing in metallic-coated nanocavities,” Nat. Photonics1(10), 589–594 (2007).
[CrossRef]

Zydzik, G. J.

E. F. Schubert, A. M. Vredenberg, N. E. J. Hunt, Y. H. Wong, P. C. Becker, J. M. Poate, D. C. Jacobson, L. C. Feldman, and G. J. Zydzik, “Giant enhancement of luminescence intensity in Er-doped Si/SiO2 resonant cavities,” Appl. Phys. Lett.61(12), 1381–1383 (1992).
[CrossRef]

ACS Nano (2)

M. L. Tseng, Y.-W. Huang, M.-K. Hsiao, H. W. Huang, H. M. Chen, Y. L. Chen, C. H. Chu, N.-N. Chu, Y. J. He, C. M. Chang, W. C. Lin, D.-W. Huang, H.-P. Chiang, R.-S. Liu, G. Sun, and D. P. Tsai, “Fast fabrication of a Ag nanostructure substrate using the femtosecond laser for broad-band and tunable plasmonic enhancement,” ACS Nano6(6), 5190–5197 (2012).
[CrossRef] [PubMed]

A. I. Kuznetsov, A. B. Evlyukhin, M. R. Gonçalves, C. Reinhardt, A. Koroleva, M. L. Arnedillo, R. Kiyan, O. Marti, and B. N. Chichkov, “Laser fabrication of large-scale nanoparticle arrays for sensing applications,” ACS Nano5(6), 4843–4849 (2011).
[CrossRef] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (5)

Y. Akahane, M. Mochizuki, T. Asano, Y. Tanaka, and S. Noda, “Design of a channel drop filter by using a donor-type cavity with high-quality factor in a two-dimensional photonic crystal slab,” Appl. Phys. Lett.82(9), 1341–1343 (2003).
[CrossRef]

T. Gu, S. Kocaman, X. Yang, J. F. McMillan, M. B. Yu, G. Q. Lo, D. L. Kwong, and C. W. Wong, “Deterministic integrated tuning of multi-cavity resonances and phase for slow-light in coupled photonic crystal cavities,” Appl. Phys. Lett.98(12), 121103 (2011).
[CrossRef]

H. Saito, K. Nishi, I. Ogura, S. Sugou, and Y. Sugimoto, “Room-temperature lasing operation of a quantum-dot vertical-cavity surface-emitting laser,” Appl. Phys. Lett.69(21), 3140–3142 (1996).
[CrossRef]

E. F. Schubert, A. M. Vredenberg, N. E. J. Hunt, Y. H. Wong, P. C. Becker, J. M. Poate, D. C. Jacobson, L. C. Feldman, and G. J. Zydzik, “Giant enhancement of luminescence intensity in Er-doped Si/SiO2 resonant cavities,” Appl. Phys. Lett.61(12), 1381–1383 (1992).
[CrossRef]

J. S. Xia, Y. Ikegami, Y. Shiraki, N. Usami, and Y. Nakata, “Strong resonant luminescence from Ge quantum dots in photonic crystal microcavity at room temperature,” Appl. Phys. Lett.89(20), 201102 (2006).
[CrossRef]

Appl. Surf. Sci. (1)

M. Feinaeugle, A. P. Alloncle, P. Delaporte, C. L. Sones, and R. W. Eason, “Time-resolved shadowgraph imaging of femtosecond laser-induced forward transfer of solid materials,” Appl. Surf. Sci.258(22), 8475–8483 (2012).
[CrossRef]

Biosens. Bioelectron. (1)

M. Colina, P. Serra, J. M. Fernández-Pradas, L. Sevilla, and J. L. Morenza, “DNA deposition through laser induced forward transfer,” Biosens. Bioelectron.20(8), 1638–1642 (2005).
[CrossRef] [PubMed]

J. Appl. Phys. (1)

S. Juodkazis, V. Mizeikis, and H. Misawa, “Three-dimensional microfabrication of materials by femtosecond lasers for photonics applications,” J. Appl. Phys.106(5), 051101 (2009).
[CrossRef]

J. Cryst. Growth (1)

D. M. Bagnall, B. Ullrich, H. Sakai, and Y. Segawa, “Micro-cavity lasing of optically excited CdS thin films at room temperature,” J. Cryst. Growth214, 1015–1018 (2000).
[CrossRef]

J. Phys. A. (1)

R. Loudon, “The propagation of electromagnetic energy through an absorbing dielectric,” J. Phys. A.3(3), 233–245 (1970).
[CrossRef]

Laser Photon. Rev. (1)

M. L. Tseng, P. C. Wu, S. Sun, C. M. Chang, W. T. Chen, C. H. Chu, P.-L. Chen, L. Zhou, D.-W. Huang, T.-J. Yen, and D. P. Tsai, “Fabrication of multilayer metamaterials by femtosecond laser-induced forward-transfer technique,” Laser Photon. Rev.6(5), 702–707 (2012).
[CrossRef]

MRS Bull. (1)

C. B. Arnold, P. Serra, and A. Pique, “Laser direct-write techniques for printing of complex materials,” MRS Bull.32(01), 23–32 (2007).
[CrossRef]

Nanophoton. (1)

P. C. Wu, W. T. Chen, K.-Y. Yang, C. T. Hsiao, G. Sun, A. Q. Liu, N. I. Zheludev, and D. P. Tsai, “Magnetic plasmon induced transparency in three-dimensional metamolecules,” Nanophoton.1, 131–138 (2012).

Nanotechnology (2)

J. Xu, J. Liu, D. H. Cui, M. Gerhold, A. Y. Wang, M. Nagel, and T. K. Lippert, “Laser-assisted forward transfer of multi-spectral nanocrystal quantum dot emitters,” Nanotechnology18(2), 025403 (2007).
[CrossRef]

M. L. Tseng, C. M. Chang, B. H. Chen, Y.-W. Huang, C. H. Chu, K. S. Chung, Y. J. Liu, H. G. Tsai, N.-N. Chu, D.-W. Huang, H.-P. Chiang, and D. P. Tsai, “Fabrication of plasmonic devices using femtosecond laser-induced forward transfer technique,” Nanotechnology23(44), 444013 (2012).
[CrossRef] [PubMed]

Nat Commun (1)

A. Vailionis, E. G. Gamaly, V. Mizeikis, W. Yang, A. V. Rode, and S. Juodkazis, “Evidence of superdense aluminium synthesized by ultrafast microexplosion,” Nat Commun2, 445 (2011).
[CrossRef] [PubMed]

Nat. Mater. (3)

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater.2(4), 229–232 (2003).
[CrossRef] [PubMed]

M. Soljacić and J. D. Joannopoulos, “Enhancement of nonlinear effects using photonic crystals,” Nat. Mater.3(4), 211–219 (2004).
[CrossRef] [PubMed]

S. Larouche, Y.-J. Tsai, T. Tyler, N. M. Jokerst, and D. R. Smith, “Infrared metamaterial phase holograms,” Nat. Mater.11(5), 450–454 (2012).
[CrossRef] [PubMed]

Nat. Photonics (3)

M. T. Hill, Y. S. Oei, B. Smalbrugge, Y. Zhu, T. De Vries, P. J. Van Veldhoven, F. W. M. Van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. De Waardt, E. J. Geluk, S. H. Kwon, Y. H. Lee, R. Notzel, and M. K. Smit, “Lasing in metallic-coated nanocavities,” Nat. Photonics1(10), 589–594 (2007).
[CrossRef]

M. P. Nezhad, A. Simic, O. Bondarenko, B. Slutsky, A. Mizrahi, L. A. Feng, V. Lomakin, and Y. Fainman, “Room-temperature subwavelength metallo-dielectric lasers,” Nat. Photonics4(6), 395–399 (2010).
[CrossRef]

X. Yang, J. Yao, J. Rho, X. Yin, and X. Zhang, “Experimental realization of three-dimensional indefinite cavities at the nanoscale with anomalous scaling laws,” Nat. Photonics6(7), 450–454 (2012).
[CrossRef]

Nature (6)

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature425(6961), 944–947 (2003).
[CrossRef] [PubMed]

K. J. Vahala, “Optical microcavities,” Nature424(6950), 839–846 (2003).
[CrossRef] [PubMed]

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature461(7264), 629–632 (2009).
[CrossRef] [PubMed]

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature421(6926), 925–928 (2003).
[CrossRef] [PubMed]

S. M. Spillane, T. J. Kippenberg, and K. J. Vahala, “Ultralow-threshold Raman laser using a spherical dielectric microcavity,” Nature415(6872), 621–623 (2002).
[CrossRef] [PubMed]

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature460(7259), 1110–1112 (2009).
[CrossRef] [PubMed]

Opt. Express (9)

D. P. Banks, C. Grivas, I. Zergioti, and R. W. Eason, “Ballistic laser-assisted solid transfer (BLAST) from a thin film precursor,” Opt. Express16(5), 3249–3254 (2008).
[CrossRef] [PubMed]

K. Yu, A. Lakhani, and M. C. Wu, “Subwavelength metal-optic semiconductor nanopatch lasers,” Opt. Express18(9), 8790–8799 (2010).
[CrossRef] [PubMed]

C. H. Chu, C. D. Shiue, H. W. Cheng, M. L. Tseng, H.-P. Chiang, M. Mansuripur, and D. P. Tsai, “Laser-induced phase transitions of Ge2Sb2Te5 thin films used in optical and electronic data storage and in thermal lithography,” Opt. Express18(17), 18383–18393 (2010).
[CrossRef] [PubMed]

A. I. Kuznetsov, R. Kiyan, and B. N. Chichkov, “Laser fabrication of 2D and 3D metal nanoparticle structures and arrays,” Opt. Express18(20), 21198–21203 (2010).
[CrossRef] [PubMed]

M. Malinauskas, P. Danilevičius, and S. Juodkazis, “Three-dimensional micro-/nano-structuring via direct write polymerization with picosecond laser pulses,” Opt. Express19(6), 5602–5610 (2011).
[CrossRef] [PubMed]

N. R. Han, Z. C. Chen, C. S. Lim, B. Ng, and M. H. Hong, “Broadband multi-layer terahertz metamaterials fabrication and characterization on flexible substrates,” Opt. Express19(8), 6990–6998 (2011).
[CrossRef] [PubMed]

K. S. Kaur, A. Z. Subramanian, Y. J. Ying, D. P. Banks, M. Feinaeugle, P. Horak, V. Apostolopoulos, C. L. Sones, S. Mailis, and R. W. Eason, “Waveguide mode filters fabricated using laser-induced forward transfer,” Opt. Express19(10), 9814–9819 (2011).
[CrossRef] [PubMed]

W. T. Chen, C. J. Chen, P. C. Wu, S. Sun, L. Zhou, G.-Y. Guo, C. T. Hsiao, K.-Y. Yang, N. I. Zheludev, and D. P. Tsai, “Optical magnetic response in three-dimensional metamaterial of upright plasmonic meta-molecules,” Opt. Express19(13), 12837–12842 (2011).
[CrossRef] [PubMed]

M. L. Tseng, B. H. Chen, C. H. Chu, C. M. Chang, W. C. Lin, N.-N. Chu, M. Mansuripur, A. Q. Liu, and D. P. Tsai, “Fabrication of phase-change chalcogenide Ge2Sb2Te5 patterns by laser-induced forward transfer,” Opt. Express19(18), 16975–16984 (2011).
[CrossRef] [PubMed]

Phys. Lett. A (1)

R. Ruppin, “Electromagnetic energy density in a dispersive and absorptive material,” Phys. Lett. A299(2-3), 309–312 (2002).
[CrossRef]

Phys. Rev. B (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6(12), 4370–4379 (1972).
[CrossRef]

Phys. Rev. Lett. (2)

K. Tanaka, E. Plum, J. Y. Ou, T. Uchino, and N. I. Zheludev, “Multifold enhancement of quantum dot luminescence in plasmonic metamaterials,” Phys. Rev. Lett.105(22), 227403 (2010).
[CrossRef] [PubMed]

V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, and L. Maleki, “Nonlinear optics and crystalline whispering gallery mode cavities,” Phys. Rev. Lett.92(4), 043903 (2004).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (1)

J. Yao, X. D. Yang, X. B. Yin, G. Bartal, and X. Zhang, “Three-dimensional nanometer-scale optical cavities of indefinite medium,” Proc. Natl. Acad. Sci. U.S.A.108(28), 11327–11331 (2011).
[CrossRef] [PubMed]

Science (2)

S. Noda, K. Tomoda, N. Yamamoto, and A. Chutinan, “Full three-dimensional photonic bandgap crystals at near-infrared wavelengths,” Science289(5479), 604–606 (2000).
[CrossRef] [PubMed]

M. H. Huang, S. Mao, H. Feick, H. Q. Yan, Y. Y. Wu, H. Kind, E. Weber, R. Russo, and P. D. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science292(5523), 1897–1899 (2001).
[CrossRef] [PubMed]

Other (2)

R. Ameling and H. Giessen, “Microcavity plasmonics: strong coupling of photonic cavities and plasmons,” Laser Photonics Rev. 1–29 (2012) /DOI .
[CrossRef]

C. M. Chang, M. L. Tseng, B. H. Cheng, C. H. C, Y. Z. Ho, H. W. Huang, Y.-C. Lan, D.-W. Huang, A. Q. Liu, and D. P. Tsai, “Three-dimensional plasmonic micro projector for light manipulation,” Adv. Mater. (2012)/ DOI: .
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Schematic illustration of fs-LIFT process. (b) The feature size of a multilayered plasmonic cavity in nanometer scale. The period along x-direction Px and y-direction Py are 1100 nm and 650 nm.

Fig. 2
Fig. 2

SEM images of the fabricated structures on (a) donor and (b) receiver. (c) Magnified SEM image of receiver.

Fig. 3
Fig. 3

SEM images of (a) the fabricated multilayer cavity arrays on donor and (b) the corresponding laser-transferred structures on receiver.

Fig. 4
Fig. 4

A comparison transmittance spectra between experimental result (red curve) and simulation result (blue curve). Two resonance modes are marked by I and II from longer to shorter wavelength.

Fig. 5
Fig. 5

Analysis of plasmonic resonance modes. The first and second column corresponds to mode II and mode I. The first row show electric field distribution of z-component (Ez) corresponding to xz plane. The second and the third row show the magnetic field of x-component (Hx) and electric field of z-component (Ez) corresponding to xy plane at height z = 85 nm, respectively. Colorful scale bar shows relative intensity in arbitrary unit.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

V m = 1 max( W av ( r )) W av ( r ) d 3 r
W av = ε 0 4 ( ε + 2ω ε Γ e ) | E | 2 + μ 0 4 | H | 2

Metrics