Abstract

Fabrication of small nanoantennas with high aspect ratios via electron beam lithography is at the current technical limit of nanofabrication and hence significant deviations from the intended shape of small nanobars occur. Via numerical simulations, we investigate the influence of geometrical variations of gap nanoantennas, having dimensions on the order of only a few tens of nanometers. We show that those deviations have a significant influence on the performance of such nanoantennas. In particular, their resonance wavelength as well as the magnitude of absorption and scattering cross section and the electric field distribution in the near field is strongly altered. Our findings are thus of importance for applications based on near field as well as those based on far field interactions with nanoantennas and have to be carefully and individually considered in both cases.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Ozbay, “Plasmonics: Merging photonics and electronics at nanoscale dimensions,” Science311, 189–193 (2006).
    [CrossRef] [PubMed]
  2. S. A. Maier and H. A. Atwater, “Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures,” J. Appl. Phys.98, 011101 (2005).
    [CrossRef]
  3. J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater.9, 193–204 (2010).
    [CrossRef] [PubMed]
  4. K. Busch, G. von Freymann, S. Linden, S. F. Mingaleev, L. Tkeshelashvili, and M. Wegener, “Periodic nanostructures for photonics,” Phys. Rep.444, 101–202 (2007).
    [CrossRef]
  5. J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater.7, 442–453 (2008).
    [CrossRef] [PubMed]
  6. E. A. Coronado and G. C. Schatz, “Surface plasmon broadening for arbitrary shape nanoparticles: A geometrical probability approach,” J. Chem. Phys.119, 3926–3934 (2003).
    [CrossRef]
  7. P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science308, 1607–1609 (2005).
    [CrossRef] [PubMed]
  8. J. N. Farahani, D. W. Pohl, H.-J. Eisler, and B. Hecht, “Single quantum dot coupled to a scanning optical antenna: A tunable superemitter,” Phys. Rev. Lett.95, 017402 (2005).
    [CrossRef] [PubMed]
  9. A. Kinkhabwala, Z. F. Yu, S. H. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics3, 654–657 (2009).
    [CrossRef]
  10. T. Klar, M. Perner, S. Grosse, G. von Plessen, W. Spirkl, and J. Feldmann, “Surface-plasmon resonances in single metallic nanoparticles,” Phys. Rev. Lett.80, 4249–4252 (1998).
    [CrossRef]
  11. T. Taminiau, F. Stefani, F. Segerink, and N. F. van Hulst, “Optical antennas direct single-molecule emission,” Nat. Photonics2, 234–237 (2008).
    [CrossRef]
  12. J. J. Greffet, M. Laroche, and F. Marquier, “Impedance of a nanoantenna and a single quantum emitter,” Phys. Rev. Lett.105, 117701 (2010).
    [CrossRef] [PubMed]
  13. L. Novotny, “Effective wavelength scaling for optical antennas,” Phys. Rev. Lett.98, 266802 (2007).
    [CrossRef] [PubMed]
  14. E. Seo, B. K. Choi, and O. Kim, “Determination of proximity effect parameters and the shape bias parameter in electron beam lithography,” Microelectron. Eng.53, 305–308 (2000).
    [CrossRef]
  15. M. Hauptmann, K. H. Choi, P. Jaschinsky, C. Hohle, J. Kretz, and L. M. Eng, “Determination of proximity effect parameters by means of CD-linearity in sub 100nm electron beam lithography,” Microelectron. Eng.86, 539–543 (2009).
    [CrossRef]
  16. A. V. Kildishev, J. D. Borneman, K.-P. Chen, and V. P. Drachev, “Numerical modeling of plasmonic nanoantennas with realistic 3D roughness and distortion,” Sensors11, 7178–7187 (2011).
    [CrossRef] [PubMed]
  17. A. M. Kern and O. J. F. Martin, “Excitation and reemission of molecules near realistic plasmonic nanostructures,” Nano Lett.11, 482–487 (2011).
    [CrossRef] [PubMed]
  18. A. Trügler, J.-C. Tinguely, J. R. Krenn, A. Hohenau, and U. Hohenester, “Influence of surface roughness on the optical properties of plasmonic nanoparticles,” Phys. Rev. B83, 081412 (2011).
    [CrossRef]
  19. “ http://www.lumerical.com ,” (2012).
  20. “ http://www.comsol.com ,” (2012).
  21. H. Fischer and O. J. F. Martin, “Engineering the optical response of plasmonic nanoantennas,” Opt. Express16, 9144–9154 (2008).
    [CrossRef] [PubMed]
  22. Raith GmbH, personal communication (2011).
  23. M. D. Wissert, A. W. Schell, K. S. Ilin, M. Siegel, and H.-J. Eisler, “Nanoengineering and characterization of gold dipole nanoantennas with enhanced integrated scattering properties,” Nanotechnology20, 425203 (2009).
    [CrossRef] [PubMed]
  24. O. C. Zienkiewicz, R. L. Taylor, and J. Z. Zhu, Finite Element Method: Its Basis and Fundamentals (Butterworth Heinemann, 2005).
  25. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House Inc, 2005).
  26. P. B. Johnson and R. W. Christy, “Optical-constants of noble-metals,” Phys. Rev. B6, 4370–4379 (1972).
    [CrossRef]
  27. M. Fleischmann, P. J. Hendra, and A. J. McQuillian, “Raman-spectra of pyridine adsorbed at a silver electrode,” Chem. Phys. Lett.26, 163–166 (1974).
    [CrossRef]
  28. K. T. Shimizu, W. K. Woo, B. R. Fisher, H.-J. Eisler, and M. G. Bawendi, “Surface-enhanced emission from single semiconductor nanocrystals,” Phys. Rev. Lett.89, 117401 (2002).
    [CrossRef] [PubMed]

2011 (3)

A. V. Kildishev, J. D. Borneman, K.-P. Chen, and V. P. Drachev, “Numerical modeling of plasmonic nanoantennas with realistic 3D roughness and distortion,” Sensors11, 7178–7187 (2011).
[CrossRef] [PubMed]

A. M. Kern and O. J. F. Martin, “Excitation and reemission of molecules near realistic plasmonic nanostructures,” Nano Lett.11, 482–487 (2011).
[CrossRef] [PubMed]

A. Trügler, J.-C. Tinguely, J. R. Krenn, A. Hohenau, and U. Hohenester, “Influence of surface roughness on the optical properties of plasmonic nanoparticles,” Phys. Rev. B83, 081412 (2011).
[CrossRef]

2010 (2)

J. J. Greffet, M. Laroche, and F. Marquier, “Impedance of a nanoantenna and a single quantum emitter,” Phys. Rev. Lett.105, 117701 (2010).
[CrossRef] [PubMed]

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater.9, 193–204 (2010).
[CrossRef] [PubMed]

2009 (3)

A. Kinkhabwala, Z. F. Yu, S. H. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics3, 654–657 (2009).
[CrossRef]

M. D. Wissert, A. W. Schell, K. S. Ilin, M. Siegel, and H.-J. Eisler, “Nanoengineering and characterization of gold dipole nanoantennas with enhanced integrated scattering properties,” Nanotechnology20, 425203 (2009).
[CrossRef] [PubMed]

M. Hauptmann, K. H. Choi, P. Jaschinsky, C. Hohle, J. Kretz, and L. M. Eng, “Determination of proximity effect parameters by means of CD-linearity in sub 100nm electron beam lithography,” Microelectron. Eng.86, 539–543 (2009).
[CrossRef]

2008 (3)

T. Taminiau, F. Stefani, F. Segerink, and N. F. van Hulst, “Optical antennas direct single-molecule emission,” Nat. Photonics2, 234–237 (2008).
[CrossRef]

H. Fischer and O. J. F. Martin, “Engineering the optical response of plasmonic nanoantennas,” Opt. Express16, 9144–9154 (2008).
[CrossRef] [PubMed]

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater.7, 442–453 (2008).
[CrossRef] [PubMed]

2007 (2)

K. Busch, G. von Freymann, S. Linden, S. F. Mingaleev, L. Tkeshelashvili, and M. Wegener, “Periodic nanostructures for photonics,” Phys. Rep.444, 101–202 (2007).
[CrossRef]

L. Novotny, “Effective wavelength scaling for optical antennas,” Phys. Rev. Lett.98, 266802 (2007).
[CrossRef] [PubMed]

2006 (1)

E. Ozbay, “Plasmonics: Merging photonics and electronics at nanoscale dimensions,” Science311, 189–193 (2006).
[CrossRef] [PubMed]

2005 (3)

S. A. Maier and H. A. Atwater, “Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures,” J. Appl. Phys.98, 011101 (2005).
[CrossRef]

P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science308, 1607–1609 (2005).
[CrossRef] [PubMed]

J. N. Farahani, D. W. Pohl, H.-J. Eisler, and B. Hecht, “Single quantum dot coupled to a scanning optical antenna: A tunable superemitter,” Phys. Rev. Lett.95, 017402 (2005).
[CrossRef] [PubMed]

2003 (1)

E. A. Coronado and G. C. Schatz, “Surface plasmon broadening for arbitrary shape nanoparticles: A geometrical probability approach,” J. Chem. Phys.119, 3926–3934 (2003).
[CrossRef]

2002 (1)

K. T. Shimizu, W. K. Woo, B. R. Fisher, H.-J. Eisler, and M. G. Bawendi, “Surface-enhanced emission from single semiconductor nanocrystals,” Phys. Rev. Lett.89, 117401 (2002).
[CrossRef] [PubMed]

2000 (1)

E. Seo, B. K. Choi, and O. Kim, “Determination of proximity effect parameters and the shape bias parameter in electron beam lithography,” Microelectron. Eng.53, 305–308 (2000).
[CrossRef]

1998 (1)

T. Klar, M. Perner, S. Grosse, G. von Plessen, W. Spirkl, and J. Feldmann, “Surface-plasmon resonances in single metallic nanoparticles,” Phys. Rev. Lett.80, 4249–4252 (1998).
[CrossRef]

1974 (1)

M. Fleischmann, P. J. Hendra, and A. J. McQuillian, “Raman-spectra of pyridine adsorbed at a silver electrode,” Chem. Phys. Lett.26, 163–166 (1974).
[CrossRef]

1972 (1)

P. B. Johnson and R. W. Christy, “Optical-constants of noble-metals,” Phys. Rev. B6, 4370–4379 (1972).
[CrossRef]

Anker, J. N.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater.7, 442–453 (2008).
[CrossRef] [PubMed]

Atwater, H. A.

S. A. Maier and H. A. Atwater, “Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures,” J. Appl. Phys.98, 011101 (2005).
[CrossRef]

Avlasevich, Y.

A. Kinkhabwala, Z. F. Yu, S. H. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics3, 654–657 (2009).
[CrossRef]

Barnard, E. S.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater.9, 193–204 (2010).
[CrossRef] [PubMed]

Bawendi, M. G.

K. T. Shimizu, W. K. Woo, B. R. Fisher, H.-J. Eisler, and M. G. Bawendi, “Surface-enhanced emission from single semiconductor nanocrystals,” Phys. Rev. Lett.89, 117401 (2002).
[CrossRef] [PubMed]

Borneman, J. D.

A. V. Kildishev, J. D. Borneman, K.-P. Chen, and V. P. Drachev, “Numerical modeling of plasmonic nanoantennas with realistic 3D roughness and distortion,” Sensors11, 7178–7187 (2011).
[CrossRef] [PubMed]

Brongersma, M. L.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater.9, 193–204 (2010).
[CrossRef] [PubMed]

Busch, K.

K. Busch, G. von Freymann, S. Linden, S. F. Mingaleev, L. Tkeshelashvili, and M. Wegener, “Periodic nanostructures for photonics,” Phys. Rep.444, 101–202 (2007).
[CrossRef]

Cai, W.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater.9, 193–204 (2010).
[CrossRef] [PubMed]

Chen, K.-P.

A. V. Kildishev, J. D. Borneman, K.-P. Chen, and V. P. Drachev, “Numerical modeling of plasmonic nanoantennas with realistic 3D roughness and distortion,” Sensors11, 7178–7187 (2011).
[CrossRef] [PubMed]

Choi, B. K.

E. Seo, B. K. Choi, and O. Kim, “Determination of proximity effect parameters and the shape bias parameter in electron beam lithography,” Microelectron. Eng.53, 305–308 (2000).
[CrossRef]

Choi, K. H.

M. Hauptmann, K. H. Choi, P. Jaschinsky, C. Hohle, J. Kretz, and L. M. Eng, “Determination of proximity effect parameters by means of CD-linearity in sub 100nm electron beam lithography,” Microelectron. Eng.86, 539–543 (2009).
[CrossRef]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical-constants of noble-metals,” Phys. Rev. B6, 4370–4379 (1972).
[CrossRef]

Coronado, E. A.

E. A. Coronado and G. C. Schatz, “Surface plasmon broadening for arbitrary shape nanoparticles: A geometrical probability approach,” J. Chem. Phys.119, 3926–3934 (2003).
[CrossRef]

Drachev, V. P.

A. V. Kildishev, J. D. Borneman, K.-P. Chen, and V. P. Drachev, “Numerical modeling of plasmonic nanoantennas with realistic 3D roughness and distortion,” Sensors11, 7178–7187 (2011).
[CrossRef] [PubMed]

Eisler, H.-J.

M. D. Wissert, A. W. Schell, K. S. Ilin, M. Siegel, and H.-J. Eisler, “Nanoengineering and characterization of gold dipole nanoantennas with enhanced integrated scattering properties,” Nanotechnology20, 425203 (2009).
[CrossRef] [PubMed]

J. N. Farahani, D. W. Pohl, H.-J. Eisler, and B. Hecht, “Single quantum dot coupled to a scanning optical antenna: A tunable superemitter,” Phys. Rev. Lett.95, 017402 (2005).
[CrossRef] [PubMed]

P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science308, 1607–1609 (2005).
[CrossRef] [PubMed]

K. T. Shimizu, W. K. Woo, B. R. Fisher, H.-J. Eisler, and M. G. Bawendi, “Surface-enhanced emission from single semiconductor nanocrystals,” Phys. Rev. Lett.89, 117401 (2002).
[CrossRef] [PubMed]

Eng, L. M.

M. Hauptmann, K. H. Choi, P. Jaschinsky, C. Hohle, J. Kretz, and L. M. Eng, “Determination of proximity effect parameters by means of CD-linearity in sub 100nm electron beam lithography,” Microelectron. Eng.86, 539–543 (2009).
[CrossRef]

Fan, S. H.

A. Kinkhabwala, Z. F. Yu, S. H. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics3, 654–657 (2009).
[CrossRef]

Farahani, J. N.

J. N. Farahani, D. W. Pohl, H.-J. Eisler, and B. Hecht, “Single quantum dot coupled to a scanning optical antenna: A tunable superemitter,” Phys. Rev. Lett.95, 017402 (2005).
[CrossRef] [PubMed]

Feldmann, J.

T. Klar, M. Perner, S. Grosse, G. von Plessen, W. Spirkl, and J. Feldmann, “Surface-plasmon resonances in single metallic nanoparticles,” Phys. Rev. Lett.80, 4249–4252 (1998).
[CrossRef]

Fischer, H.

Fisher, B. R.

K. T. Shimizu, W. K. Woo, B. R. Fisher, H.-J. Eisler, and M. G. Bawendi, “Surface-enhanced emission from single semiconductor nanocrystals,” Phys. Rev. Lett.89, 117401 (2002).
[CrossRef] [PubMed]

Fleischmann, M.

M. Fleischmann, P. J. Hendra, and A. J. McQuillian, “Raman-spectra of pyridine adsorbed at a silver electrode,” Chem. Phys. Lett.26, 163–166 (1974).
[CrossRef]

Greffet, J. J.

J. J. Greffet, M. Laroche, and F. Marquier, “Impedance of a nanoantenna and a single quantum emitter,” Phys. Rev. Lett.105, 117701 (2010).
[CrossRef] [PubMed]

Grosse, S.

T. Klar, M. Perner, S. Grosse, G. von Plessen, W. Spirkl, and J. Feldmann, “Surface-plasmon resonances in single metallic nanoparticles,” Phys. Rev. Lett.80, 4249–4252 (1998).
[CrossRef]

Hagness, S. C.

A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House Inc, 2005).

Hall, W. P.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater.7, 442–453 (2008).
[CrossRef] [PubMed]

Hauptmann, M.

M. Hauptmann, K. H. Choi, P. Jaschinsky, C. Hohle, J. Kretz, and L. M. Eng, “Determination of proximity effect parameters by means of CD-linearity in sub 100nm electron beam lithography,” Microelectron. Eng.86, 539–543 (2009).
[CrossRef]

Hecht, B.

J. N. Farahani, D. W. Pohl, H.-J. Eisler, and B. Hecht, “Single quantum dot coupled to a scanning optical antenna: A tunable superemitter,” Phys. Rev. Lett.95, 017402 (2005).
[CrossRef] [PubMed]

P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science308, 1607–1609 (2005).
[CrossRef] [PubMed]

Hendra, P. J.

M. Fleischmann, P. J. Hendra, and A. J. McQuillian, “Raman-spectra of pyridine adsorbed at a silver electrode,” Chem. Phys. Lett.26, 163–166 (1974).
[CrossRef]

Hohenau, A.

A. Trügler, J.-C. Tinguely, J. R. Krenn, A. Hohenau, and U. Hohenester, “Influence of surface roughness on the optical properties of plasmonic nanoparticles,” Phys. Rev. B83, 081412 (2011).
[CrossRef]

Hohenester, U.

A. Trügler, J.-C. Tinguely, J. R. Krenn, A. Hohenau, and U. Hohenester, “Influence of surface roughness on the optical properties of plasmonic nanoparticles,” Phys. Rev. B83, 081412 (2011).
[CrossRef]

Hohle, C.

M. Hauptmann, K. H. Choi, P. Jaschinsky, C. Hohle, J. Kretz, and L. M. Eng, “Determination of proximity effect parameters by means of CD-linearity in sub 100nm electron beam lithography,” Microelectron. Eng.86, 539–543 (2009).
[CrossRef]

Ilin, K. S.

M. D. Wissert, A. W. Schell, K. S. Ilin, M. Siegel, and H.-J. Eisler, “Nanoengineering and characterization of gold dipole nanoantennas with enhanced integrated scattering properties,” Nanotechnology20, 425203 (2009).
[CrossRef] [PubMed]

Jaschinsky, P.

M. Hauptmann, K. H. Choi, P. Jaschinsky, C. Hohle, J. Kretz, and L. M. Eng, “Determination of proximity effect parameters by means of CD-linearity in sub 100nm electron beam lithography,” Microelectron. Eng.86, 539–543 (2009).
[CrossRef]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical-constants of noble-metals,” Phys. Rev. B6, 4370–4379 (1972).
[CrossRef]

Jun, Y. C.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater.9, 193–204 (2010).
[CrossRef] [PubMed]

Kern, A. M.

A. M. Kern and O. J. F. Martin, “Excitation and reemission of molecules near realistic plasmonic nanostructures,” Nano Lett.11, 482–487 (2011).
[CrossRef] [PubMed]

Kildishev, A. V.

A. V. Kildishev, J. D. Borneman, K.-P. Chen, and V. P. Drachev, “Numerical modeling of plasmonic nanoantennas with realistic 3D roughness and distortion,” Sensors11, 7178–7187 (2011).
[CrossRef] [PubMed]

Kim, O.

E. Seo, B. K. Choi, and O. Kim, “Determination of proximity effect parameters and the shape bias parameter in electron beam lithography,” Microelectron. Eng.53, 305–308 (2000).
[CrossRef]

Kinkhabwala, A.

A. Kinkhabwala, Z. F. Yu, S. H. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics3, 654–657 (2009).
[CrossRef]

Klar, T.

T. Klar, M. Perner, S. Grosse, G. von Plessen, W. Spirkl, and J. Feldmann, “Surface-plasmon resonances in single metallic nanoparticles,” Phys. Rev. Lett.80, 4249–4252 (1998).
[CrossRef]

Krenn, J. R.

A. Trügler, J.-C. Tinguely, J. R. Krenn, A. Hohenau, and U. Hohenester, “Influence of surface roughness on the optical properties of plasmonic nanoparticles,” Phys. Rev. B83, 081412 (2011).
[CrossRef]

Kretz, J.

M. Hauptmann, K. H. Choi, P. Jaschinsky, C. Hohle, J. Kretz, and L. M. Eng, “Determination of proximity effect parameters by means of CD-linearity in sub 100nm electron beam lithography,” Microelectron. Eng.86, 539–543 (2009).
[CrossRef]

Laroche, M.

J. J. Greffet, M. Laroche, and F. Marquier, “Impedance of a nanoantenna and a single quantum emitter,” Phys. Rev. Lett.105, 117701 (2010).
[CrossRef] [PubMed]

Linden, S.

K. Busch, G. von Freymann, S. Linden, S. F. Mingaleev, L. Tkeshelashvili, and M. Wegener, “Periodic nanostructures for photonics,” Phys. Rep.444, 101–202 (2007).
[CrossRef]

Lyandres, O.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater.7, 442–453 (2008).
[CrossRef] [PubMed]

Maier, S. A.

S. A. Maier and H. A. Atwater, “Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures,” J. Appl. Phys.98, 011101 (2005).
[CrossRef]

Marquier, F.

J. J. Greffet, M. Laroche, and F. Marquier, “Impedance of a nanoantenna and a single quantum emitter,” Phys. Rev. Lett.105, 117701 (2010).
[CrossRef] [PubMed]

Martin, O. J. F.

A. M. Kern and O. J. F. Martin, “Excitation and reemission of molecules near realistic plasmonic nanostructures,” Nano Lett.11, 482–487 (2011).
[CrossRef] [PubMed]

H. Fischer and O. J. F. Martin, “Engineering the optical response of plasmonic nanoantennas,” Opt. Express16, 9144–9154 (2008).
[CrossRef] [PubMed]

P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science308, 1607–1609 (2005).
[CrossRef] [PubMed]

McQuillian, A. J.

M. Fleischmann, P. J. Hendra, and A. J. McQuillian, “Raman-spectra of pyridine adsorbed at a silver electrode,” Chem. Phys. Lett.26, 163–166 (1974).
[CrossRef]

Mingaleev, S. F.

K. Busch, G. von Freymann, S. Linden, S. F. Mingaleev, L. Tkeshelashvili, and M. Wegener, “Periodic nanostructures for photonics,” Phys. Rep.444, 101–202 (2007).
[CrossRef]

Moerner, W. E.

A. Kinkhabwala, Z. F. Yu, S. H. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics3, 654–657 (2009).
[CrossRef]

Mühlschlegel, P.

P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science308, 1607–1609 (2005).
[CrossRef] [PubMed]

Müllen, K.

A. Kinkhabwala, Z. F. Yu, S. H. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics3, 654–657 (2009).
[CrossRef]

Novotny, L.

L. Novotny, “Effective wavelength scaling for optical antennas,” Phys. Rev. Lett.98, 266802 (2007).
[CrossRef] [PubMed]

Ozbay, E.

E. Ozbay, “Plasmonics: Merging photonics and electronics at nanoscale dimensions,” Science311, 189–193 (2006).
[CrossRef] [PubMed]

Perner, M.

T. Klar, M. Perner, S. Grosse, G. von Plessen, W. Spirkl, and J. Feldmann, “Surface-plasmon resonances in single metallic nanoparticles,” Phys. Rev. Lett.80, 4249–4252 (1998).
[CrossRef]

Pohl, D. W.

J. N. Farahani, D. W. Pohl, H.-J. Eisler, and B. Hecht, “Single quantum dot coupled to a scanning optical antenna: A tunable superemitter,” Phys. Rev. Lett.95, 017402 (2005).
[CrossRef] [PubMed]

P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science308, 1607–1609 (2005).
[CrossRef] [PubMed]

Schatz, G. C.

E. A. Coronado and G. C. Schatz, “Surface plasmon broadening for arbitrary shape nanoparticles: A geometrical probability approach,” J. Chem. Phys.119, 3926–3934 (2003).
[CrossRef]

Schell, A. W.

M. D. Wissert, A. W. Schell, K. S. Ilin, M. Siegel, and H.-J. Eisler, “Nanoengineering and characterization of gold dipole nanoantennas with enhanced integrated scattering properties,” Nanotechnology20, 425203 (2009).
[CrossRef] [PubMed]

Schuller, J. A.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater.9, 193–204 (2010).
[CrossRef] [PubMed]

Segerink, F.

T. Taminiau, F. Stefani, F. Segerink, and N. F. van Hulst, “Optical antennas direct single-molecule emission,” Nat. Photonics2, 234–237 (2008).
[CrossRef]

Seo, E.

E. Seo, B. K. Choi, and O. Kim, “Determination of proximity effect parameters and the shape bias parameter in electron beam lithography,” Microelectron. Eng.53, 305–308 (2000).
[CrossRef]

Shah, N. C.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater.7, 442–453 (2008).
[CrossRef] [PubMed]

Shimizu, K. T.

K. T. Shimizu, W. K. Woo, B. R. Fisher, H.-J. Eisler, and M. G. Bawendi, “Surface-enhanced emission from single semiconductor nanocrystals,” Phys. Rev. Lett.89, 117401 (2002).
[CrossRef] [PubMed]

Siegel, M.

M. D. Wissert, A. W. Schell, K. S. Ilin, M. Siegel, and H.-J. Eisler, “Nanoengineering and characterization of gold dipole nanoantennas with enhanced integrated scattering properties,” Nanotechnology20, 425203 (2009).
[CrossRef] [PubMed]

Spirkl, W.

T. Klar, M. Perner, S. Grosse, G. von Plessen, W. Spirkl, and J. Feldmann, “Surface-plasmon resonances in single metallic nanoparticles,” Phys. Rev. Lett.80, 4249–4252 (1998).
[CrossRef]

Stefani, F.

T. Taminiau, F. Stefani, F. Segerink, and N. F. van Hulst, “Optical antennas direct single-molecule emission,” Nat. Photonics2, 234–237 (2008).
[CrossRef]

Taflove, A.

A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House Inc, 2005).

Taminiau, T.

T. Taminiau, F. Stefani, F. Segerink, and N. F. van Hulst, “Optical antennas direct single-molecule emission,” Nat. Photonics2, 234–237 (2008).
[CrossRef]

Taylor, R. L.

O. C. Zienkiewicz, R. L. Taylor, and J. Z. Zhu, Finite Element Method: Its Basis and Fundamentals (Butterworth Heinemann, 2005).

Tinguely, J.-C.

A. Trügler, J.-C. Tinguely, J. R. Krenn, A. Hohenau, and U. Hohenester, “Influence of surface roughness on the optical properties of plasmonic nanoparticles,” Phys. Rev. B83, 081412 (2011).
[CrossRef]

Tkeshelashvili, L.

K. Busch, G. von Freymann, S. Linden, S. F. Mingaleev, L. Tkeshelashvili, and M. Wegener, “Periodic nanostructures for photonics,” Phys. Rep.444, 101–202 (2007).
[CrossRef]

Trügler, A.

A. Trügler, J.-C. Tinguely, J. R. Krenn, A. Hohenau, and U. Hohenester, “Influence of surface roughness on the optical properties of plasmonic nanoparticles,” Phys. Rev. B83, 081412 (2011).
[CrossRef]

Van Duyne, R. P.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater.7, 442–453 (2008).
[CrossRef] [PubMed]

van Hulst, N. F.

T. Taminiau, F. Stefani, F. Segerink, and N. F. van Hulst, “Optical antennas direct single-molecule emission,” Nat. Photonics2, 234–237 (2008).
[CrossRef]

von Freymann, G.

K. Busch, G. von Freymann, S. Linden, S. F. Mingaleev, L. Tkeshelashvili, and M. Wegener, “Periodic nanostructures for photonics,” Phys. Rep.444, 101–202 (2007).
[CrossRef]

von Plessen, G.

T. Klar, M. Perner, S. Grosse, G. von Plessen, W. Spirkl, and J. Feldmann, “Surface-plasmon resonances in single metallic nanoparticles,” Phys. Rev. Lett.80, 4249–4252 (1998).
[CrossRef]

Wegener, M.

K. Busch, G. von Freymann, S. Linden, S. F. Mingaleev, L. Tkeshelashvili, and M. Wegener, “Periodic nanostructures for photonics,” Phys. Rep.444, 101–202 (2007).
[CrossRef]

White, J. S.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater.9, 193–204 (2010).
[CrossRef] [PubMed]

Wissert, M. D.

M. D. Wissert, A. W. Schell, K. S. Ilin, M. Siegel, and H.-J. Eisler, “Nanoengineering and characterization of gold dipole nanoantennas with enhanced integrated scattering properties,” Nanotechnology20, 425203 (2009).
[CrossRef] [PubMed]

Woo, W. K.

K. T. Shimizu, W. K. Woo, B. R. Fisher, H.-J. Eisler, and M. G. Bawendi, “Surface-enhanced emission from single semiconductor nanocrystals,” Phys. Rev. Lett.89, 117401 (2002).
[CrossRef] [PubMed]

Yu, Z. F.

A. Kinkhabwala, Z. F. Yu, S. H. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics3, 654–657 (2009).
[CrossRef]

Zhao, J.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater.7, 442–453 (2008).
[CrossRef] [PubMed]

Zhu, J. Z.

O. C. Zienkiewicz, R. L. Taylor, and J. Z. Zhu, Finite Element Method: Its Basis and Fundamentals (Butterworth Heinemann, 2005).

Zienkiewicz, O. C.

O. C. Zienkiewicz, R. L. Taylor, and J. Z. Zhu, Finite Element Method: Its Basis and Fundamentals (Butterworth Heinemann, 2005).

Chem. Phys. Lett. (1)

M. Fleischmann, P. J. Hendra, and A. J. McQuillian, “Raman-spectra of pyridine adsorbed at a silver electrode,” Chem. Phys. Lett.26, 163–166 (1974).
[CrossRef]

J. Appl. Phys. (1)

S. A. Maier and H. A. Atwater, “Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures,” J. Appl. Phys.98, 011101 (2005).
[CrossRef]

J. Chem. Phys. (1)

E. A. Coronado and G. C. Schatz, “Surface plasmon broadening for arbitrary shape nanoparticles: A geometrical probability approach,” J. Chem. Phys.119, 3926–3934 (2003).
[CrossRef]

Microelectron. Eng. (2)

E. Seo, B. K. Choi, and O. Kim, “Determination of proximity effect parameters and the shape bias parameter in electron beam lithography,” Microelectron. Eng.53, 305–308 (2000).
[CrossRef]

M. Hauptmann, K. H. Choi, P. Jaschinsky, C. Hohle, J. Kretz, and L. M. Eng, “Determination of proximity effect parameters by means of CD-linearity in sub 100nm electron beam lithography,” Microelectron. Eng.86, 539–543 (2009).
[CrossRef]

Nano Lett. (1)

A. M. Kern and O. J. F. Martin, “Excitation and reemission of molecules near realistic plasmonic nanostructures,” Nano Lett.11, 482–487 (2011).
[CrossRef] [PubMed]

Nanotechnology (1)

M. D. Wissert, A. W. Schell, K. S. Ilin, M. Siegel, and H.-J. Eisler, “Nanoengineering and characterization of gold dipole nanoantennas with enhanced integrated scattering properties,” Nanotechnology20, 425203 (2009).
[CrossRef] [PubMed]

Nat. Mater. (2)

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater.9, 193–204 (2010).
[CrossRef] [PubMed]

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater.7, 442–453 (2008).
[CrossRef] [PubMed]

Nat. Photonics (2)

A. Kinkhabwala, Z. F. Yu, S. H. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics3, 654–657 (2009).
[CrossRef]

T. Taminiau, F. Stefani, F. Segerink, and N. F. van Hulst, “Optical antennas direct single-molecule emission,” Nat. Photonics2, 234–237 (2008).
[CrossRef]

Opt. Express (1)

Phys. Rep. (1)

K. Busch, G. von Freymann, S. Linden, S. F. Mingaleev, L. Tkeshelashvili, and M. Wegener, “Periodic nanostructures for photonics,” Phys. Rep.444, 101–202 (2007).
[CrossRef]

Phys. Rev. B (2)

A. Trügler, J.-C. Tinguely, J. R. Krenn, A. Hohenau, and U. Hohenester, “Influence of surface roughness on the optical properties of plasmonic nanoparticles,” Phys. Rev. B83, 081412 (2011).
[CrossRef]

P. B. Johnson and R. W. Christy, “Optical-constants of noble-metals,” Phys. Rev. B6, 4370–4379 (1972).
[CrossRef]

Phys. Rev. Lett. (5)

J. N. Farahani, D. W. Pohl, H.-J. Eisler, and B. Hecht, “Single quantum dot coupled to a scanning optical antenna: A tunable superemitter,” Phys. Rev. Lett.95, 017402 (2005).
[CrossRef] [PubMed]

K. T. Shimizu, W. K. Woo, B. R. Fisher, H.-J. Eisler, and M. G. Bawendi, “Surface-enhanced emission from single semiconductor nanocrystals,” Phys. Rev. Lett.89, 117401 (2002).
[CrossRef] [PubMed]

J. J. Greffet, M. Laroche, and F. Marquier, “Impedance of a nanoantenna and a single quantum emitter,” Phys. Rev. Lett.105, 117701 (2010).
[CrossRef] [PubMed]

L. Novotny, “Effective wavelength scaling for optical antennas,” Phys. Rev. Lett.98, 266802 (2007).
[CrossRef] [PubMed]

T. Klar, M. Perner, S. Grosse, G. von Plessen, W. Spirkl, and J. Feldmann, “Surface-plasmon resonances in single metallic nanoparticles,” Phys. Rev. Lett.80, 4249–4252 (1998).
[CrossRef]

Science (2)

P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science308, 1607–1609 (2005).
[CrossRef] [PubMed]

E. Ozbay, “Plasmonics: Merging photonics and electronics at nanoscale dimensions,” Science311, 189–193 (2006).
[CrossRef] [PubMed]

Sensors (1)

A. V. Kildishev, J. D. Borneman, K.-P. Chen, and V. P. Drachev, “Numerical modeling of plasmonic nanoantennas with realistic 3D roughness and distortion,” Sensors11, 7178–7187 (2011).
[CrossRef] [PubMed]

Other (5)

“ http://www.lumerical.com ,” (2012).

“ http://www.comsol.com ,” (2012).

Raith GmbH, personal communication (2011).

O. C. Zienkiewicz, R. L. Taylor, and J. Z. Zhu, Finite Element Method: Its Basis and Fundamentals (Butterworth Heinemann, 2005).

A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House Inc, 2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

SEM images of antennas with different nominal arm length L after increasing the contrast [23]. The red curves indicate the extracted contours. Scale bars: 50 nm.

Fig. 2
Fig. 2

Simplified sketch of the antenna geometry with a plane wave incident on it (side view).

Fig. 3
Fig. 3

Simplified sketch of how the three types of simulated structures are obtained (top view). The SEM image is taken from an antenna with nominal arm length of 60 nm (scale bar: 50 nm). All edges are rounded by 3 nm. (a) Dimensions are taken from the layout intended to fabricate. (b) Dimensions are taken from SEM measurements. (c) The contour is extracted from SEM measurements.

Fig. 4
Fig. 4

Left: SEM image of a dipole antenna with a nominal arm length of 65 nm (scale bar: 50 nm). Middle: SEM image with increased contrast. The red line represents the extracted contour. Right: 3D model.

Fig. 5
Fig. 5

Absorption and scattering cross sections: comparison of antennas with ideal geometries simulated in Lumerical (solid lines) and COMSOL (dashed lines). Arm length 30 nm – 70 nm (other parameters see Fig. 2).

Fig. 6
Fig. 6

Near field distribution of the electric field intensity enhancement. The arm length is 55 nm and the wavelength of the incident plane wave is the resonance wavelength of 606.8 nm. The cross section is plotted in the middle of the antenna height. Color bar: | E tot | 2 | E in | 2. With Ein being the electric field amplitude of the incident plane wave. For this simulation, a finer mesh of maximum element size of 3 nm for the antenna and 5 nm for the close environment is used.

Fig. 7
Fig. 7

Near field distribution of the electric field intensity enhancement for an antenna with realistic contours. The nominal arm length is 55 nm and the wavelength of the incident plane wave is the resonance wavelength of 585.5 nm. The cross section is plotted at half of the antenna height. Color bar: | E tot | 2 | E in | 2. With Ein being the electric field amplitude of the incident plane wave. For this simulation, a finer mesh of maximum element size of 3 nm for the antenna and 5 nm for the close environment is used.

Fig. 8
Fig. 8

Absorption and scattering cross sections: comparison between antennas with ideal geometries, realistic dimensions and realistic contours. Arm length 55 nm.

Fig. 9
Fig. 9

Maximum of absorption and scattering cross section versus antenna arm length for realistic and ideal geometries.

Fig. 10
Fig. 10

Resonance wavelength from absorption and scattering cross sections versus antenna arm length for realistic and ideal geometries.

Metrics