Abstract

Optical trapping and manipulation typically relies on shaping focused light to control the optical force, usually on spherical objects. However, one can also shape the object to control the light deflection arising from the light-matter interaction and, hence, achieve desired optomechanical effects. In this work we look into the object shaping aspect and its potential for controlled optical manipulation. Using a simple bent waveguide as example, our numerical simulations show that the guided deflection of light efficiently converts incident light momentum into optical force with one order-of-magnitude improvement in the efficiency factor relative to a microbead, which is comparable to the improvement expected from orthogonal deflection with a perfect mirror. This improvement is illustrated in proof-of-principle experiments demonstrating the optical manipulation of two-photon polymerized waveguides. Results show that the force on the waveguide exceeds the combined forces on spherical trapping handles. Furthermore, it shows that static illumination can exert a constant force on a moving structure, unlike the position-dependent forces from harmonic potentials in conventional trapping.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Dholakia and T. Cizmar, “Shaping the future of manipulation,” Nat. Photonics5(6), 335–342 (2011).
    [CrossRef]
  2. J. Glückstad, “Optical manipulation: Sculpting the object,” Nat. Photonics5(1), 7–8 (2011).
    [CrossRef]
  3. S. Sukhov and A. Dogariu, “Negative Nonconservative Forces: Optical “Tractor Beams” for Arbitrary Objects,” Phys. Rev. Lett.107(20), 203602 (2011).
    [CrossRef] [PubMed]
  4. J. Chen, J. Ng, Z. Lin, and C. T. Chan, “Optical pulling force,” Nat. Photonics5(9), 531–534 (2011).
    [CrossRef]
  5. G. A. Swartzlander, T. J. Peterson, A. B. Artusio-Glimpse, and A. D. Raisanen, “Stable optical lift,” Nat. Photonics5(1), 48–51 (2011).
    [CrossRef]
  6. N. K. Metzger, M. Mazilu, L. Kelemen, P. Ormos, and K. Dholakia, “Observation and simulation of an optically driven micromotor,” J. Opt.13(4), 044018 (2011).
    [CrossRef]
  7. M. Padgett and R. Bowman, “Tweezers with a twist,” Nat. Photonics5(6), 343–348 (2011).
    [CrossRef]
  8. A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett.24(4), 156–159 (1970).
    [CrossRef]
  9. S. Maruo, O. Nakamura, and S. Kawata, “Three-dimensional microfabrication with two-photon-absorbed photopolymerization,” Opt. Lett.22(2), 132–134 (1997).
    [CrossRef] [PubMed]
  10. B. Koss, S. Chowdhury, T. Aabo, S. K. Gupta, and W. Losert, “Indirect optical gripping with triplet traps,” J. Opt. Soc. Am. B28(5), 982–985 (2011).
    [CrossRef]
  11. D. B. Phillips, J. A. Grieve, S. N. Olof, S. J. Kocher, R. Bowman, M. J. Padgett, M. J. Miles, and D. M. Carberry, “Surface imaging using holographic optical tweezers,” Nanotechnology22(28), 285503 (2011).
    [CrossRef] [PubMed]
  12. D. Palima, A. R. Bañas, G. Vizsnyiczai, L. Kelemen, P. Ormos, and J. Glückstad, “Wave-guided optical waveguides,” Opt. Express20(3), 2004–2014 (2012).
    [CrossRef] [PubMed]
  13. P. J. Rodrigo, L. Kelemen, D. Palima, C. A. Alonzo, P. Ormos, and J. Glückstad, “Optical microassembly platform for constructing reconfigurable microenvironments for biomedical studies,” Opt. Express17(8), 6578–6583 (2009).
    [CrossRef] [PubMed]
  14. Y. Roichman, B. Sun, Y. Roichman, J. Amato-Grill, and D. G. Grier, “Optical forces arising from phase gradients,” Phys. Rev. Lett.100(1), 013602 (2008).
    [CrossRef] [PubMed]
  15. M. Mahamdeh, C. P. Campos, and E. Schäffer, “Under-filling trapping objectives optimizes the use of the available laser power in optical tweezers,” Opt. Express19(12), 11759–11768 (2011).
    [CrossRef] [PubMed]
  16. S. N. S. Reihani and L. B. Oddershede, “Optimizing immersion media refractive index improves optical trapping by compensating spherical aberrations,” Opt. Lett.32(14), 1998–2000 (2007).
    [CrossRef] [PubMed]
  17. N. B. Simpson, D. McGloin, K. Dholakia, L. Allen, and M. J. Padgett, “Optical tweezers with increased axial trapping efficiency,” J. Mod. Opt.45(9), 1943–1949 (1998).
    [CrossRef]
  18. V. Bormuth, A. Jannasch, M. Ander, C. M. van Kats, A. van Blaaderen, J. Howard, and E. Schäffer, “Optical trapping of coated microspheres,” Opt. Express16(18), 13831–13844 (2008).
    [CrossRef] [PubMed]
  19. A. Jannasch, A. F. Demirörs, P. D. J. van Oostrum, A. van Blaaderen, and E. Schäffer, “Nanonewton optical force trap employing anti-reflection coated, high-refractive-index titania microspheres,” Nat. Photonics6(7), 469–473 (2012).
    [CrossRef]
  20. S. J. Parkin, R. Vogel, M. Persson, M. Funk, V. L. Loke, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Highly birefringent vaterite microspheres: production, characterization and applications for optical micromanipulation,” Opt. Express17(24), 21944–21955 (2009).
    [CrossRef] [PubMed]
  21. S. L. Neale, M. P. MacDonald, K. Dholakia, and T. F. Krauss, “All-optical control of microfluidic components using form birefringence,” Nat. Mater.4(7), 530–533 (2005).
    [CrossRef] [PubMed]
  22. T. Asavei, V. L. Y. Loke, M. Barbieri, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical angular momentum transfer to microrotors fabricated by two-photon photopolymerization,” New J. Phys.11(9), 093021 (2009).
    [CrossRef]
  23. S. Maruo, A. Takaura, and Y. Saito, “Optically driven micropump with a twin spiral microrotor,” Opt. Express17(21), 18525–18532 (2009).
    [CrossRef] [PubMed]
  24. A. Ashkin, “Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime,” Biophys. J.61(2), 569–582 (1992).
    [CrossRef] [PubMed]
  25. T. Čižmár, M. Mazilu, and K. Dholakia, “In situ wavefront correction and its application to micromanipulation,” Nat. Photonics4(6), 388–394 (2010).
    [CrossRef]
  26. P. C. Ke and M. Gu, “Characterization of Trapping Force on Metallic Mie Particles,” Appl. Opt.38(1), 160–167 (1999).
    [CrossRef] [PubMed]
  27. L. A. Ambrosio and H. E. Hernández-Figueroa, “Inversion of gradient forces for high refractive index particles in optical trapping,” Opt. Express18(6), 5802–5808 (2010).
    [CrossRef] [PubMed]
  28. D. C. Benito, S. H. Simpson, and S. Hanna, “FDTD simulations of forces on particles during holographic assembly,” Opt. Express16(5), 2942–2957 (2008).
    [CrossRef] [PubMed]
  29. K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media,” IEEE Trans. Antenn. Propag.14(3), 302–307 (1966).
    [CrossRef]
  30. A. Buzas, L. Kelemen, A. Mathesz, L. Oroszi, G. Vizsnyiczai, T. Vicsek, and P. Ormos, “Light sailboats: Laser driven autonomous microrobots,” Appl. Phys. Lett.101(4), 041111 (2012).
    [CrossRef]
  31. L. Kelemen, S. Valkai, and P. Ormos, “Integrated optical motor,” Appl. Opt.45(12), 2777–2780 (2006).
    [CrossRef] [PubMed]
  32. H. U. Ulriksen, J. Thøgersen, S. Keiding, I. Perch-Nielsen, J. Dam, D. Z. Palima, H. Stapelfeldt, and J. Glückstad, “Independent trapping, manipulation and characterization by an all-optical biophotonics workstation,” J. Eur. Opt. Soc. Rap. Pub.3, 080341–080345 (2008).
  33. A. La Porta and M. D. Wang, “Optical torque wrench: angular trapping, rotation, and torque detection of quartz microparticles,” Phys. Rev. Lett.92(19), 190801 (2004).
    [CrossRef] [PubMed]
  34. S.H. Simpson, D.B. Phillips, D.M. Carberry, and S. Hanna, “Bespoke optical springs and passive force clamps from shaped dielectric particles,” J. Quant. Spectrosc. Radiat. Transf. (advanced online publication 29 October 2012) http://dx.doi.org/
    [CrossRef]
  35. S. H. Simpson and S. Hanna, “Thermal motion of a holographically trapped SPM-like probe,” Nanotechnology20(39), 395710 (2009).
    [CrossRef] [PubMed]

2012 (4)

A. Jannasch, A. F. Demirörs, P. D. J. van Oostrum, A. van Blaaderen, and E. Schäffer, “Nanonewton optical force trap employing anti-reflection coated, high-refractive-index titania microspheres,” Nat. Photonics6(7), 469–473 (2012).
[CrossRef]

S.H. Simpson, D.B. Phillips, D.M. Carberry, and S. Hanna, “Bespoke optical springs and passive force clamps from shaped dielectric particles,” J. Quant. Spectrosc. Radiat. Transf. (advanced online publication 29 October 2012) http://dx.doi.org/
[CrossRef]

A. Buzas, L. Kelemen, A. Mathesz, L. Oroszi, G. Vizsnyiczai, T. Vicsek, and P. Ormos, “Light sailboats: Laser driven autonomous microrobots,” Appl. Phys. Lett.101(4), 041111 (2012).
[CrossRef]

D. Palima, A. R. Bañas, G. Vizsnyiczai, L. Kelemen, P. Ormos, and J. Glückstad, “Wave-guided optical waveguides,” Opt. Express20(3), 2004–2014 (2012).
[CrossRef] [PubMed]

2011 (10)

B. Koss, S. Chowdhury, T. Aabo, S. K. Gupta, and W. Losert, “Indirect optical gripping with triplet traps,” J. Opt. Soc. Am. B28(5), 982–985 (2011).
[CrossRef]

M. Mahamdeh, C. P. Campos, and E. Schäffer, “Under-filling trapping objectives optimizes the use of the available laser power in optical tweezers,” Opt. Express19(12), 11759–11768 (2011).
[CrossRef] [PubMed]

D. B. Phillips, J. A. Grieve, S. N. Olof, S. J. Kocher, R. Bowman, M. J. Padgett, M. J. Miles, and D. M. Carberry, “Surface imaging using holographic optical tweezers,” Nanotechnology22(28), 285503 (2011).
[CrossRef] [PubMed]

K. Dholakia and T. Cizmar, “Shaping the future of manipulation,” Nat. Photonics5(6), 335–342 (2011).
[CrossRef]

J. Glückstad, “Optical manipulation: Sculpting the object,” Nat. Photonics5(1), 7–8 (2011).
[CrossRef]

S. Sukhov and A. Dogariu, “Negative Nonconservative Forces: Optical “Tractor Beams” for Arbitrary Objects,” Phys. Rev. Lett.107(20), 203602 (2011).
[CrossRef] [PubMed]

J. Chen, J. Ng, Z. Lin, and C. T. Chan, “Optical pulling force,” Nat. Photonics5(9), 531–534 (2011).
[CrossRef]

G. A. Swartzlander, T. J. Peterson, A. B. Artusio-Glimpse, and A. D. Raisanen, “Stable optical lift,” Nat. Photonics5(1), 48–51 (2011).
[CrossRef]

N. K. Metzger, M. Mazilu, L. Kelemen, P. Ormos, and K. Dholakia, “Observation and simulation of an optically driven micromotor,” J. Opt.13(4), 044018 (2011).
[CrossRef]

M. Padgett and R. Bowman, “Tweezers with a twist,” Nat. Photonics5(6), 343–348 (2011).
[CrossRef]

2010 (2)

T. Čižmár, M. Mazilu, and K. Dholakia, “In situ wavefront correction and its application to micromanipulation,” Nat. Photonics4(6), 388–394 (2010).
[CrossRef]

L. A. Ambrosio and H. E. Hernández-Figueroa, “Inversion of gradient forces for high refractive index particles in optical trapping,” Opt. Express18(6), 5802–5808 (2010).
[CrossRef] [PubMed]

2009 (5)

2008 (4)

H. U. Ulriksen, J. Thøgersen, S. Keiding, I. Perch-Nielsen, J. Dam, D. Z. Palima, H. Stapelfeldt, and J. Glückstad, “Independent trapping, manipulation and characterization by an all-optical biophotonics workstation,” J. Eur. Opt. Soc. Rap. Pub.3, 080341–080345 (2008).

Y. Roichman, B. Sun, Y. Roichman, J. Amato-Grill, and D. G. Grier, “Optical forces arising from phase gradients,” Phys. Rev. Lett.100(1), 013602 (2008).
[CrossRef] [PubMed]

D. C. Benito, S. H. Simpson, and S. Hanna, “FDTD simulations of forces on particles during holographic assembly,” Opt. Express16(5), 2942–2957 (2008).
[CrossRef] [PubMed]

V. Bormuth, A. Jannasch, M. Ander, C. M. van Kats, A. van Blaaderen, J. Howard, and E. Schäffer, “Optical trapping of coated microspheres,” Opt. Express16(18), 13831–13844 (2008).
[CrossRef] [PubMed]

2007 (1)

2006 (1)

2005 (1)

S. L. Neale, M. P. MacDonald, K. Dholakia, and T. F. Krauss, “All-optical control of microfluidic components using form birefringence,” Nat. Mater.4(7), 530–533 (2005).
[CrossRef] [PubMed]

2004 (1)

A. La Porta and M. D. Wang, “Optical torque wrench: angular trapping, rotation, and torque detection of quartz microparticles,” Phys. Rev. Lett.92(19), 190801 (2004).
[CrossRef] [PubMed]

1999 (1)

1998 (1)

N. B. Simpson, D. McGloin, K. Dholakia, L. Allen, and M. J. Padgett, “Optical tweezers with increased axial trapping efficiency,” J. Mod. Opt.45(9), 1943–1949 (1998).
[CrossRef]

1997 (1)

1992 (1)

A. Ashkin, “Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime,” Biophys. J.61(2), 569–582 (1992).
[CrossRef] [PubMed]

1970 (1)

A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett.24(4), 156–159 (1970).
[CrossRef]

1966 (1)

K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media,” IEEE Trans. Antenn. Propag.14(3), 302–307 (1966).
[CrossRef]

Aabo, T.

Allen, L.

N. B. Simpson, D. McGloin, K. Dholakia, L. Allen, and M. J. Padgett, “Optical tweezers with increased axial trapping efficiency,” J. Mod. Opt.45(9), 1943–1949 (1998).
[CrossRef]

Alonzo, C. A.

Amato-Grill, J.

Y. Roichman, B. Sun, Y. Roichman, J. Amato-Grill, and D. G. Grier, “Optical forces arising from phase gradients,” Phys. Rev. Lett.100(1), 013602 (2008).
[CrossRef] [PubMed]

Ambrosio, L. A.

Ander, M.

Artusio-Glimpse, A. B.

G. A. Swartzlander, T. J. Peterson, A. B. Artusio-Glimpse, and A. D. Raisanen, “Stable optical lift,” Nat. Photonics5(1), 48–51 (2011).
[CrossRef]

Asavei, T.

T. Asavei, V. L. Y. Loke, M. Barbieri, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical angular momentum transfer to microrotors fabricated by two-photon photopolymerization,” New J. Phys.11(9), 093021 (2009).
[CrossRef]

Ashkin, A.

A. Ashkin, “Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime,” Biophys. J.61(2), 569–582 (1992).
[CrossRef] [PubMed]

A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett.24(4), 156–159 (1970).
[CrossRef]

Bañas, A. R.

Barbieri, M.

T. Asavei, V. L. Y. Loke, M. Barbieri, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical angular momentum transfer to microrotors fabricated by two-photon photopolymerization,” New J. Phys.11(9), 093021 (2009).
[CrossRef]

Benito, D. C.

Bormuth, V.

Bowman, R.

M. Padgett and R. Bowman, “Tweezers with a twist,” Nat. Photonics5(6), 343–348 (2011).
[CrossRef]

D. B. Phillips, J. A. Grieve, S. N. Olof, S. J. Kocher, R. Bowman, M. J. Padgett, M. J. Miles, and D. M. Carberry, “Surface imaging using holographic optical tweezers,” Nanotechnology22(28), 285503 (2011).
[CrossRef] [PubMed]

Buzas, A.

A. Buzas, L. Kelemen, A. Mathesz, L. Oroszi, G. Vizsnyiczai, T. Vicsek, and P. Ormos, “Light sailboats: Laser driven autonomous microrobots,” Appl. Phys. Lett.101(4), 041111 (2012).
[CrossRef]

Campos, C. P.

Carberry, D. M.

D. B. Phillips, J. A. Grieve, S. N. Olof, S. J. Kocher, R. Bowman, M. J. Padgett, M. J. Miles, and D. M. Carberry, “Surface imaging using holographic optical tweezers,” Nanotechnology22(28), 285503 (2011).
[CrossRef] [PubMed]

Carberry, D.M.

S.H. Simpson, D.B. Phillips, D.M. Carberry, and S. Hanna, “Bespoke optical springs and passive force clamps from shaped dielectric particles,” J. Quant. Spectrosc. Radiat. Transf. (advanced online publication 29 October 2012) http://dx.doi.org/
[CrossRef]

Chan, C. T.

J. Chen, J. Ng, Z. Lin, and C. T. Chan, “Optical pulling force,” Nat. Photonics5(9), 531–534 (2011).
[CrossRef]

Chen, J.

J. Chen, J. Ng, Z. Lin, and C. T. Chan, “Optical pulling force,” Nat. Photonics5(9), 531–534 (2011).
[CrossRef]

Chowdhury, S.

Cizmar, T.

K. Dholakia and T. Cizmar, “Shaping the future of manipulation,” Nat. Photonics5(6), 335–342 (2011).
[CrossRef]

Cižmár, T.

T. Čižmár, M. Mazilu, and K. Dholakia, “In situ wavefront correction and its application to micromanipulation,” Nat. Photonics4(6), 388–394 (2010).
[CrossRef]

Dam, J.

H. U. Ulriksen, J. Thøgersen, S. Keiding, I. Perch-Nielsen, J. Dam, D. Z. Palima, H. Stapelfeldt, and J. Glückstad, “Independent trapping, manipulation and characterization by an all-optical biophotonics workstation,” J. Eur. Opt. Soc. Rap. Pub.3, 080341–080345 (2008).

Demirörs, A. F.

A. Jannasch, A. F. Demirörs, P. D. J. van Oostrum, A. van Blaaderen, and E. Schäffer, “Nanonewton optical force trap employing anti-reflection coated, high-refractive-index titania microspheres,” Nat. Photonics6(7), 469–473 (2012).
[CrossRef]

Dholakia, K.

K. Dholakia and T. Cizmar, “Shaping the future of manipulation,” Nat. Photonics5(6), 335–342 (2011).
[CrossRef]

N. K. Metzger, M. Mazilu, L. Kelemen, P. Ormos, and K. Dholakia, “Observation and simulation of an optically driven micromotor,” J. Opt.13(4), 044018 (2011).
[CrossRef]

T. Čižmár, M. Mazilu, and K. Dholakia, “In situ wavefront correction and its application to micromanipulation,” Nat. Photonics4(6), 388–394 (2010).
[CrossRef]

S. L. Neale, M. P. MacDonald, K. Dholakia, and T. F. Krauss, “All-optical control of microfluidic components using form birefringence,” Nat. Mater.4(7), 530–533 (2005).
[CrossRef] [PubMed]

N. B. Simpson, D. McGloin, K. Dholakia, L. Allen, and M. J. Padgett, “Optical tweezers with increased axial trapping efficiency,” J. Mod. Opt.45(9), 1943–1949 (1998).
[CrossRef]

Dogariu, A.

S. Sukhov and A. Dogariu, “Negative Nonconservative Forces: Optical “Tractor Beams” for Arbitrary Objects,” Phys. Rev. Lett.107(20), 203602 (2011).
[CrossRef] [PubMed]

Funk, M.

Glückstad, J.

D. Palima, A. R. Bañas, G. Vizsnyiczai, L. Kelemen, P. Ormos, and J. Glückstad, “Wave-guided optical waveguides,” Opt. Express20(3), 2004–2014 (2012).
[CrossRef] [PubMed]

J. Glückstad, “Optical manipulation: Sculpting the object,” Nat. Photonics5(1), 7–8 (2011).
[CrossRef]

P. J. Rodrigo, L. Kelemen, D. Palima, C. A. Alonzo, P. Ormos, and J. Glückstad, “Optical microassembly platform for constructing reconfigurable microenvironments for biomedical studies,” Opt. Express17(8), 6578–6583 (2009).
[CrossRef] [PubMed]

H. U. Ulriksen, J. Thøgersen, S. Keiding, I. Perch-Nielsen, J. Dam, D. Z. Palima, H. Stapelfeldt, and J. Glückstad, “Independent trapping, manipulation and characterization by an all-optical biophotonics workstation,” J. Eur. Opt. Soc. Rap. Pub.3, 080341–080345 (2008).

Grier, D. G.

Y. Roichman, B. Sun, Y. Roichman, J. Amato-Grill, and D. G. Grier, “Optical forces arising from phase gradients,” Phys. Rev. Lett.100(1), 013602 (2008).
[CrossRef] [PubMed]

Grieve, J. A.

D. B. Phillips, J. A. Grieve, S. N. Olof, S. J. Kocher, R. Bowman, M. J. Padgett, M. J. Miles, and D. M. Carberry, “Surface imaging using holographic optical tweezers,” Nanotechnology22(28), 285503 (2011).
[CrossRef] [PubMed]

Gu, M.

Gupta, S. K.

Hanna, S.

S.H. Simpson, D.B. Phillips, D.M. Carberry, and S. Hanna, “Bespoke optical springs and passive force clamps from shaped dielectric particles,” J. Quant. Spectrosc. Radiat. Transf. (advanced online publication 29 October 2012) http://dx.doi.org/
[CrossRef]

S. H. Simpson and S. Hanna, “Thermal motion of a holographically trapped SPM-like probe,” Nanotechnology20(39), 395710 (2009).
[CrossRef] [PubMed]

D. C. Benito, S. H. Simpson, and S. Hanna, “FDTD simulations of forces on particles during holographic assembly,” Opt. Express16(5), 2942–2957 (2008).
[CrossRef] [PubMed]

Heckenberg, N. R.

T. Asavei, V. L. Y. Loke, M. Barbieri, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical angular momentum transfer to microrotors fabricated by two-photon photopolymerization,” New J. Phys.11(9), 093021 (2009).
[CrossRef]

S. J. Parkin, R. Vogel, M. Persson, M. Funk, V. L. Loke, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Highly birefringent vaterite microspheres: production, characterization and applications for optical micromanipulation,” Opt. Express17(24), 21944–21955 (2009).
[CrossRef] [PubMed]

Hernández-Figueroa, H. E.

Howard, J.

Jannasch, A.

A. Jannasch, A. F. Demirörs, P. D. J. van Oostrum, A. van Blaaderen, and E. Schäffer, “Nanonewton optical force trap employing anti-reflection coated, high-refractive-index titania microspheres,” Nat. Photonics6(7), 469–473 (2012).
[CrossRef]

V. Bormuth, A. Jannasch, M. Ander, C. M. van Kats, A. van Blaaderen, J. Howard, and E. Schäffer, “Optical trapping of coated microspheres,” Opt. Express16(18), 13831–13844 (2008).
[CrossRef] [PubMed]

Kawata, S.

Ke, P. C.

Keiding, S.

H. U. Ulriksen, J. Thøgersen, S. Keiding, I. Perch-Nielsen, J. Dam, D. Z. Palima, H. Stapelfeldt, and J. Glückstad, “Independent trapping, manipulation and characterization by an all-optical biophotonics workstation,” J. Eur. Opt. Soc. Rap. Pub.3, 080341–080345 (2008).

Kelemen, L.

Kocher, S. J.

D. B. Phillips, J. A. Grieve, S. N. Olof, S. J. Kocher, R. Bowman, M. J. Padgett, M. J. Miles, and D. M. Carberry, “Surface imaging using holographic optical tweezers,” Nanotechnology22(28), 285503 (2011).
[CrossRef] [PubMed]

Koss, B.

Krauss, T. F.

S. L. Neale, M. P. MacDonald, K. Dholakia, and T. F. Krauss, “All-optical control of microfluidic components using form birefringence,” Nat. Mater.4(7), 530–533 (2005).
[CrossRef] [PubMed]

La Porta, A.

A. La Porta and M. D. Wang, “Optical torque wrench: angular trapping, rotation, and torque detection of quartz microparticles,” Phys. Rev. Lett.92(19), 190801 (2004).
[CrossRef] [PubMed]

Lin, Z.

J. Chen, J. Ng, Z. Lin, and C. T. Chan, “Optical pulling force,” Nat. Photonics5(9), 531–534 (2011).
[CrossRef]

Loke, V. L.

Loke, V. L. Y.

T. Asavei, V. L. Y. Loke, M. Barbieri, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical angular momentum transfer to microrotors fabricated by two-photon photopolymerization,” New J. Phys.11(9), 093021 (2009).
[CrossRef]

Losert, W.

MacDonald, M. P.

S. L. Neale, M. P. MacDonald, K. Dholakia, and T. F. Krauss, “All-optical control of microfluidic components using form birefringence,” Nat. Mater.4(7), 530–533 (2005).
[CrossRef] [PubMed]

Mahamdeh, M.

Maruo, S.

Mathesz, A.

A. Buzas, L. Kelemen, A. Mathesz, L. Oroszi, G. Vizsnyiczai, T. Vicsek, and P. Ormos, “Light sailboats: Laser driven autonomous microrobots,” Appl. Phys. Lett.101(4), 041111 (2012).
[CrossRef]

Mazilu, M.

N. K. Metzger, M. Mazilu, L. Kelemen, P. Ormos, and K. Dholakia, “Observation and simulation of an optically driven micromotor,” J. Opt.13(4), 044018 (2011).
[CrossRef]

T. Čižmár, M. Mazilu, and K. Dholakia, “In situ wavefront correction and its application to micromanipulation,” Nat. Photonics4(6), 388–394 (2010).
[CrossRef]

McGloin, D.

N. B. Simpson, D. McGloin, K. Dholakia, L. Allen, and M. J. Padgett, “Optical tweezers with increased axial trapping efficiency,” J. Mod. Opt.45(9), 1943–1949 (1998).
[CrossRef]

Metzger, N. K.

N. K. Metzger, M. Mazilu, L. Kelemen, P. Ormos, and K. Dholakia, “Observation and simulation of an optically driven micromotor,” J. Opt.13(4), 044018 (2011).
[CrossRef]

Miles, M. J.

D. B. Phillips, J. A. Grieve, S. N. Olof, S. J. Kocher, R. Bowman, M. J. Padgett, M. J. Miles, and D. M. Carberry, “Surface imaging using holographic optical tweezers,” Nanotechnology22(28), 285503 (2011).
[CrossRef] [PubMed]

Nakamura, O.

Neale, S. L.

S. L. Neale, M. P. MacDonald, K. Dholakia, and T. F. Krauss, “All-optical control of microfluidic components using form birefringence,” Nat. Mater.4(7), 530–533 (2005).
[CrossRef] [PubMed]

Ng, J.

J. Chen, J. Ng, Z. Lin, and C. T. Chan, “Optical pulling force,” Nat. Photonics5(9), 531–534 (2011).
[CrossRef]

Nieminen, T. A.

T. Asavei, V. L. Y. Loke, M. Barbieri, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical angular momentum transfer to microrotors fabricated by two-photon photopolymerization,” New J. Phys.11(9), 093021 (2009).
[CrossRef]

S. J. Parkin, R. Vogel, M. Persson, M. Funk, V. L. Loke, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Highly birefringent vaterite microspheres: production, characterization and applications for optical micromanipulation,” Opt. Express17(24), 21944–21955 (2009).
[CrossRef] [PubMed]

Oddershede, L. B.

Olof, S. N.

D. B. Phillips, J. A. Grieve, S. N. Olof, S. J. Kocher, R. Bowman, M. J. Padgett, M. J. Miles, and D. M. Carberry, “Surface imaging using holographic optical tweezers,” Nanotechnology22(28), 285503 (2011).
[CrossRef] [PubMed]

Ormos, P.

Oroszi, L.

A. Buzas, L. Kelemen, A. Mathesz, L. Oroszi, G. Vizsnyiczai, T. Vicsek, and P. Ormos, “Light sailboats: Laser driven autonomous microrobots,” Appl. Phys. Lett.101(4), 041111 (2012).
[CrossRef]

Padgett, M.

M. Padgett and R. Bowman, “Tweezers with a twist,” Nat. Photonics5(6), 343–348 (2011).
[CrossRef]

Padgett, M. J.

D. B. Phillips, J. A. Grieve, S. N. Olof, S. J. Kocher, R. Bowman, M. J. Padgett, M. J. Miles, and D. M. Carberry, “Surface imaging using holographic optical tweezers,” Nanotechnology22(28), 285503 (2011).
[CrossRef] [PubMed]

N. B. Simpson, D. McGloin, K. Dholakia, L. Allen, and M. J. Padgett, “Optical tweezers with increased axial trapping efficiency,” J. Mod. Opt.45(9), 1943–1949 (1998).
[CrossRef]

Palima, D.

Palima, D. Z.

H. U. Ulriksen, J. Thøgersen, S. Keiding, I. Perch-Nielsen, J. Dam, D. Z. Palima, H. Stapelfeldt, and J. Glückstad, “Independent trapping, manipulation and characterization by an all-optical biophotonics workstation,” J. Eur. Opt. Soc. Rap. Pub.3, 080341–080345 (2008).

Parkin, S. J.

Perch-Nielsen, I.

H. U. Ulriksen, J. Thøgersen, S. Keiding, I. Perch-Nielsen, J. Dam, D. Z. Palima, H. Stapelfeldt, and J. Glückstad, “Independent trapping, manipulation and characterization by an all-optical biophotonics workstation,” J. Eur. Opt. Soc. Rap. Pub.3, 080341–080345 (2008).

Persson, M.

Peterson, T. J.

G. A. Swartzlander, T. J. Peterson, A. B. Artusio-Glimpse, and A. D. Raisanen, “Stable optical lift,” Nat. Photonics5(1), 48–51 (2011).
[CrossRef]

Phillips, D. B.

D. B. Phillips, J. A. Grieve, S. N. Olof, S. J. Kocher, R. Bowman, M. J. Padgett, M. J. Miles, and D. M. Carberry, “Surface imaging using holographic optical tweezers,” Nanotechnology22(28), 285503 (2011).
[CrossRef] [PubMed]

Phillips, D.B.

S.H. Simpson, D.B. Phillips, D.M. Carberry, and S. Hanna, “Bespoke optical springs and passive force clamps from shaped dielectric particles,” J. Quant. Spectrosc. Radiat. Transf. (advanced online publication 29 October 2012) http://dx.doi.org/
[CrossRef]

Raisanen, A. D.

G. A. Swartzlander, T. J. Peterson, A. B. Artusio-Glimpse, and A. D. Raisanen, “Stable optical lift,” Nat. Photonics5(1), 48–51 (2011).
[CrossRef]

Reihani, S. N. S.

Rodrigo, P. J.

Roichman, Y.

Y. Roichman, B. Sun, Y. Roichman, J. Amato-Grill, and D. G. Grier, “Optical forces arising from phase gradients,” Phys. Rev. Lett.100(1), 013602 (2008).
[CrossRef] [PubMed]

Y. Roichman, B. Sun, Y. Roichman, J. Amato-Grill, and D. G. Grier, “Optical forces arising from phase gradients,” Phys. Rev. Lett.100(1), 013602 (2008).
[CrossRef] [PubMed]

Rubinsztein-Dunlop, H.

T. Asavei, V. L. Y. Loke, M. Barbieri, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical angular momentum transfer to microrotors fabricated by two-photon photopolymerization,” New J. Phys.11(9), 093021 (2009).
[CrossRef]

S. J. Parkin, R. Vogel, M. Persson, M. Funk, V. L. Loke, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Highly birefringent vaterite microspheres: production, characterization and applications for optical micromanipulation,” Opt. Express17(24), 21944–21955 (2009).
[CrossRef] [PubMed]

Saito, Y.

Schä?er, E.

A. Jannasch, A. F. Demirörs, P. D. J. van Oostrum, A. van Blaaderen, and E. Schäffer, “Nanonewton optical force trap employing anti-reflection coated, high-refractive-index titania microspheres,” Nat. Photonics6(7), 469–473 (2012).
[CrossRef]

Schäffer, E.

Simpson, N. B.

N. B. Simpson, D. McGloin, K. Dholakia, L. Allen, and M. J. Padgett, “Optical tweezers with increased axial trapping efficiency,” J. Mod. Opt.45(9), 1943–1949 (1998).
[CrossRef]

Simpson, S. H.

S. H. Simpson and S. Hanna, “Thermal motion of a holographically trapped SPM-like probe,” Nanotechnology20(39), 395710 (2009).
[CrossRef] [PubMed]

D. C. Benito, S. H. Simpson, and S. Hanna, “FDTD simulations of forces on particles during holographic assembly,” Opt. Express16(5), 2942–2957 (2008).
[CrossRef] [PubMed]

Simpson, S.H.

S.H. Simpson, D.B. Phillips, D.M. Carberry, and S. Hanna, “Bespoke optical springs and passive force clamps from shaped dielectric particles,” J. Quant. Spectrosc. Radiat. Transf. (advanced online publication 29 October 2012) http://dx.doi.org/
[CrossRef]

Stapelfeldt, H.

H. U. Ulriksen, J. Thøgersen, S. Keiding, I. Perch-Nielsen, J. Dam, D. Z. Palima, H. Stapelfeldt, and J. Glückstad, “Independent trapping, manipulation and characterization by an all-optical biophotonics workstation,” J. Eur. Opt. Soc. Rap. Pub.3, 080341–080345 (2008).

Sukhov, S.

S. Sukhov and A. Dogariu, “Negative Nonconservative Forces: Optical “Tractor Beams” for Arbitrary Objects,” Phys. Rev. Lett.107(20), 203602 (2011).
[CrossRef] [PubMed]

Sun, B.

Y. Roichman, B. Sun, Y. Roichman, J. Amato-Grill, and D. G. Grier, “Optical forces arising from phase gradients,” Phys. Rev. Lett.100(1), 013602 (2008).
[CrossRef] [PubMed]

Swartzlander, G. A.

G. A. Swartzlander, T. J. Peterson, A. B. Artusio-Glimpse, and A. D. Raisanen, “Stable optical lift,” Nat. Photonics5(1), 48–51 (2011).
[CrossRef]

Takaura, A.

Thøgersen, J.

H. U. Ulriksen, J. Thøgersen, S. Keiding, I. Perch-Nielsen, J. Dam, D. Z. Palima, H. Stapelfeldt, and J. Glückstad, “Independent trapping, manipulation and characterization by an all-optical biophotonics workstation,” J. Eur. Opt. Soc. Rap. Pub.3, 080341–080345 (2008).

Ulriksen, H. U.

H. U. Ulriksen, J. Thøgersen, S. Keiding, I. Perch-Nielsen, J. Dam, D. Z. Palima, H. Stapelfeldt, and J. Glückstad, “Independent trapping, manipulation and characterization by an all-optical biophotonics workstation,” J. Eur. Opt. Soc. Rap. Pub.3, 080341–080345 (2008).

Valkai, S.

van Blaaderen, A.

A. Jannasch, A. F. Demirörs, P. D. J. van Oostrum, A. van Blaaderen, and E. Schäffer, “Nanonewton optical force trap employing anti-reflection coated, high-refractive-index titania microspheres,” Nat. Photonics6(7), 469–473 (2012).
[CrossRef]

V. Bormuth, A. Jannasch, M. Ander, C. M. van Kats, A. van Blaaderen, J. Howard, and E. Schäffer, “Optical trapping of coated microspheres,” Opt. Express16(18), 13831–13844 (2008).
[CrossRef] [PubMed]

van Kats, C. M.

van Oostrum, P. D. J.

A. Jannasch, A. F. Demirörs, P. D. J. van Oostrum, A. van Blaaderen, and E. Schäffer, “Nanonewton optical force trap employing anti-reflection coated, high-refractive-index titania microspheres,” Nat. Photonics6(7), 469–473 (2012).
[CrossRef]

Vicsek, T.

A. Buzas, L. Kelemen, A. Mathesz, L. Oroszi, G. Vizsnyiczai, T. Vicsek, and P. Ormos, “Light sailboats: Laser driven autonomous microrobots,” Appl. Phys. Lett.101(4), 041111 (2012).
[CrossRef]

Vizsnyiczai, G.

A. Buzas, L. Kelemen, A. Mathesz, L. Oroszi, G. Vizsnyiczai, T. Vicsek, and P. Ormos, “Light sailboats: Laser driven autonomous microrobots,” Appl. Phys. Lett.101(4), 041111 (2012).
[CrossRef]

D. Palima, A. R. Bañas, G. Vizsnyiczai, L. Kelemen, P. Ormos, and J. Glückstad, “Wave-guided optical waveguides,” Opt. Express20(3), 2004–2014 (2012).
[CrossRef] [PubMed]

Vogel, R.

Wang, M. D.

A. La Porta and M. D. Wang, “Optical torque wrench: angular trapping, rotation, and torque detection of quartz microparticles,” Phys. Rev. Lett.92(19), 190801 (2004).
[CrossRef] [PubMed]

Yee, K. S.

K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media,” IEEE Trans. Antenn. Propag.14(3), 302–307 (1966).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. Lett. (1)

A. Buzas, L. Kelemen, A. Mathesz, L. Oroszi, G. Vizsnyiczai, T. Vicsek, and P. Ormos, “Light sailboats: Laser driven autonomous microrobots,” Appl. Phys. Lett.101(4), 041111 (2012).
[CrossRef]

Biophys. J. (1)

A. Ashkin, “Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime,” Biophys. J.61(2), 569–582 (1992).
[CrossRef] [PubMed]

IEEE Trans. Antenn. Propag. (1)

K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media,” IEEE Trans. Antenn. Propag.14(3), 302–307 (1966).
[CrossRef]

J. Eur. Opt. Soc. Rap. Pub. (1)

H. U. Ulriksen, J. Thøgersen, S. Keiding, I. Perch-Nielsen, J. Dam, D. Z. Palima, H. Stapelfeldt, and J. Glückstad, “Independent trapping, manipulation and characterization by an all-optical biophotonics workstation,” J. Eur. Opt. Soc. Rap. Pub.3, 080341–080345 (2008).

J. Mod. Opt. (1)

N. B. Simpson, D. McGloin, K. Dholakia, L. Allen, and M. J. Padgett, “Optical tweezers with increased axial trapping efficiency,” J. Mod. Opt.45(9), 1943–1949 (1998).
[CrossRef]

J. Opt. (1)

N. K. Metzger, M. Mazilu, L. Kelemen, P. Ormos, and K. Dholakia, “Observation and simulation of an optically driven micromotor,” J. Opt.13(4), 044018 (2011).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Quant. Spectrosc. Radiat. Transf. (1)

S.H. Simpson, D.B. Phillips, D.M. Carberry, and S. Hanna, “Bespoke optical springs and passive force clamps from shaped dielectric particles,” J. Quant. Spectrosc. Radiat. Transf. (advanced online publication 29 October 2012) http://dx.doi.org/
[CrossRef]

Nanotechnology (2)

S. H. Simpson and S. Hanna, “Thermal motion of a holographically trapped SPM-like probe,” Nanotechnology20(39), 395710 (2009).
[CrossRef] [PubMed]

D. B. Phillips, J. A. Grieve, S. N. Olof, S. J. Kocher, R. Bowman, M. J. Padgett, M. J. Miles, and D. M. Carberry, “Surface imaging using holographic optical tweezers,” Nanotechnology22(28), 285503 (2011).
[CrossRef] [PubMed]

Nat. Mater. (1)

S. L. Neale, M. P. MacDonald, K. Dholakia, and T. F. Krauss, “All-optical control of microfluidic components using form birefringence,” Nat. Mater.4(7), 530–533 (2005).
[CrossRef] [PubMed]

Nat. Photonics (7)

A. Jannasch, A. F. Demirörs, P. D. J. van Oostrum, A. van Blaaderen, and E. Schäffer, “Nanonewton optical force trap employing anti-reflection coated, high-refractive-index titania microspheres,” Nat. Photonics6(7), 469–473 (2012).
[CrossRef]

T. Čižmár, M. Mazilu, and K. Dholakia, “In situ wavefront correction and its application to micromanipulation,” Nat. Photonics4(6), 388–394 (2010).
[CrossRef]

M. Padgett and R. Bowman, “Tweezers with a twist,” Nat. Photonics5(6), 343–348 (2011).
[CrossRef]

K. Dholakia and T. Cizmar, “Shaping the future of manipulation,” Nat. Photonics5(6), 335–342 (2011).
[CrossRef]

J. Glückstad, “Optical manipulation: Sculpting the object,” Nat. Photonics5(1), 7–8 (2011).
[CrossRef]

J. Chen, J. Ng, Z. Lin, and C. T. Chan, “Optical pulling force,” Nat. Photonics5(9), 531–534 (2011).
[CrossRef]

G. A. Swartzlander, T. J. Peterson, A. B. Artusio-Glimpse, and A. D. Raisanen, “Stable optical lift,” Nat. Photonics5(1), 48–51 (2011).
[CrossRef]

New J. Phys. (1)

T. Asavei, V. L. Y. Loke, M. Barbieri, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical angular momentum transfer to microrotors fabricated by two-photon photopolymerization,” New J. Phys.11(9), 093021 (2009).
[CrossRef]

Opt. Express (8)

D. C. Benito, S. H. Simpson, and S. Hanna, “FDTD simulations of forces on particles during holographic assembly,” Opt. Express16(5), 2942–2957 (2008).
[CrossRef] [PubMed]

V. Bormuth, A. Jannasch, M. Ander, C. M. van Kats, A. van Blaaderen, J. Howard, and E. Schäffer, “Optical trapping of coated microspheres,” Opt. Express16(18), 13831–13844 (2008).
[CrossRef] [PubMed]

P. J. Rodrigo, L. Kelemen, D. Palima, C. A. Alonzo, P. Ormos, and J. Glückstad, “Optical microassembly platform for constructing reconfigurable microenvironments for biomedical studies,” Opt. Express17(8), 6578–6583 (2009).
[CrossRef] [PubMed]

S. Maruo, A. Takaura, and Y. Saito, “Optically driven micropump with a twin spiral microrotor,” Opt. Express17(21), 18525–18532 (2009).
[CrossRef] [PubMed]

S. J. Parkin, R. Vogel, M. Persson, M. Funk, V. L. Loke, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Highly birefringent vaterite microspheres: production, characterization and applications for optical micromanipulation,” Opt. Express17(24), 21944–21955 (2009).
[CrossRef] [PubMed]

L. A. Ambrosio and H. E. Hernández-Figueroa, “Inversion of gradient forces for high refractive index particles in optical trapping,” Opt. Express18(6), 5802–5808 (2010).
[CrossRef] [PubMed]

M. Mahamdeh, C. P. Campos, and E. Schäffer, “Under-filling trapping objectives optimizes the use of the available laser power in optical tweezers,” Opt. Express19(12), 11759–11768 (2011).
[CrossRef] [PubMed]

D. Palima, A. R. Bañas, G. Vizsnyiczai, L. Kelemen, P. Ormos, and J. Glückstad, “Wave-guided optical waveguides,” Opt. Express20(3), 2004–2014 (2012).
[CrossRef] [PubMed]

Opt. Lett. (2)

Phys. Rev. Lett. (4)

A. La Porta and M. D. Wang, “Optical torque wrench: angular trapping, rotation, and torque detection of quartz microparticles,” Phys. Rev. Lett.92(19), 190801 (2004).
[CrossRef] [PubMed]

S. Sukhov and A. Dogariu, “Negative Nonconservative Forces: Optical “Tractor Beams” for Arbitrary Objects,” Phys. Rev. Lett.107(20), 203602 (2011).
[CrossRef] [PubMed]

A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett.24(4), 156–159 (1970).
[CrossRef]

Y. Roichman, B. Sun, Y. Roichman, J. Amato-Grill, and D. G. Grier, “Optical forces arising from phase gradients,” Phys. Rev. Lett.100(1), 013602 (2008).
[CrossRef] [PubMed]

Supplementary Material (1)

» Media 1: AVI (253 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Simulated scattering off a circular dielectric microbead for calculating the Maxwell stress tensor and the optical force: (a) time-averaged intensity, |E|2; (b) zoom-in on the bounding box with quiver plot overlay depicting the calculated force sampled from 15 × 15 unit cells (c) snapshot of the E-field’s y-component, Ey ; (d) refractive index distribution. (λ0 = 1070 nm, nbead = 1.6, nsurrounding = 1.33)

Fig. 2
Fig. 2

Simulated propagation of light through a bent waveguide for calculating the Maxwell stress tensor and the optical force: (a) snapshot of the E-field’s y-component, Ey; (b) time-averaged intensity, |E|2; (c) snapshot of the H-field’s x-component, Hy; (d) snapshot of the H-field’s z-component, Hz. (λ0 = 1070 nm, nbead = 1.6, nsurrounding = 1.33).

Fig. 3
Fig. 3

Simulated reflection off a perfect mirror for calculating the Maxwell stress tensor and the optical force. (a) time-averaged intensity, |E|2; (b) zoom-in on the bounding box with quiver plot overlay depicting the calculated force on each 15 × 15 grid unit of the simulation (c) location of mirror (λ0 = 1070 nm, nsurrounding = 1.33) (d)–(f) snapshots of the fields Ey, Hx, and Hz.

Fig. 4
Fig. 4

Optical force on a structure though guided light deflections in its built-in waveguide. (a) Concurrent top- and side-view microscopy shows that a portion of the incident downward light entering the waveguide escapes horizontally. The light pattern seen by the top-view microscope is from the weak counterpropagating light that was calibrated and aligned to easily visualize the downward light in the microscope. (b) Optical tug-of-war: waveguide force vs. combined force from two trapped spheres. The incident light deflected by the waveguide creates downward and horizontal force components (c.f. Fig. 2). Snapshots from the top-view microscope show that the horizontal force on the waveguide can exceed the combined maximum forces on two trapped spherical handles allowing the structure to escape the traps. The line illumination and the trapping beams have the same intensity. Line illumination was used to ensure that the waveguide input is constantly illuminated even when it moves due to the waveguide force.

Fig. 5
Fig. 5

Motion of a structure due to the optical force from guided light deflection. The horizontal arrangement of the snapshots, taken at equal time intervals using the top-view microscope, enables using the structure’s tip as the position data point at each observation time. (a) Plot of the structure’s position vs. time with light first entering one tip as shown in (a’). The trendlines indicate that the structure moves with nearly constant velocity when light enters only one tip of the waveguide (frames 0 to 50). The movement pulls the other tip into the linear illumination region; the structure subsequently moves with lower velocity when light enters both tips (frames 60 to 90); (b) Plot of the structure’s position vs. time with light first entering the other tip as shown in (b’). The green trendline indicates that, with light being guided in the opposite direction, the structure also moves with a nearly constant velocity. The lower slope of the green line compared to the black line indicates that it moves slower compared to (a).

Fig. 6
Fig. 6

Motion of structure due to the superposition of optical forces from guided light deflections. The horizontal arrangement of the snapshots, taken at equal time intervals using the top-view microscope, enables using the structure’s spherical handle as the position data point at each observation time. (a) Plot of the structure’s position vs. time shows two speeds– the structure increases its speed when a second guided deflection occurs and forces from the guided deflections reinforce each other. (b) Illustration of light deflection geometry having two guided light deflections whose generated forces can reinforce each other. (c) Snapshots from the sideview microscope experimentally illustrating the guided light deflection geometry illustrated schematically in (b). The experiment is performed in a fluorescent medium to help visualize the deflections of a green beam (λ = 532 nm). The structure is trapped at its spherical handles by counterpropagating infrared beams (λ = 1070 nm) to position it relative to the green beam and illuminate points that create guided light deflections; (d) (Media 1) Snapshot from the topview microscope when using two linear illumination patterns for the simultaneous optical manipulation of the two different structures used in Figs. 5 and 6(a) using line traps.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

F=Q n m P c .
F= S T ˜ ( r,t ) ·dS,
T ˜ ij ( r,t )=ε ε 0 E i ( r,t ) E j ( r,t )+μ μ 0 H i ( r,t ) H j ( r,t ) 1 2 [ ε ε 0 | E( r,t ) | 2 +μ μ 0 | H( r,t ) | 2 ] δ ij .
T xx =ε ε 0 1 2 E y 2 +μ μ 0 1 2 ( H x 2 H z 2 )
T zz =ε ε 0 1 2 E y 2 +μ μ 0 1 2 ( H z 2 H x 2 )
T xz = T zx =μ μ 0 H x H z

Metrics