Abstract

An InP ring resonator with an experimentally demonstrated quality factor (Q) of the order of 106 is reported for the first time. This Q value, typical for low loss technologies such as silica-on-silicon, is a record for the InP technology and improves the state-of-the-art of about one order of magnitude. The cavity has been designed aiming at the Q-factor maximization while keeping the resonance depth of about 8 dB. The device was fabricated using metal-organic vapour-phase-epitaxy, photolithography and reactive ion etching. It has been optically characterized and all its performance parameters have been estimated. InP waveguide loss low as 0.45 dB/cm has been measured, leading to a potential shot noise limited resolution of 10 °/h for a new angular velocity sensor.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. N. Armenise, C. Ciminelli, F. Dell’Olio, and V. M. N. Passaro, Advances in Gyroscope Technologies (Springer, 2010), chaps. 3–4.
  2. C. Ciminelli, F. Dell’Olio, C. E. Campanella, and M. N. Armenise, “Photonic technologies for angular velocity sensing,” Adv. Opt. Photon.2(3), 370–404 (2010).
    [CrossRef]
  3. O. Kenji, “Semiconductor ring laser gyro,” Japanese patent # JP 60,148,185, filed 1984, issued 1985.
  4. M. Armenise and P. J. R. Laybourn, “Design and Simulation of a Ring Laser for Miniaturised Gyroscopes,” Proc. SPIE3464, 81–90 (1998).
    [CrossRef]
  5. M. N. Armenise, V. M. N. Passaro, F. De Leonardis, and M. Armenise, “Modeling and Design of a Novel Miniaturized Integrated Optical Sensor for Gyroscope Systems,” J. Lightwave Technol.19(10), 1476–1494 (2001).
    [CrossRef]
  6. M. Osińki, H. Cao, C. Liu, and P. G. Eliseev, “Monolithically integrated twin ring diode lasers for rotation sensing applications,” J. Cryst. Growth288(1), 144–147 (2006).
    [CrossRef]
  7. W. Lawrence, “Thin film laser gyro,” US Patent 4326803, filed 1979, issued 1982.
  8. K. Suzuki, K. Takiguchi, and K. Hotate, “Monolithically integrated resonator microoptic gyro on silica planar lightwave circuit,” J. Lightwave Technol.18(1), 66–72 (2000).
    [CrossRef]
  9. H. Mao, H. Ma, and Z. Jin, “Polarization maintaining silica waveguide resonator optic gyro using double phase modulation technique,” Opt. Express19(5), 4632–4643 (2011).
    [CrossRef] [PubMed]
  10. C. Ciminelli, F. Dell’Olio, C. E. Campanella, and M. N. Armenise, “Numerical and experimental investigation of an optical high-Q spiral resonator gyroscope,” Proc. 14th Transparent Optical Networks (ICTON), Coventry, UK, Jul 2 - 5, 2012. DOI: 10.1109/ICTON.2012.6254463.
    [CrossRef]
  11. C. Ciminelli, F. Dell’Olio, and M. N. Armenise, “High-Q spiral resonator for optical gyroscope applications: numerical and experimental investigation,” IEEE Photon. J.4(5), 1844–1854 (2012).
    [CrossRef]
  12. G. Li, K. A. Winick, B. R. Youmans, and E. A. J. Vikjaer, “Design, fabrication and characterization of an integrated optic passive resonator for optical gyroscopes,” presented at Institute of Navigation’s 60th Annual Meeting, Dayton, Ohio, USA, June 7–9, 2004.
  13. L. Guo, B. Shi, C. Chen, and M. Zhao, “A large-size SiO2 waveguide resonator used in integration optical gyroscope,” Optik (Stuttg.)123(4), 302–305 (2012).
    [CrossRef]
  14. M. Smit, J. van der Tol, and M. Hill, “Moore’s law in photonics,” Laser Photon. Rev.6(1), 1–13 (2012).
    [CrossRef]
  15. V. I. Tolstikhin, A. Densmore, Y. Logvin, K. Pimenov, F. Wu, and S. Laframboise, “44-channel optical power monitor based on an echelle grating demultiplexer and a waveguide photodetector array monolithically integrated on an InP substrate,” Proceedings of the Optical Fiber Communication Conference OFC 2003, Atlanta, Georgia, USA, 2003, paper PD37.
  16. R. Nagarajan, M. Kato, J. Pleumeekers, P. Evans, D. Lambert, A. Chen, V. Dominic, A. Mathur, P. Chavarkar, M. Missey, A. Dentai, S. Hurtt, J. Bäck, R. Muthiah, S. Murthy, R. Salvatore, S. Grubb, C. Joyner, J. Rossi, R. Schneider, M. Ziari, F. Kish, and D. Welch, “Single-chip 40-channel InP transmitter photonic integrated circuit capable of aggregate data rate of 1.6 Tbit/s,” Electron. Lett.42(13), 771–773 (2006).
    [CrossRef]
  17. S. Nicholes, M. L. Mašanovic, B. Jevremovic, E. Lively, L. Coldren, and D. J. Blumenthal, “The World’s First InP 8x8 Monolithic Tunable Optical Router (MOTOR) Operating at 40 Gbps Line Rate per Port,” Optical Fiber Communication ConferenceOFC 2009, San Diego, CA, USA, 2009, paper PDPB1.
  18. F. M. Soares, N. K. Fontaine, R. P. Scott, J. H. Baek, X. Zhou, T. Su, S. Cheung, Y. Wang, C. Junesand, S. Lourdudoss, K. Y. Liou, R. A. Hamm, W. Wang, B. Patel, L. A. Gruezke, W. T. Tsang, J. P. Heritage, and S. J. B. Yoo, “Monolithic InP 100-Channel × 10-GHz Device for Optical Arbitrary Waveform Generation,” IEEE Photon. J.3(6), 975–985 (2011).
    [CrossRef]
  19. C. Ciminelli, F. Dell’Olio, V. M. N. Passaro, and M. N. Armenise, “Low-loss InP-based ring resonators for integrated optical gyroscopes,” presented at Caneus 2009 Workshop, NASA Ames Center, Moffett Field, CA, USA, March 1–6, 2009.
  20. F. Dell’Olio, C. Ciminelli, V. M. N. Passaro, and M. N. Armenise, “Optical angular velocity sensors and related read-out systems for new generation gyroscopes,” presented at 1st Networking/Partnering Day 2010, Noordwijk, Nederland, January 28, 2010.
  21. G. A. Sanders, M. G. Prentiss, and S. Ezekiel, “Passive ring resonator method for sensitive inertial rotation measurements in geophysics and relativity,” Opt. Lett.6(11), 569–571 (1981).
    [CrossRef] [PubMed]
  22. C. Ciminelli, F. Dell'Olio, C. E. Campanella, V. M. N. Passaro, and M. N. Armenise, “Integrated Optical Ring Resonators: Modelling and Technologies,” in Progress in Optical Fibers, P. S. Emersone, Ed. (Nova Science Publisher, 2010).
  23. S. J. Choi, K. Djordjev, Z. Peng, Q. Yang, S. J. Choi, and P. D. Dapkus, “Laterally Coupled Buried Heterostructure High-Q Ring Resonators,” IEEE Photon. Technol. Lett.16(10), 2266–2268 (2004).
    [CrossRef]
  24. F. Dell’Olio, C. Ciminelli, M. N. Armenise, F. M. Soares, and W. Rehbein, “Design, fabrication, and preliminary test results of a new InGaAsP/InP high-Q ring resonator for gyro applications,” 24th International Conference on Indium Phosphide and Related Materials, Santa Barbara, CA, USA, August 27–30, 2012.
  25. C. Ciminelli, V. M. N. Passaro, F. Dell’Olio, and M. N. Armenise, “Three-dimensional modelling of scattering loss in InGaAsP/InP and silica-on-silicon bent waveguides,” J. European Opt. Soc. Rapid Publications4, 09015 (2009).
    [CrossRef]
  26. R. Regener and W. Sohler, “Loss in Low-Finesse Ti:LiNbO3 Optical Waveguide Resonators,” Appl. Phys. B36(3), 143–147 (1985).
    [CrossRef]
  27. A. Yariv, “Universal relations for coupling of optical power between microresonators and dielectric waveguides,” Electron. Lett.36(4), 321–322 (2000).
    [CrossRef]

2012 (3)

C. Ciminelli, F. Dell’Olio, and M. N. Armenise, “High-Q spiral resonator for optical gyroscope applications: numerical and experimental investigation,” IEEE Photon. J.4(5), 1844–1854 (2012).
[CrossRef]

L. Guo, B. Shi, C. Chen, and M. Zhao, “A large-size SiO2 waveguide resonator used in integration optical gyroscope,” Optik (Stuttg.)123(4), 302–305 (2012).
[CrossRef]

M. Smit, J. van der Tol, and M. Hill, “Moore’s law in photonics,” Laser Photon. Rev.6(1), 1–13 (2012).
[CrossRef]

2011 (2)

F. M. Soares, N. K. Fontaine, R. P. Scott, J. H. Baek, X. Zhou, T. Su, S. Cheung, Y. Wang, C. Junesand, S. Lourdudoss, K. Y. Liou, R. A. Hamm, W. Wang, B. Patel, L. A. Gruezke, W. T. Tsang, J. P. Heritage, and S. J. B. Yoo, “Monolithic InP 100-Channel × 10-GHz Device for Optical Arbitrary Waveform Generation,” IEEE Photon. J.3(6), 975–985 (2011).
[CrossRef]

H. Mao, H. Ma, and Z. Jin, “Polarization maintaining silica waveguide resonator optic gyro using double phase modulation technique,” Opt. Express19(5), 4632–4643 (2011).
[CrossRef] [PubMed]

2010 (1)

2009 (1)

C. Ciminelli, V. M. N. Passaro, F. Dell’Olio, and M. N. Armenise, “Three-dimensional modelling of scattering loss in InGaAsP/InP and silica-on-silicon bent waveguides,” J. European Opt. Soc. Rapid Publications4, 09015 (2009).
[CrossRef]

2006 (2)

M. Osińki, H. Cao, C. Liu, and P. G. Eliseev, “Monolithically integrated twin ring diode lasers for rotation sensing applications,” J. Cryst. Growth288(1), 144–147 (2006).
[CrossRef]

R. Nagarajan, M. Kato, J. Pleumeekers, P. Evans, D. Lambert, A. Chen, V. Dominic, A. Mathur, P. Chavarkar, M. Missey, A. Dentai, S. Hurtt, J. Bäck, R. Muthiah, S. Murthy, R. Salvatore, S. Grubb, C. Joyner, J. Rossi, R. Schneider, M. Ziari, F. Kish, and D. Welch, “Single-chip 40-channel InP transmitter photonic integrated circuit capable of aggregate data rate of 1.6 Tbit/s,” Electron. Lett.42(13), 771–773 (2006).
[CrossRef]

2004 (1)

S. J. Choi, K. Djordjev, Z. Peng, Q. Yang, S. J. Choi, and P. D. Dapkus, “Laterally Coupled Buried Heterostructure High-Q Ring Resonators,” IEEE Photon. Technol. Lett.16(10), 2266–2268 (2004).
[CrossRef]

2001 (1)

2000 (2)

K. Suzuki, K. Takiguchi, and K. Hotate, “Monolithically integrated resonator microoptic gyro on silica planar lightwave circuit,” J. Lightwave Technol.18(1), 66–72 (2000).
[CrossRef]

A. Yariv, “Universal relations for coupling of optical power between microresonators and dielectric waveguides,” Electron. Lett.36(4), 321–322 (2000).
[CrossRef]

1998 (1)

M. Armenise and P. J. R. Laybourn, “Design and Simulation of a Ring Laser for Miniaturised Gyroscopes,” Proc. SPIE3464, 81–90 (1998).
[CrossRef]

1985 (1)

R. Regener and W. Sohler, “Loss in Low-Finesse Ti:LiNbO3 Optical Waveguide Resonators,” Appl. Phys. B36(3), 143–147 (1985).
[CrossRef]

1981 (1)

Armenise, M.

Armenise, M. N.

C. Ciminelli, F. Dell’Olio, and M. N. Armenise, “High-Q spiral resonator for optical gyroscope applications: numerical and experimental investigation,” IEEE Photon. J.4(5), 1844–1854 (2012).
[CrossRef]

C. Ciminelli, F. Dell’Olio, C. E. Campanella, and M. N. Armenise, “Photonic technologies for angular velocity sensing,” Adv. Opt. Photon.2(3), 370–404 (2010).
[CrossRef]

C. Ciminelli, V. M. N. Passaro, F. Dell’Olio, and M. N. Armenise, “Three-dimensional modelling of scattering loss in InGaAsP/InP and silica-on-silicon bent waveguides,” J. European Opt. Soc. Rapid Publications4, 09015 (2009).
[CrossRef]

M. N. Armenise, V. M. N. Passaro, F. De Leonardis, and M. Armenise, “Modeling and Design of a Novel Miniaturized Integrated Optical Sensor for Gyroscope Systems,” J. Lightwave Technol.19(10), 1476–1494 (2001).
[CrossRef]

Bäck, J.

R. Nagarajan, M. Kato, J. Pleumeekers, P. Evans, D. Lambert, A. Chen, V. Dominic, A. Mathur, P. Chavarkar, M. Missey, A. Dentai, S. Hurtt, J. Bäck, R. Muthiah, S. Murthy, R. Salvatore, S. Grubb, C. Joyner, J. Rossi, R. Schneider, M. Ziari, F. Kish, and D. Welch, “Single-chip 40-channel InP transmitter photonic integrated circuit capable of aggregate data rate of 1.6 Tbit/s,” Electron. Lett.42(13), 771–773 (2006).
[CrossRef]

Baek, J. H.

F. M. Soares, N. K. Fontaine, R. P. Scott, J. H. Baek, X. Zhou, T. Su, S. Cheung, Y. Wang, C. Junesand, S. Lourdudoss, K. Y. Liou, R. A. Hamm, W. Wang, B. Patel, L. A. Gruezke, W. T. Tsang, J. P. Heritage, and S. J. B. Yoo, “Monolithic InP 100-Channel × 10-GHz Device for Optical Arbitrary Waveform Generation,” IEEE Photon. J.3(6), 975–985 (2011).
[CrossRef]

Campanella, C. E.

Cao, H.

M. Osińki, H. Cao, C. Liu, and P. G. Eliseev, “Monolithically integrated twin ring diode lasers for rotation sensing applications,” J. Cryst. Growth288(1), 144–147 (2006).
[CrossRef]

Chavarkar, P.

R. Nagarajan, M. Kato, J. Pleumeekers, P. Evans, D. Lambert, A. Chen, V. Dominic, A. Mathur, P. Chavarkar, M. Missey, A. Dentai, S. Hurtt, J. Bäck, R. Muthiah, S. Murthy, R. Salvatore, S. Grubb, C. Joyner, J. Rossi, R. Schneider, M. Ziari, F. Kish, and D. Welch, “Single-chip 40-channel InP transmitter photonic integrated circuit capable of aggregate data rate of 1.6 Tbit/s,” Electron. Lett.42(13), 771–773 (2006).
[CrossRef]

Chen, A.

R. Nagarajan, M. Kato, J. Pleumeekers, P. Evans, D. Lambert, A. Chen, V. Dominic, A. Mathur, P. Chavarkar, M. Missey, A. Dentai, S. Hurtt, J. Bäck, R. Muthiah, S. Murthy, R. Salvatore, S. Grubb, C. Joyner, J. Rossi, R. Schneider, M. Ziari, F. Kish, and D. Welch, “Single-chip 40-channel InP transmitter photonic integrated circuit capable of aggregate data rate of 1.6 Tbit/s,” Electron. Lett.42(13), 771–773 (2006).
[CrossRef]

Chen, C.

L. Guo, B. Shi, C. Chen, and M. Zhao, “A large-size SiO2 waveguide resonator used in integration optical gyroscope,” Optik (Stuttg.)123(4), 302–305 (2012).
[CrossRef]

Cheung, S.

F. M. Soares, N. K. Fontaine, R. P. Scott, J. H. Baek, X. Zhou, T. Su, S. Cheung, Y. Wang, C. Junesand, S. Lourdudoss, K. Y. Liou, R. A. Hamm, W. Wang, B. Patel, L. A. Gruezke, W. T. Tsang, J. P. Heritage, and S. J. B. Yoo, “Monolithic InP 100-Channel × 10-GHz Device for Optical Arbitrary Waveform Generation,” IEEE Photon. J.3(6), 975–985 (2011).
[CrossRef]

Choi, S. J.

S. J. Choi, K. Djordjev, Z. Peng, Q. Yang, S. J. Choi, and P. D. Dapkus, “Laterally Coupled Buried Heterostructure High-Q Ring Resonators,” IEEE Photon. Technol. Lett.16(10), 2266–2268 (2004).
[CrossRef]

S. J. Choi, K. Djordjev, Z. Peng, Q. Yang, S. J. Choi, and P. D. Dapkus, “Laterally Coupled Buried Heterostructure High-Q Ring Resonators,” IEEE Photon. Technol. Lett.16(10), 2266–2268 (2004).
[CrossRef]

Ciminelli, C.

C. Ciminelli, F. Dell’Olio, and M. N. Armenise, “High-Q spiral resonator for optical gyroscope applications: numerical and experimental investigation,” IEEE Photon. J.4(5), 1844–1854 (2012).
[CrossRef]

C. Ciminelli, F. Dell’Olio, C. E. Campanella, and M. N. Armenise, “Photonic technologies for angular velocity sensing,” Adv. Opt. Photon.2(3), 370–404 (2010).
[CrossRef]

C. Ciminelli, V. M. N. Passaro, F. Dell’Olio, and M. N. Armenise, “Three-dimensional modelling of scattering loss in InGaAsP/InP and silica-on-silicon bent waveguides,” J. European Opt. Soc. Rapid Publications4, 09015 (2009).
[CrossRef]

Dapkus, P. D.

S. J. Choi, K. Djordjev, Z. Peng, Q. Yang, S. J. Choi, and P. D. Dapkus, “Laterally Coupled Buried Heterostructure High-Q Ring Resonators,” IEEE Photon. Technol. Lett.16(10), 2266–2268 (2004).
[CrossRef]

De Leonardis, F.

Dell’Olio, F.

C. Ciminelli, F. Dell’Olio, and M. N. Armenise, “High-Q spiral resonator for optical gyroscope applications: numerical and experimental investigation,” IEEE Photon. J.4(5), 1844–1854 (2012).
[CrossRef]

C. Ciminelli, F. Dell’Olio, C. E. Campanella, and M. N. Armenise, “Photonic technologies for angular velocity sensing,” Adv. Opt. Photon.2(3), 370–404 (2010).
[CrossRef]

C. Ciminelli, V. M. N. Passaro, F. Dell’Olio, and M. N. Armenise, “Three-dimensional modelling of scattering loss in InGaAsP/InP and silica-on-silicon bent waveguides,” J. European Opt. Soc. Rapid Publications4, 09015 (2009).
[CrossRef]

Dentai, A.

R. Nagarajan, M. Kato, J. Pleumeekers, P. Evans, D. Lambert, A. Chen, V. Dominic, A. Mathur, P. Chavarkar, M. Missey, A. Dentai, S. Hurtt, J. Bäck, R. Muthiah, S. Murthy, R. Salvatore, S. Grubb, C. Joyner, J. Rossi, R. Schneider, M. Ziari, F. Kish, and D. Welch, “Single-chip 40-channel InP transmitter photonic integrated circuit capable of aggregate data rate of 1.6 Tbit/s,” Electron. Lett.42(13), 771–773 (2006).
[CrossRef]

Djordjev, K.

S. J. Choi, K. Djordjev, Z. Peng, Q. Yang, S. J. Choi, and P. D. Dapkus, “Laterally Coupled Buried Heterostructure High-Q Ring Resonators,” IEEE Photon. Technol. Lett.16(10), 2266–2268 (2004).
[CrossRef]

Dominic, V.

R. Nagarajan, M. Kato, J. Pleumeekers, P. Evans, D. Lambert, A. Chen, V. Dominic, A. Mathur, P. Chavarkar, M. Missey, A. Dentai, S. Hurtt, J. Bäck, R. Muthiah, S. Murthy, R. Salvatore, S. Grubb, C. Joyner, J. Rossi, R. Schneider, M. Ziari, F. Kish, and D. Welch, “Single-chip 40-channel InP transmitter photonic integrated circuit capable of aggregate data rate of 1.6 Tbit/s,” Electron. Lett.42(13), 771–773 (2006).
[CrossRef]

Eliseev, P. G.

M. Osińki, H. Cao, C. Liu, and P. G. Eliseev, “Monolithically integrated twin ring diode lasers for rotation sensing applications,” J. Cryst. Growth288(1), 144–147 (2006).
[CrossRef]

Evans, P.

R. Nagarajan, M. Kato, J. Pleumeekers, P. Evans, D. Lambert, A. Chen, V. Dominic, A. Mathur, P. Chavarkar, M. Missey, A. Dentai, S. Hurtt, J. Bäck, R. Muthiah, S. Murthy, R. Salvatore, S. Grubb, C. Joyner, J. Rossi, R. Schneider, M. Ziari, F. Kish, and D. Welch, “Single-chip 40-channel InP transmitter photonic integrated circuit capable of aggregate data rate of 1.6 Tbit/s,” Electron. Lett.42(13), 771–773 (2006).
[CrossRef]

Ezekiel, S.

Fontaine, N. K.

F. M. Soares, N. K. Fontaine, R. P. Scott, J. H. Baek, X. Zhou, T. Su, S. Cheung, Y. Wang, C. Junesand, S. Lourdudoss, K. Y. Liou, R. A. Hamm, W. Wang, B. Patel, L. A. Gruezke, W. T. Tsang, J. P. Heritage, and S. J. B. Yoo, “Monolithic InP 100-Channel × 10-GHz Device for Optical Arbitrary Waveform Generation,” IEEE Photon. J.3(6), 975–985 (2011).
[CrossRef]

Grubb, S.

R. Nagarajan, M. Kato, J. Pleumeekers, P. Evans, D. Lambert, A. Chen, V. Dominic, A. Mathur, P. Chavarkar, M. Missey, A. Dentai, S. Hurtt, J. Bäck, R. Muthiah, S. Murthy, R. Salvatore, S. Grubb, C. Joyner, J. Rossi, R. Schneider, M. Ziari, F. Kish, and D. Welch, “Single-chip 40-channel InP transmitter photonic integrated circuit capable of aggregate data rate of 1.6 Tbit/s,” Electron. Lett.42(13), 771–773 (2006).
[CrossRef]

Gruezke, L. A.

F. M. Soares, N. K. Fontaine, R. P. Scott, J. H. Baek, X. Zhou, T. Su, S. Cheung, Y. Wang, C. Junesand, S. Lourdudoss, K. Y. Liou, R. A. Hamm, W. Wang, B. Patel, L. A. Gruezke, W. T. Tsang, J. P. Heritage, and S. J. B. Yoo, “Monolithic InP 100-Channel × 10-GHz Device for Optical Arbitrary Waveform Generation,” IEEE Photon. J.3(6), 975–985 (2011).
[CrossRef]

Guo, L.

L. Guo, B. Shi, C. Chen, and M. Zhao, “A large-size SiO2 waveguide resonator used in integration optical gyroscope,” Optik (Stuttg.)123(4), 302–305 (2012).
[CrossRef]

Hamm, R. A.

F. M. Soares, N. K. Fontaine, R. P. Scott, J. H. Baek, X. Zhou, T. Su, S. Cheung, Y. Wang, C. Junesand, S. Lourdudoss, K. Y. Liou, R. A. Hamm, W. Wang, B. Patel, L. A. Gruezke, W. T. Tsang, J. P. Heritage, and S. J. B. Yoo, “Monolithic InP 100-Channel × 10-GHz Device for Optical Arbitrary Waveform Generation,” IEEE Photon. J.3(6), 975–985 (2011).
[CrossRef]

Heritage, J. P.

F. M. Soares, N. K. Fontaine, R. P. Scott, J. H. Baek, X. Zhou, T. Su, S. Cheung, Y. Wang, C. Junesand, S. Lourdudoss, K. Y. Liou, R. A. Hamm, W. Wang, B. Patel, L. A. Gruezke, W. T. Tsang, J. P. Heritage, and S. J. B. Yoo, “Monolithic InP 100-Channel × 10-GHz Device for Optical Arbitrary Waveform Generation,” IEEE Photon. J.3(6), 975–985 (2011).
[CrossRef]

Hill, M.

M. Smit, J. van der Tol, and M. Hill, “Moore’s law in photonics,” Laser Photon. Rev.6(1), 1–13 (2012).
[CrossRef]

Hotate, K.

Hurtt, S.

R. Nagarajan, M. Kato, J. Pleumeekers, P. Evans, D. Lambert, A. Chen, V. Dominic, A. Mathur, P. Chavarkar, M. Missey, A. Dentai, S. Hurtt, J. Bäck, R. Muthiah, S. Murthy, R. Salvatore, S. Grubb, C. Joyner, J. Rossi, R. Schneider, M. Ziari, F. Kish, and D. Welch, “Single-chip 40-channel InP transmitter photonic integrated circuit capable of aggregate data rate of 1.6 Tbit/s,” Electron. Lett.42(13), 771–773 (2006).
[CrossRef]

Jin, Z.

Joyner, C.

R. Nagarajan, M. Kato, J. Pleumeekers, P. Evans, D. Lambert, A. Chen, V. Dominic, A. Mathur, P. Chavarkar, M. Missey, A. Dentai, S. Hurtt, J. Bäck, R. Muthiah, S. Murthy, R. Salvatore, S. Grubb, C. Joyner, J. Rossi, R. Schneider, M. Ziari, F. Kish, and D. Welch, “Single-chip 40-channel InP transmitter photonic integrated circuit capable of aggregate data rate of 1.6 Tbit/s,” Electron. Lett.42(13), 771–773 (2006).
[CrossRef]

Junesand, C.

F. M. Soares, N. K. Fontaine, R. P. Scott, J. H. Baek, X. Zhou, T. Su, S. Cheung, Y. Wang, C. Junesand, S. Lourdudoss, K. Y. Liou, R. A. Hamm, W. Wang, B. Patel, L. A. Gruezke, W. T. Tsang, J. P. Heritage, and S. J. B. Yoo, “Monolithic InP 100-Channel × 10-GHz Device for Optical Arbitrary Waveform Generation,” IEEE Photon. J.3(6), 975–985 (2011).
[CrossRef]

Kato, M.

R. Nagarajan, M. Kato, J. Pleumeekers, P. Evans, D. Lambert, A. Chen, V. Dominic, A. Mathur, P. Chavarkar, M. Missey, A. Dentai, S. Hurtt, J. Bäck, R. Muthiah, S. Murthy, R. Salvatore, S. Grubb, C. Joyner, J. Rossi, R. Schneider, M. Ziari, F. Kish, and D. Welch, “Single-chip 40-channel InP transmitter photonic integrated circuit capable of aggregate data rate of 1.6 Tbit/s,” Electron. Lett.42(13), 771–773 (2006).
[CrossRef]

Kish, F.

R. Nagarajan, M. Kato, J. Pleumeekers, P. Evans, D. Lambert, A. Chen, V. Dominic, A. Mathur, P. Chavarkar, M. Missey, A. Dentai, S. Hurtt, J. Bäck, R. Muthiah, S. Murthy, R. Salvatore, S. Grubb, C. Joyner, J. Rossi, R. Schneider, M. Ziari, F. Kish, and D. Welch, “Single-chip 40-channel InP transmitter photonic integrated circuit capable of aggregate data rate of 1.6 Tbit/s,” Electron. Lett.42(13), 771–773 (2006).
[CrossRef]

Lambert, D.

R. Nagarajan, M. Kato, J. Pleumeekers, P. Evans, D. Lambert, A. Chen, V. Dominic, A. Mathur, P. Chavarkar, M. Missey, A. Dentai, S. Hurtt, J. Bäck, R. Muthiah, S. Murthy, R. Salvatore, S. Grubb, C. Joyner, J. Rossi, R. Schneider, M. Ziari, F. Kish, and D. Welch, “Single-chip 40-channel InP transmitter photonic integrated circuit capable of aggregate data rate of 1.6 Tbit/s,” Electron. Lett.42(13), 771–773 (2006).
[CrossRef]

Laybourn, P. J. R.

M. Armenise and P. J. R. Laybourn, “Design and Simulation of a Ring Laser for Miniaturised Gyroscopes,” Proc. SPIE3464, 81–90 (1998).
[CrossRef]

Liou, K. Y.

F. M. Soares, N. K. Fontaine, R. P. Scott, J. H. Baek, X. Zhou, T. Su, S. Cheung, Y. Wang, C. Junesand, S. Lourdudoss, K. Y. Liou, R. A. Hamm, W. Wang, B. Patel, L. A. Gruezke, W. T. Tsang, J. P. Heritage, and S. J. B. Yoo, “Monolithic InP 100-Channel × 10-GHz Device for Optical Arbitrary Waveform Generation,” IEEE Photon. J.3(6), 975–985 (2011).
[CrossRef]

Liu, C.

M. Osińki, H. Cao, C. Liu, and P. G. Eliseev, “Monolithically integrated twin ring diode lasers for rotation sensing applications,” J. Cryst. Growth288(1), 144–147 (2006).
[CrossRef]

Lourdudoss, S.

F. M. Soares, N. K. Fontaine, R. P. Scott, J. H. Baek, X. Zhou, T. Su, S. Cheung, Y. Wang, C. Junesand, S. Lourdudoss, K. Y. Liou, R. A. Hamm, W. Wang, B. Patel, L. A. Gruezke, W. T. Tsang, J. P. Heritage, and S. J. B. Yoo, “Monolithic InP 100-Channel × 10-GHz Device for Optical Arbitrary Waveform Generation,” IEEE Photon. J.3(6), 975–985 (2011).
[CrossRef]

Ma, H.

Mao, H.

Mathur, A.

R. Nagarajan, M. Kato, J. Pleumeekers, P. Evans, D. Lambert, A. Chen, V. Dominic, A. Mathur, P. Chavarkar, M. Missey, A. Dentai, S. Hurtt, J. Bäck, R. Muthiah, S. Murthy, R. Salvatore, S. Grubb, C. Joyner, J. Rossi, R. Schneider, M. Ziari, F. Kish, and D. Welch, “Single-chip 40-channel InP transmitter photonic integrated circuit capable of aggregate data rate of 1.6 Tbit/s,” Electron. Lett.42(13), 771–773 (2006).
[CrossRef]

Missey, M.

R. Nagarajan, M. Kato, J. Pleumeekers, P. Evans, D. Lambert, A. Chen, V. Dominic, A. Mathur, P. Chavarkar, M. Missey, A. Dentai, S. Hurtt, J. Bäck, R. Muthiah, S. Murthy, R. Salvatore, S. Grubb, C. Joyner, J. Rossi, R. Schneider, M. Ziari, F. Kish, and D. Welch, “Single-chip 40-channel InP transmitter photonic integrated circuit capable of aggregate data rate of 1.6 Tbit/s,” Electron. Lett.42(13), 771–773 (2006).
[CrossRef]

Murthy, S.

R. Nagarajan, M. Kato, J. Pleumeekers, P. Evans, D. Lambert, A. Chen, V. Dominic, A. Mathur, P. Chavarkar, M. Missey, A. Dentai, S. Hurtt, J. Bäck, R. Muthiah, S. Murthy, R. Salvatore, S. Grubb, C. Joyner, J. Rossi, R. Schneider, M. Ziari, F. Kish, and D. Welch, “Single-chip 40-channel InP transmitter photonic integrated circuit capable of aggregate data rate of 1.6 Tbit/s,” Electron. Lett.42(13), 771–773 (2006).
[CrossRef]

Muthiah, R.

R. Nagarajan, M. Kato, J. Pleumeekers, P. Evans, D. Lambert, A. Chen, V. Dominic, A. Mathur, P. Chavarkar, M. Missey, A. Dentai, S. Hurtt, J. Bäck, R. Muthiah, S. Murthy, R. Salvatore, S. Grubb, C. Joyner, J. Rossi, R. Schneider, M. Ziari, F. Kish, and D. Welch, “Single-chip 40-channel InP transmitter photonic integrated circuit capable of aggregate data rate of 1.6 Tbit/s,” Electron. Lett.42(13), 771–773 (2006).
[CrossRef]

Nagarajan, R.

R. Nagarajan, M. Kato, J. Pleumeekers, P. Evans, D. Lambert, A. Chen, V. Dominic, A. Mathur, P. Chavarkar, M. Missey, A. Dentai, S. Hurtt, J. Bäck, R. Muthiah, S. Murthy, R. Salvatore, S. Grubb, C. Joyner, J. Rossi, R. Schneider, M. Ziari, F. Kish, and D. Welch, “Single-chip 40-channel InP transmitter photonic integrated circuit capable of aggregate data rate of 1.6 Tbit/s,” Electron. Lett.42(13), 771–773 (2006).
[CrossRef]

Osinki, M.

M. Osińki, H. Cao, C. Liu, and P. G. Eliseev, “Monolithically integrated twin ring diode lasers for rotation sensing applications,” J. Cryst. Growth288(1), 144–147 (2006).
[CrossRef]

Passaro, V. M. N.

C. Ciminelli, V. M. N. Passaro, F. Dell’Olio, and M. N. Armenise, “Three-dimensional modelling of scattering loss in InGaAsP/InP and silica-on-silicon bent waveguides,” J. European Opt. Soc. Rapid Publications4, 09015 (2009).
[CrossRef]

M. N. Armenise, V. M. N. Passaro, F. De Leonardis, and M. Armenise, “Modeling and Design of a Novel Miniaturized Integrated Optical Sensor for Gyroscope Systems,” J. Lightwave Technol.19(10), 1476–1494 (2001).
[CrossRef]

Patel, B.

F. M. Soares, N. K. Fontaine, R. P. Scott, J. H. Baek, X. Zhou, T. Su, S. Cheung, Y. Wang, C. Junesand, S. Lourdudoss, K. Y. Liou, R. A. Hamm, W. Wang, B. Patel, L. A. Gruezke, W. T. Tsang, J. P. Heritage, and S. J. B. Yoo, “Monolithic InP 100-Channel × 10-GHz Device for Optical Arbitrary Waveform Generation,” IEEE Photon. J.3(6), 975–985 (2011).
[CrossRef]

Peng, Z.

S. J. Choi, K. Djordjev, Z. Peng, Q. Yang, S. J. Choi, and P. D. Dapkus, “Laterally Coupled Buried Heterostructure High-Q Ring Resonators,” IEEE Photon. Technol. Lett.16(10), 2266–2268 (2004).
[CrossRef]

Pleumeekers, J.

R. Nagarajan, M. Kato, J. Pleumeekers, P. Evans, D. Lambert, A. Chen, V. Dominic, A. Mathur, P. Chavarkar, M. Missey, A. Dentai, S. Hurtt, J. Bäck, R. Muthiah, S. Murthy, R. Salvatore, S. Grubb, C. Joyner, J. Rossi, R. Schneider, M. Ziari, F. Kish, and D. Welch, “Single-chip 40-channel InP transmitter photonic integrated circuit capable of aggregate data rate of 1.6 Tbit/s,” Electron. Lett.42(13), 771–773 (2006).
[CrossRef]

Prentiss, M. G.

Regener, R.

R. Regener and W. Sohler, “Loss in Low-Finesse Ti:LiNbO3 Optical Waveguide Resonators,” Appl. Phys. B36(3), 143–147 (1985).
[CrossRef]

Rossi, J.

R. Nagarajan, M. Kato, J. Pleumeekers, P. Evans, D. Lambert, A. Chen, V. Dominic, A. Mathur, P. Chavarkar, M. Missey, A. Dentai, S. Hurtt, J. Bäck, R. Muthiah, S. Murthy, R. Salvatore, S. Grubb, C. Joyner, J. Rossi, R. Schneider, M. Ziari, F. Kish, and D. Welch, “Single-chip 40-channel InP transmitter photonic integrated circuit capable of aggregate data rate of 1.6 Tbit/s,” Electron. Lett.42(13), 771–773 (2006).
[CrossRef]

Salvatore, R.

R. Nagarajan, M. Kato, J. Pleumeekers, P. Evans, D. Lambert, A. Chen, V. Dominic, A. Mathur, P. Chavarkar, M. Missey, A. Dentai, S. Hurtt, J. Bäck, R. Muthiah, S. Murthy, R. Salvatore, S. Grubb, C. Joyner, J. Rossi, R. Schneider, M. Ziari, F. Kish, and D. Welch, “Single-chip 40-channel InP transmitter photonic integrated circuit capable of aggregate data rate of 1.6 Tbit/s,” Electron. Lett.42(13), 771–773 (2006).
[CrossRef]

Sanders, G. A.

Schneider, R.

R. Nagarajan, M. Kato, J. Pleumeekers, P. Evans, D. Lambert, A. Chen, V. Dominic, A. Mathur, P. Chavarkar, M. Missey, A. Dentai, S. Hurtt, J. Bäck, R. Muthiah, S. Murthy, R. Salvatore, S. Grubb, C. Joyner, J. Rossi, R. Schneider, M. Ziari, F. Kish, and D. Welch, “Single-chip 40-channel InP transmitter photonic integrated circuit capable of aggregate data rate of 1.6 Tbit/s,” Electron. Lett.42(13), 771–773 (2006).
[CrossRef]

Scott, R. P.

F. M. Soares, N. K. Fontaine, R. P. Scott, J. H. Baek, X. Zhou, T. Su, S. Cheung, Y. Wang, C. Junesand, S. Lourdudoss, K. Y. Liou, R. A. Hamm, W. Wang, B. Patel, L. A. Gruezke, W. T. Tsang, J. P. Heritage, and S. J. B. Yoo, “Monolithic InP 100-Channel × 10-GHz Device for Optical Arbitrary Waveform Generation,” IEEE Photon. J.3(6), 975–985 (2011).
[CrossRef]

Shi, B.

L. Guo, B. Shi, C. Chen, and M. Zhao, “A large-size SiO2 waveguide resonator used in integration optical gyroscope,” Optik (Stuttg.)123(4), 302–305 (2012).
[CrossRef]

Smit, M.

M. Smit, J. van der Tol, and M. Hill, “Moore’s law in photonics,” Laser Photon. Rev.6(1), 1–13 (2012).
[CrossRef]

Soares, F. M.

F. M. Soares, N. K. Fontaine, R. P. Scott, J. H. Baek, X. Zhou, T. Su, S. Cheung, Y. Wang, C. Junesand, S. Lourdudoss, K. Y. Liou, R. A. Hamm, W. Wang, B. Patel, L. A. Gruezke, W. T. Tsang, J. P. Heritage, and S. J. B. Yoo, “Monolithic InP 100-Channel × 10-GHz Device for Optical Arbitrary Waveform Generation,” IEEE Photon. J.3(6), 975–985 (2011).
[CrossRef]

Sohler, W.

R. Regener and W. Sohler, “Loss in Low-Finesse Ti:LiNbO3 Optical Waveguide Resonators,” Appl. Phys. B36(3), 143–147 (1985).
[CrossRef]

Su, T.

F. M. Soares, N. K. Fontaine, R. P. Scott, J. H. Baek, X. Zhou, T. Su, S. Cheung, Y. Wang, C. Junesand, S. Lourdudoss, K. Y. Liou, R. A. Hamm, W. Wang, B. Patel, L. A. Gruezke, W. T. Tsang, J. P. Heritage, and S. J. B. Yoo, “Monolithic InP 100-Channel × 10-GHz Device for Optical Arbitrary Waveform Generation,” IEEE Photon. J.3(6), 975–985 (2011).
[CrossRef]

Suzuki, K.

Takiguchi, K.

Tsang, W. T.

F. M. Soares, N. K. Fontaine, R. P. Scott, J. H. Baek, X. Zhou, T. Su, S. Cheung, Y. Wang, C. Junesand, S. Lourdudoss, K. Y. Liou, R. A. Hamm, W. Wang, B. Patel, L. A. Gruezke, W. T. Tsang, J. P. Heritage, and S. J. B. Yoo, “Monolithic InP 100-Channel × 10-GHz Device for Optical Arbitrary Waveform Generation,” IEEE Photon. J.3(6), 975–985 (2011).
[CrossRef]

van der Tol, J.

M. Smit, J. van der Tol, and M. Hill, “Moore’s law in photonics,” Laser Photon. Rev.6(1), 1–13 (2012).
[CrossRef]

Wang, W.

F. M. Soares, N. K. Fontaine, R. P. Scott, J. H. Baek, X. Zhou, T. Su, S. Cheung, Y. Wang, C. Junesand, S. Lourdudoss, K. Y. Liou, R. A. Hamm, W. Wang, B. Patel, L. A. Gruezke, W. T. Tsang, J. P. Heritage, and S. J. B. Yoo, “Monolithic InP 100-Channel × 10-GHz Device for Optical Arbitrary Waveform Generation,” IEEE Photon. J.3(6), 975–985 (2011).
[CrossRef]

Wang, Y.

F. M. Soares, N. K. Fontaine, R. P. Scott, J. H. Baek, X. Zhou, T. Su, S. Cheung, Y. Wang, C. Junesand, S. Lourdudoss, K. Y. Liou, R. A. Hamm, W. Wang, B. Patel, L. A. Gruezke, W. T. Tsang, J. P. Heritage, and S. J. B. Yoo, “Monolithic InP 100-Channel × 10-GHz Device for Optical Arbitrary Waveform Generation,” IEEE Photon. J.3(6), 975–985 (2011).
[CrossRef]

Welch, D.

R. Nagarajan, M. Kato, J. Pleumeekers, P. Evans, D. Lambert, A. Chen, V. Dominic, A. Mathur, P. Chavarkar, M. Missey, A. Dentai, S. Hurtt, J. Bäck, R. Muthiah, S. Murthy, R. Salvatore, S. Grubb, C. Joyner, J. Rossi, R. Schneider, M. Ziari, F. Kish, and D. Welch, “Single-chip 40-channel InP transmitter photonic integrated circuit capable of aggregate data rate of 1.6 Tbit/s,” Electron. Lett.42(13), 771–773 (2006).
[CrossRef]

Yang, Q.

S. J. Choi, K. Djordjev, Z. Peng, Q. Yang, S. J. Choi, and P. D. Dapkus, “Laterally Coupled Buried Heterostructure High-Q Ring Resonators,” IEEE Photon. Technol. Lett.16(10), 2266–2268 (2004).
[CrossRef]

Yariv, A.

A. Yariv, “Universal relations for coupling of optical power between microresonators and dielectric waveguides,” Electron. Lett.36(4), 321–322 (2000).
[CrossRef]

Yoo, S. J. B.

F. M. Soares, N. K. Fontaine, R. P. Scott, J. H. Baek, X. Zhou, T. Su, S. Cheung, Y. Wang, C. Junesand, S. Lourdudoss, K. Y. Liou, R. A. Hamm, W. Wang, B. Patel, L. A. Gruezke, W. T. Tsang, J. P. Heritage, and S. J. B. Yoo, “Monolithic InP 100-Channel × 10-GHz Device for Optical Arbitrary Waveform Generation,” IEEE Photon. J.3(6), 975–985 (2011).
[CrossRef]

Zhao, M.

L. Guo, B. Shi, C. Chen, and M. Zhao, “A large-size SiO2 waveguide resonator used in integration optical gyroscope,” Optik (Stuttg.)123(4), 302–305 (2012).
[CrossRef]

Zhou, X.

F. M. Soares, N. K. Fontaine, R. P. Scott, J. H. Baek, X. Zhou, T. Su, S. Cheung, Y. Wang, C. Junesand, S. Lourdudoss, K. Y. Liou, R. A. Hamm, W. Wang, B. Patel, L. A. Gruezke, W. T. Tsang, J. P. Heritage, and S. J. B. Yoo, “Monolithic InP 100-Channel × 10-GHz Device for Optical Arbitrary Waveform Generation,” IEEE Photon. J.3(6), 975–985 (2011).
[CrossRef]

Ziari, M.

R. Nagarajan, M. Kato, J. Pleumeekers, P. Evans, D. Lambert, A. Chen, V. Dominic, A. Mathur, P. Chavarkar, M. Missey, A. Dentai, S. Hurtt, J. Bäck, R. Muthiah, S. Murthy, R. Salvatore, S. Grubb, C. Joyner, J. Rossi, R. Schneider, M. Ziari, F. Kish, and D. Welch, “Single-chip 40-channel InP transmitter photonic integrated circuit capable of aggregate data rate of 1.6 Tbit/s,” Electron. Lett.42(13), 771–773 (2006).
[CrossRef]

Adv. Opt. Photon. (1)

Appl. Phys. B (1)

R. Regener and W. Sohler, “Loss in Low-Finesse Ti:LiNbO3 Optical Waveguide Resonators,” Appl. Phys. B36(3), 143–147 (1985).
[CrossRef]

Electron. Lett. (2)

A. Yariv, “Universal relations for coupling of optical power between microresonators and dielectric waveguides,” Electron. Lett.36(4), 321–322 (2000).
[CrossRef]

R. Nagarajan, M. Kato, J. Pleumeekers, P. Evans, D. Lambert, A. Chen, V. Dominic, A. Mathur, P. Chavarkar, M. Missey, A. Dentai, S. Hurtt, J. Bäck, R. Muthiah, S. Murthy, R. Salvatore, S. Grubb, C. Joyner, J. Rossi, R. Schneider, M. Ziari, F. Kish, and D. Welch, “Single-chip 40-channel InP transmitter photonic integrated circuit capable of aggregate data rate of 1.6 Tbit/s,” Electron. Lett.42(13), 771–773 (2006).
[CrossRef]

IEEE Photon. J. (2)

F. M. Soares, N. K. Fontaine, R. P. Scott, J. H. Baek, X. Zhou, T. Su, S. Cheung, Y. Wang, C. Junesand, S. Lourdudoss, K. Y. Liou, R. A. Hamm, W. Wang, B. Patel, L. A. Gruezke, W. T. Tsang, J. P. Heritage, and S. J. B. Yoo, “Monolithic InP 100-Channel × 10-GHz Device for Optical Arbitrary Waveform Generation,” IEEE Photon. J.3(6), 975–985 (2011).
[CrossRef]

C. Ciminelli, F. Dell’Olio, and M. N. Armenise, “High-Q spiral resonator for optical gyroscope applications: numerical and experimental investigation,” IEEE Photon. J.4(5), 1844–1854 (2012).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

S. J. Choi, K. Djordjev, Z. Peng, Q. Yang, S. J. Choi, and P. D. Dapkus, “Laterally Coupled Buried Heterostructure High-Q Ring Resonators,” IEEE Photon. Technol. Lett.16(10), 2266–2268 (2004).
[CrossRef]

J. Cryst. Growth (1)

M. Osińki, H. Cao, C. Liu, and P. G. Eliseev, “Monolithically integrated twin ring diode lasers for rotation sensing applications,” J. Cryst. Growth288(1), 144–147 (2006).
[CrossRef]

J. European Opt. Soc. Rapid Publications (1)

C. Ciminelli, V. M. N. Passaro, F. Dell’Olio, and M. N. Armenise, “Three-dimensional modelling of scattering loss in InGaAsP/InP and silica-on-silicon bent waveguides,” J. European Opt. Soc. Rapid Publications4, 09015 (2009).
[CrossRef]

J. Lightwave Technol. (2)

Laser Photon. Rev. (1)

M. Smit, J. van der Tol, and M. Hill, “Moore’s law in photonics,” Laser Photon. Rev.6(1), 1–13 (2012).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Optik (Stuttg.) (1)

L. Guo, B. Shi, C. Chen, and M. Zhao, “A large-size SiO2 waveguide resonator used in integration optical gyroscope,” Optik (Stuttg.)123(4), 302–305 (2012).
[CrossRef]

Proc. SPIE (1)

M. Armenise and P. J. R. Laybourn, “Design and Simulation of a Ring Laser for Miniaturised Gyroscopes,” Proc. SPIE3464, 81–90 (1998).
[CrossRef]

Other (11)

G. Li, K. A. Winick, B. R. Youmans, and E. A. J. Vikjaer, “Design, fabrication and characterization of an integrated optic passive resonator for optical gyroscopes,” presented at Institute of Navigation’s 60th Annual Meeting, Dayton, Ohio, USA, June 7–9, 2004.

W. Lawrence, “Thin film laser gyro,” US Patent 4326803, filed 1979, issued 1982.

C. Ciminelli, F. Dell’Olio, C. E. Campanella, and M. N. Armenise, “Numerical and experimental investigation of an optical high-Q spiral resonator gyroscope,” Proc. 14th Transparent Optical Networks (ICTON), Coventry, UK, Jul 2 - 5, 2012. DOI: 10.1109/ICTON.2012.6254463.
[CrossRef]

M. N. Armenise, C. Ciminelli, F. Dell’Olio, and V. M. N. Passaro, Advances in Gyroscope Technologies (Springer, 2010), chaps. 3–4.

O. Kenji, “Semiconductor ring laser gyro,” Japanese patent # JP 60,148,185, filed 1984, issued 1985.

V. I. Tolstikhin, A. Densmore, Y. Logvin, K. Pimenov, F. Wu, and S. Laframboise, “44-channel optical power monitor based on an echelle grating demultiplexer and a waveguide photodetector array monolithically integrated on an InP substrate,” Proceedings of the Optical Fiber Communication Conference OFC 2003, Atlanta, Georgia, USA, 2003, paper PD37.

S. Nicholes, M. L. Mašanovic, B. Jevremovic, E. Lively, L. Coldren, and D. J. Blumenthal, “The World’s First InP 8x8 Monolithic Tunable Optical Router (MOTOR) Operating at 40 Gbps Line Rate per Port,” Optical Fiber Communication ConferenceOFC 2009, San Diego, CA, USA, 2009, paper PDPB1.

C. Ciminelli, F. Dell’Olio, V. M. N. Passaro, and M. N. Armenise, “Low-loss InP-based ring resonators for integrated optical gyroscopes,” presented at Caneus 2009 Workshop, NASA Ames Center, Moffett Field, CA, USA, March 1–6, 2009.

F. Dell’Olio, C. Ciminelli, V. M. N. Passaro, and M. N. Armenise, “Optical angular velocity sensors and related read-out systems for new generation gyroscopes,” presented at 1st Networking/Partnering Day 2010, Noordwijk, Nederland, January 28, 2010.

C. Ciminelli, F. Dell'Olio, C. E. Campanella, V. M. N. Passaro, and M. N. Armenise, “Integrated Optical Ring Resonators: Modelling and Technologies,” in Progress in Optical Fibers, P. S. Emersone, Ed. (Nova Science Publisher, 2010).

F. Dell’Olio, C. Ciminelli, M. N. Armenise, F. M. Soares, and W. Rehbein, “Design, fabrication, and preliminary test results of a new InGaAsP/InP high-Q ring resonator for gyro applications,” 24th International Conference on Indium Phosphide and Related Materials, Santa Barbara, CA, USA, August 27–30, 2012.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Gyro resolution dependence on d and Q in terms of level curves. Log scale has been used for both axes.

Fig. 2
Fig. 2

Configuration of the fabricated device.

Fig. 3
Fig. 3

Photograph of the cleaved 3-inch InP wafer on a GelPak including the four AR-coated ring-resonator chips in the middle a), and an SEM image of the 300nm-high waveguide at the facet of the chips b).

Fig. 4
Fig. 4

Top view of two sections of the cavity/bus couplers obtained through the scanning electron microscope (SEM).

Fig. 5
Fig. 5

Setup for the measurement of the waveguide propagation loss and the ring resonators TIA: transimpedance amplifier.

Fig. 6
Fig. 6

Spectrum of the Fabry-Perot cavity including the 21 mm long test waveguide.

Fig. 7
Fig. 7

Spectral response of the resonator with gap g3 = 1.524 µm(best performing device).

Fig. 8
Fig. 8

Resolution of the RMOG based on the best performing fabricated ring resonator vs. the average power optical at the photodiodes input.

Tables (1)

Tables Icon

Table 1 Performance of the resonator with gap g3 = 1.524 µm(best performing device).

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

δΩ= 2 c Q d Z
Z= Bh ν 0 / η pd P pd
α= 4.34 L { lnRln[ 1 K ( 1 1 K 2 ) ] }
K= I max I min I max + I min

Metrics