Abstract

We demonstrate a novel integrated silicon and ultra-low-loss Si3N4 waveguide platform. Coupling between layers is achieved with (0.4 ± 0.2) dB of loss per transition and a 20 nm 3-dB bandwidth for one tapered coupler design and with (0.8 ± 0.2) dB of loss per transition and a 100 nm 3-dB bandwidth for another. The minimum propagation loss measured in the ultra-low-loss waveguides is 1.2 dB/m in the 1590 nm wavelength regime.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. T. Spencer, Y. Tang, J. F. Bauters, M. J. R. Heck, and J. E. Bowers, “Integrated Si3N4/SiO2 ultra high q ring resonators,” in Proceedings of IEEE Photonics Conference (IEEE, 2012) 141–142.
  2. F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, “Protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett.80(21), 4057–4059 (2002).
    [CrossRef]
  3. C. Ciminelli, F. Dell’Olio, C. E. Campanella, and M. N. Armenise, “Photonic technologies for angular velocity sensing,” Adv. Opt Photon.2(3), 370–404 (2010).
    [CrossRef]
  4. K. Horikawa, I. Ogawa, T. Kitoh, and H. Ogawa, “Silica-based integrated planar lightwave true-time-delay network for microwave antenna applications,” in Proceedings of the Optical Fiber Communication Conference2, 100–101 (1996).
  5. X. S. Yao and L. Maleki, “Optoelectronic microwave oscillator,” J. Opt. Soc. Am. B13(8), 1725–1735 (1996).
    [CrossRef]
  6. D. Liang and J. E. Bowers, “integrated optoelectronic devices on silicon,” in MRS Proceedings1396, (2012).
  7. T. Tsuchizawa, K. Yamada, T. Watanabe, S. Park, H. Nishi, R. Kou, H. Shinojima, and S. Itabashi, “Monolithic integration of silicon-, germanium-, and silica-based optical devices for telecommunications applications,” IEEE Journ. of Sel. Top. in Quant. Elec.17, 516–525 (2011).
  8. L. Agazzi, J. D. B. Bradley, M. Dijkstra, F. Ay, G. Roelkens, R. Baets, K. Wörhoff, and M. Pollnau, “Monolithic integration of erbium-doped amplifiers with silicon-on-insulator waveguides,” Opt. Express18(26), 27703–27711 (2010).
    [CrossRef] [PubMed]
  9. L. Chen, C. R. Doerr, and Y. Chen, “Polarization-Diversified DWDM Receiver on silicon free of polarization-dependent wavelength shift,” in Proceedings of OFC, (Optical Society of America, 2012), paper OWG3.7.
  10. J. F. Bauters, M. J. R. Heck, D. D. John, J. S. Barton, C. M. Bruinink, A. Leinse, R. G. Heideman, D. J. Blumenthal, and J. E. Bowers, “Planar waveguides with less than 0.1 dB/m propagation loss fabricated with wafer bonding,” Opt. Express19(24), 24090–24101 (2011).
    [CrossRef] [PubMed]
  11. A. M. Agarwal, L. Liao, J. S. Foresi, M. R. Black, X. Duan, and L. C. Kimerling, “Low-loss polycrystalline silicon waveguides for silicon photonics,” J. Appl. Phys.80(11), 6120–6123 (1996).
    [CrossRef]
  12. J. F. Bauters, M. J. R. Heck, D. John, D. Dai, M. C. Tien, J. S. Barton, A. Leinse, R. G. Heideman, D. J. Blumenthal, and J. E. Bowers, “Ultra-low-loss high-aspect-ratio Si3N4 waveguides,” Opt. Express19(4), 3163–3174 (2011).
    [CrossRef] [PubMed]
  13. J. F. Bauters, M. J. R. Heck, D. Dai, D. D. John, J. S. Barton, D. J. Blumenthal, and J. E. Bowers, “High Extinction, Broadband, and Low Loss Planar Waveguide Polarizers,” in Proceedings of IPR, (Optical Society of America, 2012), paper ITu2B.2.
  14. A. Yariv, Optical Electronics in Modern Communications Fifth Edition 526–531 (Oxford University Press, 1997).
  15. G. Roelkens, P. Dumon, W. Bogaerts, D. V. Thourhout, and R. Baets, “Efficient silicon-on-insulator fiber coupler fabricated using 248-nm-deep UV lithography,” Phot. Tech. Lett.17(12), 1–3 (2005).
    [CrossRef]
  16. M. G. F. Wilson and G. A. Teh, “Tapered optical directional coupler,” IEEE Trans. on Micr. Theory and Tech.23(1), 85–92 (1975).
    [CrossRef]
  17. D. Dai, Y. Tang, and J. E. Bowers, “Mode conversion in tapered submicron silicon ridge optical waveguides,” Opt. Express20(12), 13425–13439 (2012).
    [CrossRef] [PubMed]
  18. H. Lee, T. Chen, J. Li, O. Painter, and K. J. Vahala, “Ultra-low-loss optical delay line on a silicon chip,” Nat. Comm.3, 1–7 (2012).
    [CrossRef]
  19. J. W. Nicholson, A. D. Yablon, S. Ramachandran, and S. Ghalmi, “Spatially and spectrally resolved imaging of modal content in large-mode-area fibers,” Opt. Express16(10), 7233–7243 (2008).
    [CrossRef] [PubMed]

2012 (2)

D. Dai, Y. Tang, and J. E. Bowers, “Mode conversion in tapered submicron silicon ridge optical waveguides,” Opt. Express20(12), 13425–13439 (2012).
[CrossRef] [PubMed]

H. Lee, T. Chen, J. Li, O. Painter, and K. J. Vahala, “Ultra-low-loss optical delay line on a silicon chip,” Nat. Comm.3, 1–7 (2012).
[CrossRef]

2011 (3)

2010 (2)

2008 (1)

2005 (1)

G. Roelkens, P. Dumon, W. Bogaerts, D. V. Thourhout, and R. Baets, “Efficient silicon-on-insulator fiber coupler fabricated using 248-nm-deep UV lithography,” Phot. Tech. Lett.17(12), 1–3 (2005).
[CrossRef]

2002 (1)

F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, “Protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett.80(21), 4057–4059 (2002).
[CrossRef]

1996 (2)

A. M. Agarwal, L. Liao, J. S. Foresi, M. R. Black, X. Duan, and L. C. Kimerling, “Low-loss polycrystalline silicon waveguides for silicon photonics,” J. Appl. Phys.80(11), 6120–6123 (1996).
[CrossRef]

X. S. Yao and L. Maleki, “Optoelectronic microwave oscillator,” J. Opt. Soc. Am. B13(8), 1725–1735 (1996).
[CrossRef]

1975 (1)

M. G. F. Wilson and G. A. Teh, “Tapered optical directional coupler,” IEEE Trans. on Micr. Theory and Tech.23(1), 85–92 (1975).
[CrossRef]

Agarwal, A. M.

A. M. Agarwal, L. Liao, J. S. Foresi, M. R. Black, X. Duan, and L. C. Kimerling, “Low-loss polycrystalline silicon waveguides for silicon photonics,” J. Appl. Phys.80(11), 6120–6123 (1996).
[CrossRef]

Agazzi, L.

Armenise, M. N.

C. Ciminelli, F. Dell’Olio, C. E. Campanella, and M. N. Armenise, “Photonic technologies for angular velocity sensing,” Adv. Opt Photon.2(3), 370–404 (2010).
[CrossRef]

Arnold, S.

F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, “Protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett.80(21), 4057–4059 (2002).
[CrossRef]

Ay, F.

Baets, R.

L. Agazzi, J. D. B. Bradley, M. Dijkstra, F. Ay, G. Roelkens, R. Baets, K. Wörhoff, and M. Pollnau, “Monolithic integration of erbium-doped amplifiers with silicon-on-insulator waveguides,” Opt. Express18(26), 27703–27711 (2010).
[CrossRef] [PubMed]

G. Roelkens, P. Dumon, W. Bogaerts, D. V. Thourhout, and R. Baets, “Efficient silicon-on-insulator fiber coupler fabricated using 248-nm-deep UV lithography,” Phot. Tech. Lett.17(12), 1–3 (2005).
[CrossRef]

Barton, J. S.

Bauters, J. F.

Black, M. R.

A. M. Agarwal, L. Liao, J. S. Foresi, M. R. Black, X. Duan, and L. C. Kimerling, “Low-loss polycrystalline silicon waveguides for silicon photonics,” J. Appl. Phys.80(11), 6120–6123 (1996).
[CrossRef]

Blumenthal, D. J.

Bogaerts, W.

G. Roelkens, P. Dumon, W. Bogaerts, D. V. Thourhout, and R. Baets, “Efficient silicon-on-insulator fiber coupler fabricated using 248-nm-deep UV lithography,” Phot. Tech. Lett.17(12), 1–3 (2005).
[CrossRef]

Bowers, J. E.

Bradley, J. D. B.

Braun, D.

F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, “Protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett.80(21), 4057–4059 (2002).
[CrossRef]

Bruinink, C. M.

Campanella, C. E.

C. Ciminelli, F. Dell’Olio, C. E. Campanella, and M. N. Armenise, “Photonic technologies for angular velocity sensing,” Adv. Opt Photon.2(3), 370–404 (2010).
[CrossRef]

Chen, T.

H. Lee, T. Chen, J. Li, O. Painter, and K. J. Vahala, “Ultra-low-loss optical delay line on a silicon chip,” Nat. Comm.3, 1–7 (2012).
[CrossRef]

Ciminelli, C.

C. Ciminelli, F. Dell’Olio, C. E. Campanella, and M. N. Armenise, “Photonic technologies for angular velocity sensing,” Adv. Opt Photon.2(3), 370–404 (2010).
[CrossRef]

Dai, D.

Dell’Olio, F.

C. Ciminelli, F. Dell’Olio, C. E. Campanella, and M. N. Armenise, “Photonic technologies for angular velocity sensing,” Adv. Opt Photon.2(3), 370–404 (2010).
[CrossRef]

Dijkstra, M.

Duan, X.

A. M. Agarwal, L. Liao, J. S. Foresi, M. R. Black, X. Duan, and L. C. Kimerling, “Low-loss polycrystalline silicon waveguides for silicon photonics,” J. Appl. Phys.80(11), 6120–6123 (1996).
[CrossRef]

Dumon, P.

G. Roelkens, P. Dumon, W. Bogaerts, D. V. Thourhout, and R. Baets, “Efficient silicon-on-insulator fiber coupler fabricated using 248-nm-deep UV lithography,” Phot. Tech. Lett.17(12), 1–3 (2005).
[CrossRef]

Foresi, J. S.

A. M. Agarwal, L. Liao, J. S. Foresi, M. R. Black, X. Duan, and L. C. Kimerling, “Low-loss polycrystalline silicon waveguides for silicon photonics,” J. Appl. Phys.80(11), 6120–6123 (1996).
[CrossRef]

Ghalmi, S.

Heck, M. J. R.

Heideman, R. G.

Itabashi, S.

T. Tsuchizawa, K. Yamada, T. Watanabe, S. Park, H. Nishi, R. Kou, H. Shinojima, and S. Itabashi, “Monolithic integration of silicon-, germanium-, and silica-based optical devices for telecommunications applications,” IEEE Journ. of Sel. Top. in Quant. Elec.17, 516–525 (2011).

John, D.

John, D. D.

Khoshsima, M.

F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, “Protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett.80(21), 4057–4059 (2002).
[CrossRef]

Kimerling, L. C.

A. M. Agarwal, L. Liao, J. S. Foresi, M. R. Black, X. Duan, and L. C. Kimerling, “Low-loss polycrystalline silicon waveguides for silicon photonics,” J. Appl. Phys.80(11), 6120–6123 (1996).
[CrossRef]

Kou, R.

T. Tsuchizawa, K. Yamada, T. Watanabe, S. Park, H. Nishi, R. Kou, H. Shinojima, and S. Itabashi, “Monolithic integration of silicon-, germanium-, and silica-based optical devices for telecommunications applications,” IEEE Journ. of Sel. Top. in Quant. Elec.17, 516–525 (2011).

Lee, H.

H. Lee, T. Chen, J. Li, O. Painter, and K. J. Vahala, “Ultra-low-loss optical delay line on a silicon chip,” Nat. Comm.3, 1–7 (2012).
[CrossRef]

Leinse, A.

Li, J.

H. Lee, T. Chen, J. Li, O. Painter, and K. J. Vahala, “Ultra-low-loss optical delay line on a silicon chip,” Nat. Comm.3, 1–7 (2012).
[CrossRef]

Liao, L.

A. M. Agarwal, L. Liao, J. S. Foresi, M. R. Black, X. Duan, and L. C. Kimerling, “Low-loss polycrystalline silicon waveguides for silicon photonics,” J. Appl. Phys.80(11), 6120–6123 (1996).
[CrossRef]

Libchaber, A.

F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, “Protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett.80(21), 4057–4059 (2002).
[CrossRef]

Maleki, L.

Nicholson, J. W.

Nishi, H.

T. Tsuchizawa, K. Yamada, T. Watanabe, S. Park, H. Nishi, R. Kou, H. Shinojima, and S. Itabashi, “Monolithic integration of silicon-, germanium-, and silica-based optical devices for telecommunications applications,” IEEE Journ. of Sel. Top. in Quant. Elec.17, 516–525 (2011).

Painter, O.

H. Lee, T. Chen, J. Li, O. Painter, and K. J. Vahala, “Ultra-low-loss optical delay line on a silicon chip,” Nat. Comm.3, 1–7 (2012).
[CrossRef]

Park, S.

T. Tsuchizawa, K. Yamada, T. Watanabe, S. Park, H. Nishi, R. Kou, H. Shinojima, and S. Itabashi, “Monolithic integration of silicon-, germanium-, and silica-based optical devices for telecommunications applications,” IEEE Journ. of Sel. Top. in Quant. Elec.17, 516–525 (2011).

Pollnau, M.

Ramachandran, S.

Roelkens, G.

L. Agazzi, J. D. B. Bradley, M. Dijkstra, F. Ay, G. Roelkens, R. Baets, K. Wörhoff, and M. Pollnau, “Monolithic integration of erbium-doped amplifiers with silicon-on-insulator waveguides,” Opt. Express18(26), 27703–27711 (2010).
[CrossRef] [PubMed]

G. Roelkens, P. Dumon, W. Bogaerts, D. V. Thourhout, and R. Baets, “Efficient silicon-on-insulator fiber coupler fabricated using 248-nm-deep UV lithography,” Phot. Tech. Lett.17(12), 1–3 (2005).
[CrossRef]

Shinojima, H.

T. Tsuchizawa, K. Yamada, T. Watanabe, S. Park, H. Nishi, R. Kou, H. Shinojima, and S. Itabashi, “Monolithic integration of silicon-, germanium-, and silica-based optical devices for telecommunications applications,” IEEE Journ. of Sel. Top. in Quant. Elec.17, 516–525 (2011).

Tang, Y.

Teh, G. A.

M. G. F. Wilson and G. A. Teh, “Tapered optical directional coupler,” IEEE Trans. on Micr. Theory and Tech.23(1), 85–92 (1975).
[CrossRef]

Teraoka, I.

F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, “Protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett.80(21), 4057–4059 (2002).
[CrossRef]

Thourhout, D. V.

G. Roelkens, P. Dumon, W. Bogaerts, D. V. Thourhout, and R. Baets, “Efficient silicon-on-insulator fiber coupler fabricated using 248-nm-deep UV lithography,” Phot. Tech. Lett.17(12), 1–3 (2005).
[CrossRef]

Tien, M. C.

Tsuchizawa, T.

T. Tsuchizawa, K. Yamada, T. Watanabe, S. Park, H. Nishi, R. Kou, H. Shinojima, and S. Itabashi, “Monolithic integration of silicon-, germanium-, and silica-based optical devices for telecommunications applications,” IEEE Journ. of Sel. Top. in Quant. Elec.17, 516–525 (2011).

Vahala, K. J.

H. Lee, T. Chen, J. Li, O. Painter, and K. J. Vahala, “Ultra-low-loss optical delay line on a silicon chip,” Nat. Comm.3, 1–7 (2012).
[CrossRef]

Vollmer, F.

F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, “Protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett.80(21), 4057–4059 (2002).
[CrossRef]

Watanabe, T.

T. Tsuchizawa, K. Yamada, T. Watanabe, S. Park, H. Nishi, R. Kou, H. Shinojima, and S. Itabashi, “Monolithic integration of silicon-, germanium-, and silica-based optical devices for telecommunications applications,” IEEE Journ. of Sel. Top. in Quant. Elec.17, 516–525 (2011).

Wilson, M. G. F.

M. G. F. Wilson and G. A. Teh, “Tapered optical directional coupler,” IEEE Trans. on Micr. Theory and Tech.23(1), 85–92 (1975).
[CrossRef]

Wörhoff, K.

Yablon, A. D.

Yamada, K.

T. Tsuchizawa, K. Yamada, T. Watanabe, S. Park, H. Nishi, R. Kou, H. Shinojima, and S. Itabashi, “Monolithic integration of silicon-, germanium-, and silica-based optical devices for telecommunications applications,” IEEE Journ. of Sel. Top. in Quant. Elec.17, 516–525 (2011).

Yao, X. S.

Adv. Opt Photon. (1)

C. Ciminelli, F. Dell’Olio, C. E. Campanella, and M. N. Armenise, “Photonic technologies for angular velocity sensing,” Adv. Opt Photon.2(3), 370–404 (2010).
[CrossRef]

Appl. Phys. Lett. (1)

F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, “Protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett.80(21), 4057–4059 (2002).
[CrossRef]

IEEE Journ. of Sel. Top. in Quant. Elec. (1)

T. Tsuchizawa, K. Yamada, T. Watanabe, S. Park, H. Nishi, R. Kou, H. Shinojima, and S. Itabashi, “Monolithic integration of silicon-, germanium-, and silica-based optical devices for telecommunications applications,” IEEE Journ. of Sel. Top. in Quant. Elec.17, 516–525 (2011).

IEEE Trans. on Micr. Theory and Tech. (1)

M. G. F. Wilson and G. A. Teh, “Tapered optical directional coupler,” IEEE Trans. on Micr. Theory and Tech.23(1), 85–92 (1975).
[CrossRef]

J. Appl. Phys. (1)

A. M. Agarwal, L. Liao, J. S. Foresi, M. R. Black, X. Duan, and L. C. Kimerling, “Low-loss polycrystalline silicon waveguides for silicon photonics,” J. Appl. Phys.80(11), 6120–6123 (1996).
[CrossRef]

J. Opt. Soc. Am. B (1)

Nat. Comm. (1)

H. Lee, T. Chen, J. Li, O. Painter, and K. J. Vahala, “Ultra-low-loss optical delay line on a silicon chip,” Nat. Comm.3, 1–7 (2012).
[CrossRef]

Opt. Express (5)

Phot. Tech. Lett. (1)

G. Roelkens, P. Dumon, W. Bogaerts, D. V. Thourhout, and R. Baets, “Efficient silicon-on-insulator fiber coupler fabricated using 248-nm-deep UV lithography,” Phot. Tech. Lett.17(12), 1–3 (2005).
[CrossRef]

Other (6)

J. F. Bauters, M. J. R. Heck, D. Dai, D. D. John, J. S. Barton, D. J. Blumenthal, and J. E. Bowers, “High Extinction, Broadband, and Low Loss Planar Waveguide Polarizers,” in Proceedings of IPR, (Optical Society of America, 2012), paper ITu2B.2.

A. Yariv, Optical Electronics in Modern Communications Fifth Edition 526–531 (Oxford University Press, 1997).

L. Chen, C. R. Doerr, and Y. Chen, “Polarization-Diversified DWDM Receiver on silicon free of polarization-dependent wavelength shift,” in Proceedings of OFC, (Optical Society of America, 2012), paper OWG3.7.

D. Liang and J. E. Bowers, “integrated optoelectronic devices on silicon,” in MRS Proceedings1396, (2012).

D. T. Spencer, Y. Tang, J. F. Bauters, M. J. R. Heck, and J. E. Bowers, “Integrated Si3N4/SiO2 ultra high q ring resonators,” in Proceedings of IEEE Photonics Conference (IEEE, 2012) 141–142.

K. Horikawa, I. Ogawa, T. Kitoh, and H. Ogawa, “Silica-based integrated planar lightwave true-time-delay network for microwave antenna applications,” in Proceedings of the Optical Fiber Communication Conference2, 100–101 (1996).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Schematic views of (a) front-end and (b) back-end schemes for integrating silicon photonics with silica-based waveguides.

Fig. 2
Fig. 2

A schematic overview of the back-end integration process used in this work.

Fig. 3
Fig. 3

(a) A scanning electron microscope image of an ULLW with a 500 nm silicon layer bonded on top. Atomic force microscope (AFM) data measured at the Si surface are shown above. (b) A top-down microscope image of Si waveguides coupled to ULLWs below. The Si spiral is 78 mm long.

Fig. 4
Fig. 4

(a) A schematic cross section of an ULLW with and without integration, and the simulated TE (Ex) and TM (Ey) mode fields for ULLWs (b) without and (c) with Si photonics integrated. Simulations are performed with Photon Design's FIMMWAVE at λ0 = 1.55 μm.

Fig. 5
Fig. 5

Simulated TE scattering loss versus wavelength at the SiO2/air interface. A 2.8 μm wide core is simulated. The simulated roughness is 1 nm RMS with a correlation length of 50 nm.

Fig. 6
Fig. 6

(a) Measured TE propagation loss versus wavelength for 2.8 μm wide ULL waveguides with 600 nm (blue) and 15 μm (black) upper cladding thicknesses. (b) Measured TE propagation loss versus wavelength for 2.8 μm (black) and 6 μm (blue) wide cores.

Fig. 7
Fig. 7

(a) Schematic of the structure used to couple light between ULL and Si waveguide layers, and (b) simulated effective indices for the two-waveguide structure versus Si waveguide width at 1550 nm (simulations are performed with Photon Design's FIMMWAVE software).

Fig. 8
Fig. 8

Simulated effective indices versus Si core width. Simulations are performed with FIMMWAVE at λ0 = 1.55 μm. The ULLW core thickness is 100 nm.

Fig. 9
Fig. 9

Si waveguide backscatter data measured in spiraled waveguide after coupling tapers with (a) wtip = 400 nm and (b) wtip = 700 nm.

Fig. 10
Fig. 10

(a) Schematic of the integrated s-bend structure used to characterize taper transition loss and bandwidth. Simulations at λ0 = 1.55 μm show the average optical intensity in a multimode structure for cases of (b) favorable and (c) unfavorable mode phases at the output coupling tapers.

Fig. 11
Fig. 11

(a) Transmission data through an integrated s-bend structure. The thick blue line shows the simulated transmission. (b) Simulated mode fields next to IR images of the modes obtained with a spatial and spectral technique near λ0 = 1.55 μm. A schematic of the imaging setup is shown in the top left.

Fig. 12
Fig. 12

(a) Transmission data through an integrated s-bend structure versus wavelength, and (b) backscatter data from a series of s-bend structures.

Metrics