Abstract

We develop a novel subcarrier-to-subcarrier intermixing interference (SSII) cancellation technique to estimate and eliminate SSII. For the first time, the SSII cancellation technique is experimentally demonstrated in an electro-absorption modulator- (EAM-) based intensity-modulation-direct-detection (IMDD) multi-band OFDM transmission system. Since the characteristics of SSII are seriously affected by the chirp parameter, a simple constant chirp model, we found, cannot effectively remove the SSII. Therefore, assuming that the chirp parameter linearly depends on the optical power, a novel dynamic chirp model is developed to obtain better estimation and cancellation of SSII. Compared with 23.6% SSII cancellation by the constant chirp model, our experimental results show that incorporating the dynamic chirp model into the SSII cancellation technique can achieve up to 74.4% SSII cancellation and 2.8-dB sensitivity improvement in a 32.25-Gbps OFDM system over 100-km uncompensated standard single-mode fiber.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Koonen, “Fiber to the home/fiber to the premises: what, where, and when?” Proc. IEEE94(5), 911–934 (2006).
    [CrossRef]
  2. G. Talli, C. W. Chow, E. M. MacHale, C. Antony, R. Davey, P. D. Townsend, T. De Ridder, X. Z. Qiu, P. Ossieur, H. G. Krimmel, D. W. Smith, I. Lealman, A. Poustie, S. Randel, and H. Rohde, “Long reach passive optical networks,” in The 20th Annual Meeting of the IEEE Lasers and Electro-Optics Society, 2007. LEOS 2007, (IEEE-LEOS, 2007), pp. 868–869.
  3. R. Lin, “Next generation PON in emerging networks,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, OSA Technical Digest (CD) (Optical Society of America (2008), paper OWH1.
  4. R. P. Davey, D. B. Grossman, M. Rasztovits-Wiech, D. B. Payne, D. Nesset, A. E. Kelly, A. Rafel, S. Appathurai, and S. H. Yang, “Long-reach passive optical networks,” J. Lightwave Technol.27(3), 273–291 (2009).
    [CrossRef]
  5. K. Y. Cho, K. Tanaka, T. Sano, S. P. Jung, J. H. Chang, Y. Takushima, A. Agata, Y. Horiuchi, M. Suzuki, and Y. C. Chung, “Long-reach coherent WDM PON employing self-polarization-stabilization technique,” J. Lightwave Technol.29(4), 456–462 (2011).
    [CrossRef]
  6. D. Shea and J. Mitchell, “A 10 Gb/s 1024-way-split 100-km long-reach optical-access network,” J. Lightwave Technol.25(3), 685–693 (2007).
    [CrossRef]
  7. D. Z. Hsu, C. C. Wei, H. Y. Chen, W. Y. Li, and J. Chen, “Cost-effective 33-Gbps intensity modulation direct detection multi-band OFDM LR-PON system employing a 10-GHz-based transceiver,” Opt. Express19(18), 17546–17556 (2011).
    [CrossRef] [PubMed]
  8. D. Z. Hsu, C. C. Wei, H. Y. Chen, Y. C. Lu, and J. Chen, “A 40-Gbps OFDM LR-PON system over 100-km fiber employing an economical 10-GHz-based transceiver,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2012), paper OW4B.
  9. A. Gharba, P. Chanclou, M. Ouzzif, J. L. Masson, L. A. Neto, R. Xia, N. Genay, B. Charbonnier, M. Hélard, E. Grard, and V. Rodrigues, “Optical transmission performance for DML considering laser chirp and fiber dispersion using AMOOFDM,” in 2010 International Congress on Ultra Modern Telecommunications and Control Systems and Workshops (ICUMT) (2010), pp. 1022–1026.
  10. C. C. Wei, “Small-signal analysis of OOFDM signal transmission with directly modulated laser and direct detection,” Opt. Lett.36(2), 151–153 (2011).
    [CrossRef] [PubMed]
  11. W. R. Peng, B. Zhang, K. M. Feng, X. Wu, A. E. Willner, and S. Chi, “Spectrally efficient direct-detected OFDM transmission incorporating a tunable frequency gap and an iterative detection techniques,” J. Lightwave Technol.27(24), 5723–5735 (2009).
    [CrossRef]
  12. C. C. Wei, “Analysis and iterative equalization of transient and adiabatic chirp effects in DML-based OFDM transmission systems,” Opt. Express20(23), 25774–25789 (2012).
    [CrossRef] [PubMed]
  13. D. Z. Hsu, C. C. Wei, H. Y. Chen, J. Chen, M. C. Yuang, S. H. Lin, and W. Y. Li, “21 Gb/s after 100 km OFDM long-reach PON transmission using a cost-effective electro-absorption modulator,” Opt. Express18(26), 27758–27763 (2010).
    [CrossRef] [PubMed]
  14. E. O. Brigham, Fast Fourier Transform and Its Applications, 1st ed. (Wiley, New York, 1997).
  15. F. Devaux, Y. Sorel, and J. F. Kerdiles, “Simple measurement of fiber dispersion of chirp parameter of intensity modulated light emitter,” J. Lightwave Technol.11(12), 1937–1940 (1993).
    [CrossRef]

2012

2011

2010

2009

2007

2006

T. Koonen, “Fiber to the home/fiber to the premises: what, where, and when?” Proc. IEEE94(5), 911–934 (2006).
[CrossRef]

1993

F. Devaux, Y. Sorel, and J. F. Kerdiles, “Simple measurement of fiber dispersion of chirp parameter of intensity modulated light emitter,” J. Lightwave Technol.11(12), 1937–1940 (1993).
[CrossRef]

Agata, A.

Appathurai, S.

Chang, J. H.

Chen, H. Y.

Chen, J.

Chi, S.

Cho, K. Y.

Chung, Y. C.

Davey, R. P.

Devaux, F.

F. Devaux, Y. Sorel, and J. F. Kerdiles, “Simple measurement of fiber dispersion of chirp parameter of intensity modulated light emitter,” J. Lightwave Technol.11(12), 1937–1940 (1993).
[CrossRef]

Feng, K. M.

Grossman, D. B.

Horiuchi, Y.

Hsu, D. Z.

Jung, S. P.

Kelly, A. E.

Kerdiles, J. F.

F. Devaux, Y. Sorel, and J. F. Kerdiles, “Simple measurement of fiber dispersion of chirp parameter of intensity modulated light emitter,” J. Lightwave Technol.11(12), 1937–1940 (1993).
[CrossRef]

Koonen, T.

T. Koonen, “Fiber to the home/fiber to the premises: what, where, and when?” Proc. IEEE94(5), 911–934 (2006).
[CrossRef]

Li, W. Y.

Lin, S. H.

Mitchell, J.

Nesset, D.

Payne, D. B.

Peng, W. R.

Rafel, A.

Rasztovits-Wiech, M.

Sano, T.

Shea, D.

Sorel, Y.

F. Devaux, Y. Sorel, and J. F. Kerdiles, “Simple measurement of fiber dispersion of chirp parameter of intensity modulated light emitter,” J. Lightwave Technol.11(12), 1937–1940 (1993).
[CrossRef]

Suzuki, M.

Takushima, Y.

Tanaka, K.

Wei, C. C.

Willner, A. E.

Wu, X.

Yang, S. H.

Yuang, M. C.

Zhang, B.

J. Lightwave Technol.

Opt. Express

Opt. Lett.

Proc. IEEE

T. Koonen, “Fiber to the home/fiber to the premises: what, where, and when?” Proc. IEEE94(5), 911–934 (2006).
[CrossRef]

Other

G. Talli, C. W. Chow, E. M. MacHale, C. Antony, R. Davey, P. D. Townsend, T. De Ridder, X. Z. Qiu, P. Ossieur, H. G. Krimmel, D. W. Smith, I. Lealman, A. Poustie, S. Randel, and H. Rohde, “Long reach passive optical networks,” in The 20th Annual Meeting of the IEEE Lasers and Electro-Optics Society, 2007. LEOS 2007, (IEEE-LEOS, 2007), pp. 868–869.

R. Lin, “Next generation PON in emerging networks,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, OSA Technical Digest (CD) (Optical Society of America (2008), paper OWH1.

D. Z. Hsu, C. C. Wei, H. Y. Chen, Y. C. Lu, and J. Chen, “A 40-Gbps OFDM LR-PON system over 100-km fiber employing an economical 10-GHz-based transceiver,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2012), paper OW4B.

A. Gharba, P. Chanclou, M. Ouzzif, J. L. Masson, L. A. Neto, R. Xia, N. Genay, B. Charbonnier, M. Hélard, E. Grard, and V. Rodrigues, “Optical transmission performance for DML considering laser chirp and fiber dispersion using AMOOFDM,” in 2010 International Congress on Ultra Modern Telecommunications and Control Systems and Workshops (ICUMT) (2010), pp. 1022–1026.

E. O. Brigham, Fast Fourier Transform and Its Applications, 1st ed. (Wiley, New York, 1997).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

The block diagram of the SSII cancellation technique.

Fig. 2
Fig. 2

The detail block diagrams of the (a) SSII calculation and (b) theoretical SSII.

Fig. 3
Fig. 3

Experimental setup with spectrum illustrations. (a) channel 1, (b) channel 2, (c) channel 2 after up-conversion, and (d) combination of channels 1 and 2.

Fig. 4
Fig. 4

Electrical spectra of the OFDM signal composed of two bands after 100-km transmission and the calculated SSII.

Fig. 5
Fig. 5

(a) SNR of each subcarrier of optical back-to-back, one-band OFDM after 100-km SSMF, two-band OFDM after 100-km SSMF without SSII cancellation, and two-band OFDM after 100-km SSMF with SSII cancellation via considering the constant chirp and the dynamic chirp. (b) SNR improvement by SSII cancellation of three cases corresponding to those in (a).

Fig. 6
Fig. 6

SNR improvement with different numbers of training symbol, NTS.

Fig. 7
Fig. 7

(a) BER and (b) constellations of OFDM signals before and after SSII cancellation.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

E 1+ 1j α 0 2 X 1 1+ α 0 2 +4j α 1 8 X 2 ,
E (L)1+ 1 2 × 1+ α 0 2 e j θ α n=1 N { x n e jnωt } e j n 2 θ D X t1 1 8 × ( 1+ α 0 2 )| sec θ A | e j θ A n=1 2N { x ˜ n e jnωt } e j n 2 θ D X t2 ,
R (L)1+ 1+ α 0 2 n=1 N H R (n){ x n e jnωt } cos( n 2 θ D θ α ) + 1+ α 0 2 4 × [ n=1 2N H R (n){ x ˜ d,n e jnωt } Beating terms | sec θ A | n=1 2N H R (n){ x ˜ n e jnωt } cos( n 2 θ D + θ A ) Intermixing terms ].
P SSII,ζ (n)= P S (n) Γ ζ (n) P S (n) Γ U (n) ,
ΔP ¯ SSII,ζ = n=1 N Δ P SSII,ζ n=1 N P SSII,W .

Metrics