Abstract

We experimentally demonstrate full simultaneous error-free demultiplexing of a 160-Gb/s OTDM data stream to 16x10-Gb/s WDM channels in a single nonlinear optical device. A temporal Fourier processor based upon a four-wave mixing (FWM) time lens is used to perform the demultiplexing operation. The FWM pump pulses are chirped such that they temporally overlap to allow for continuous operation; a necessary feature for full demultiplexing. We identify the fundamental challenges of operating in this continuous regime and characterize their impact on the system performance. We determine the main performance impairments to be crosstalk from adjacent WDM channels and crosstalk arising from non-degenerate FWM amongst the OTDM signal and the temporally overlapping pump pulses.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. P. Agrawal, Fiber-optic Communication Systems (John Wiley & Sons Inc., 2002).
  2. H. G. Weber, R. Ludwig, S. Ferber, C. Schmidt-Langhorst, M. Kroh, V. Marembert, C. Boerner, and C. Shubert, “Ultrahigh-speed OTDM-transmission technology,” J. Lightwave Technol.24(12), 4616–4627 (2006).
    [CrossRef]
  3. A. A. M. Saleh and J. M. Simmons, “Evolution toward the next-generation core optical network,” J. Lightwave Technol.24(9), 3303–3321 (2006).
    [CrossRef]
  4. M. Nakazawa, T. Yamamoto, and K. R. Tamura, “1.28 Tbit/s-70 km OTDM transmission using third- and fourth-order simultaneous dispersion compensation with a phase modulator,” Electron. Lett.36(24), 2027–2029 (2000).
    [CrossRef]
  5. T. Richter, E. Palushani, C. Schmidt-Langhorst, R. Ludwig, L. Molle, M. Nölle, and C. Schubert, “Transmission of single-channel 16-QAM data signals at terabaud symbol rates,” J. Lightwave Technol.30(4), 504–511 (2012).
    [CrossRef]
  6. H. C. Hansen Mulvad, L. K. Oxenløwe, M. Galili, A. T. Clausen, L. Grüner-Nielsen, and P. Jeppesen, “1.28 Tbit/s single-polarisation serial OOK optical data generation, and demultiplexing,” Electron. Lett.45(5), 280–281 (2009).
    [CrossRef]
  7. H. C. Hansen Mulvad, M. Galili, L. K. Oxenløwe, H. Hu, A. T. Clausen, J. B. Jensen, C. Peucheret, and P. Jeppesen, “Demonstration of 5.1 Tbit/s data capacity on a single-wavelength channel,” Opt. Express18(2), 1438–1443 (2010).
    [CrossRef] [PubMed]
  8. M. D. Pelusi, V. G. Ta’eed, M. R. E. Lamont, S. Madden, D.-Y. Choi, B. Luther-Davies, and B. J. Eggleton, “Ultra-high nonlinear As2 S3 planar waveguide for 160-Gb/s optical time-division demultiplexing by four-wave mixing,” IEEE Photon. Technol. Lett.19(19), 1496–1498 (2007).
    [CrossRef]
  9. M. Galili, J. Xu, H. C. Mulvad, L. K. Oxenløwe, A. T. Clausen, P. Jeppesen, B. Luther-Davis, S. Madden, A. Rode, D.-Y. Choi, M. Pelusi, F. Luan, and B. J. Eggleton, “Breakthrough switching speed with an all-optical chalcogenide glass chip: 640 Gbit/s demultiplexing,” Opt. Express17(4), 2182–2187 (2009).
    [CrossRef] [PubMed]
  10. F. Li, M. Pelusi, D.-X. Xu, A. Densmore, R. Ma, S. Janz, and D. J. Moss, “Error-free all-optical demultiplexing at 160Gb/s via FWM in a silicon nanowire,” Opt. Express18(4), 3905–3910 (2010).
    [CrossRef] [PubMed]
  11. T. D. Vo, H. Hu, M. Galili, E. Palushani, J. Xu, L. K. Oxenløwe, S. J. Madden, D.-Y. Choi, D. A. P. Bulla, M. D. Pelusi, J. Schröder, B. Luther-Davies, and B. J. Eggleton, “Photonic chip based transmitter optimization and receiver demultiplexing of a 1.28 Tbit/s OTDM signal,” Opt. Express18(16), 17252–17261 (2010).
    [CrossRef] [PubMed]
  12. H. Ji, M. Pu, H. Hu, M. Galili, L. K. Oxenløwe, K. Yvind, J. M. Hvam, and P. Jeppesen, “Optical waveform sampling and error-free demultiplexing of 1.28 Tb/s serial data in a nanoengineered silicon waveguide,” J. Lightwave Technol.29(4), 426–431 (2011).
    [CrossRef]
  13. K.-Y. Wang, K. G. Petrillo, M. A. Foster, and A. C. Foster, “Ultralow-power all-optical processing of high-speed data signals in deposited silicon waveguides,” Opt. Express20(22), 24600–24606 (2012).
    [CrossRef] [PubMed]
  14. M. Wang, J. Wu, J. Li, K. Xu, X. Hong, and J. Lin, “All-optical serial-to-parallel converter for simultaneous multiple-channel OTDM demultiplexing,” Electron. Lett.45(9), 474–475 (2009).
    [CrossRef]
  15. M. A. Summerfield, J. P. R. Lacey, A. J. Lowery, and R. S. Tucker, “All-optical TDM to WDM conversion in a semiconductor optical amplifier,” Electron. Lett.30(3), 255–256 (1994).
    [CrossRef]
  16. M. L. Dennis, W. I. Kaechele, W. K. Burns, T. F. Carruthers, and I. N. Duling, “Photonic serial-parallel conversion of high-speed OTDM data,” IEEE Photon. Technol. Lett.12(11), 1561–1563 (2000).
    [CrossRef]
  17. C. S. Brès, A. O. J. Wiberg, B. P. Kuo, J. M. Chavez-Boggio, C. F. Marki, N. Alic, and S. Radic, “Optical demultiplexing of 320 Gb/s to 8 x 40 Gb/s in single parametric gate,” J. Lightwave Technol.28(4), 434–442 (2010).
    [CrossRef]
  18. M. V. Drummond, A. L. J. Teixeira, P. P. Monteiro, and R. N. Nogueira, “Flexible OTDM to WDM converter enabled by a programmable optical processor,” Opt. Express20(2), 1783–1789 (2012).
    [CrossRef] [PubMed]
  19. H. N. Tan, Q. Nguyen-The, M. Matsuura, and N. Kishi, “Reconfigurable all-optical OTDM-to-WDM conversion using a multiwavelength ultrashort pulse source based on Raman compression,” J. Lightwave Technol.30(6), 853–863 (2012).
    [CrossRef]
  20. T. Morioka, S. Kawanishi, H. Takara, and M. Saruwatari, “Multiple-output, 100 Gbit/s all-optical demultiplexer based on multichannel four-wave mixing pumped by a linearly-chirped square pulse,” Electron. Lett.30(23), 1959–1960 (1994).
    [CrossRef]
  21. K. Uchiyama, H. Takara, T. Morioka, S. Kawanishi, and M. Saruwatari, “100Gbit/s multiple-channel output all-optical demultiplexing based on TDM-WDM conversion in a nonlinear optical loop mirror,” Electron. Lett.32(21), 1989–1990 (1996).
    [CrossRef]
  22. K. Uchiyama, S. Kawanishi, and M. Saruwatari, “100-Gb/s multiple-channel output all-optical OTDM demultiplexing using multichannel four-wave mixing in a semiconductor optical amplifier,” IEEE Photon. Technol. Lett.10(6), 890–892 (1998).
    [CrossRef]
  23. K. Uchiyama, S. Kawanishi, and M. Saruwatari, “Multiple-channel output all-optical OTDM demultiplexer using XPM-induced chirp compensation (MOXIC),” Electron. Lett.34(6), 575–576 (1998).
    [CrossRef]
  24. K. G. Petrillo and M. A. Foster, “Scalable ultrahigh-speed optical transmultiplexer using a time lens,” Opt. Express19(15), 14051–14059 (2011).
    [CrossRef] [PubMed]
  25. H. C. H. Mulvad, E. Palushani, H. Hu, H. Ji, M. Lillieholm, M. Galili, A. T. Clausen, M. Pu, K. Yvind, J. M. Hvam, P. Jeppesen, and L. K. Oxenløwe, “Ultra-high-speed optical serial-to-parallel data conversion by time-domain optical Fourier transformation in a silicon nanowire,” Opt. Express19(26), B825–B835 (2011).
    [CrossRef] [PubMed]
  26. E. Palushani, H. C. H. Mulvad, M. Galili, H. Hu, L. K. Oxenlowe, A. T. Clausen, and P. Jeppesen, “OTDM-to-WDM conversion based on time-to-frequency mapping by time-domain optical Fourier transform,” IEEE J. Sel. Top. Quantum Electron.18(2), 681–688 (2012).
    [CrossRef]
  27. E. Palushani, T. Richter, R. Ludwig, C. Schubert, H. C. H. Mulvad, A. Clausen, and L. Oxenløwe, “OTDM-to-WDM conversion of complex modulation formats by time-domain optical Fourier transformation,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2012), paper OTh3H.2.
  28. B. H. Kolner, “Space-time duality and the theory of temporal imaging,” IEEE J. Sel. Top. Quantum Electron.30(8), 1951–1963 (1994).
    [CrossRef]
  29. C. V. Bennet, R. P. Scott, and B. H. Kolner, “Temporal magnification and reversal of 100 Gb/s optical data with an up-conversion time microscope,” Appl. Phys. Lett.65(20), 2513–2515 (1994).
    [CrossRef]
  30. M. T. Kauffman, W. C. Banyai, A. A. Godil, and D. M. Bloom, “Time-to-frequency converter for measuring picosecond optical pulses,” Appl. Phys. Lett.64(3), 270–272 (1994).
    [CrossRef]
  31. J. Azaña, “Time-to-frequency conversion using a single time lens,” Opt. Commun.217(1-6), 205–209 (2003).
    [CrossRef]
  32. M. A. Foster, R. Salem, D. F. Geraghty, A. C. Turner-Foster, M. Lipson, and A. L. Gaeta, “Silicon-chip-based ultrafast optical oscilloscope,” Nature456(7218), 81–84 (2008).
    [CrossRef] [PubMed]
  33. M. A. Foster, R. Salem, Y. Okawachi, A. C. Turner-Foster, M. Lipson, and A. L. Gaeta, “Ultrafast waveform compression using a time-domain telescope,” Nat. Photonics3(10), 581–585 (2009).
    [CrossRef]
  34. J. Schröder, F. Wang, A. Clarke, E. Ryckeboer, M. Pelusi, M. A. F. Roelens, and B. J. Eggleton, “Aberration-free ultra-fast optical oscilloscope using a four-wave mixing based time-lens,” Opt. Commun.283(12), 2611–2614 (2010).
    [CrossRef]
  35. R. Salem, M. A. Foster, A. C. Turner-Foster, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “High-speed optical sampling using a silicon-chip temporal magnifier,” Opt. Express17(6), 4324–4329 (2009).
    [CrossRef] [PubMed]
  36. D. H. Broaddus, M. A. Foster, O. Kuzucu, A. C. Turner-Foster, K. W. Koch, M. Lipson, and A. L. Gaeta, “Temporal-imaging system with simple external-clock triggering,” Opt. Express18(13), 14262–14269 (2010).
    [CrossRef] [PubMed]
  37. R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “Optical time lens based on four-wave mixing on a silicon chip,” Opt. Lett.33(10), 1047–1049 (2008).
    [CrossRef] [PubMed]

2012 (5)

2011 (3)

2010 (6)

C. S. Brès, A. O. J. Wiberg, B. P. Kuo, J. M. Chavez-Boggio, C. F. Marki, N. Alic, and S. Radic, “Optical demultiplexing of 320 Gb/s to 8 x 40 Gb/s in single parametric gate,” J. Lightwave Technol.28(4), 434–442 (2010).
[CrossRef]

H. C. Hansen Mulvad, M. Galili, L. K. Oxenløwe, H. Hu, A. T. Clausen, J. B. Jensen, C. Peucheret, and P. Jeppesen, “Demonstration of 5.1 Tbit/s data capacity on a single-wavelength channel,” Opt. Express18(2), 1438–1443 (2010).
[CrossRef] [PubMed]

F. Li, M. Pelusi, D.-X. Xu, A. Densmore, R. Ma, S. Janz, and D. J. Moss, “Error-free all-optical demultiplexing at 160Gb/s via FWM in a silicon nanowire,” Opt. Express18(4), 3905–3910 (2010).
[CrossRef] [PubMed]

T. D. Vo, H. Hu, M. Galili, E. Palushani, J. Xu, L. K. Oxenløwe, S. J. Madden, D.-Y. Choi, D. A. P. Bulla, M. D. Pelusi, J. Schröder, B. Luther-Davies, and B. J. Eggleton, “Photonic chip based transmitter optimization and receiver demultiplexing of a 1.28 Tbit/s OTDM signal,” Opt. Express18(16), 17252–17261 (2010).
[CrossRef] [PubMed]

J. Schröder, F. Wang, A. Clarke, E. Ryckeboer, M. Pelusi, M. A. F. Roelens, and B. J. Eggleton, “Aberration-free ultra-fast optical oscilloscope using a four-wave mixing based time-lens,” Opt. Commun.283(12), 2611–2614 (2010).
[CrossRef]

D. H. Broaddus, M. A. Foster, O. Kuzucu, A. C. Turner-Foster, K. W. Koch, M. Lipson, and A. L. Gaeta, “Temporal-imaging system with simple external-clock triggering,” Opt. Express18(13), 14262–14269 (2010).
[CrossRef] [PubMed]

2009 (5)

R. Salem, M. A. Foster, A. C. Turner-Foster, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “High-speed optical sampling using a silicon-chip temporal magnifier,” Opt. Express17(6), 4324–4329 (2009).
[CrossRef] [PubMed]

M. A. Foster, R. Salem, Y. Okawachi, A. C. Turner-Foster, M. Lipson, and A. L. Gaeta, “Ultrafast waveform compression using a time-domain telescope,” Nat. Photonics3(10), 581–585 (2009).
[CrossRef]

H. C. Hansen Mulvad, L. K. Oxenløwe, M. Galili, A. T. Clausen, L. Grüner-Nielsen, and P. Jeppesen, “1.28 Tbit/s single-polarisation serial OOK optical data generation, and demultiplexing,” Electron. Lett.45(5), 280–281 (2009).
[CrossRef]

M. Galili, J. Xu, H. C. Mulvad, L. K. Oxenløwe, A. T. Clausen, P. Jeppesen, B. Luther-Davis, S. Madden, A. Rode, D.-Y. Choi, M. Pelusi, F. Luan, and B. J. Eggleton, “Breakthrough switching speed with an all-optical chalcogenide glass chip: 640 Gbit/s demultiplexing,” Opt. Express17(4), 2182–2187 (2009).
[CrossRef] [PubMed]

M. Wang, J. Wu, J. Li, K. Xu, X. Hong, and J. Lin, “All-optical serial-to-parallel converter for simultaneous multiple-channel OTDM demultiplexing,” Electron. Lett.45(9), 474–475 (2009).
[CrossRef]

2008 (2)

M. A. Foster, R. Salem, D. F. Geraghty, A. C. Turner-Foster, M. Lipson, and A. L. Gaeta, “Silicon-chip-based ultrafast optical oscilloscope,” Nature456(7218), 81–84 (2008).
[CrossRef] [PubMed]

R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “Optical time lens based on four-wave mixing on a silicon chip,” Opt. Lett.33(10), 1047–1049 (2008).
[CrossRef] [PubMed]

2007 (1)

M. D. Pelusi, V. G. Ta’eed, M. R. E. Lamont, S. Madden, D.-Y. Choi, B. Luther-Davies, and B. J. Eggleton, “Ultra-high nonlinear As2 S3 planar waveguide for 160-Gb/s optical time-division demultiplexing by four-wave mixing,” IEEE Photon. Technol. Lett.19(19), 1496–1498 (2007).
[CrossRef]

2006 (2)

2003 (1)

J. Azaña, “Time-to-frequency conversion using a single time lens,” Opt. Commun.217(1-6), 205–209 (2003).
[CrossRef]

2000 (2)

M. Nakazawa, T. Yamamoto, and K. R. Tamura, “1.28 Tbit/s-70 km OTDM transmission using third- and fourth-order simultaneous dispersion compensation with a phase modulator,” Electron. Lett.36(24), 2027–2029 (2000).
[CrossRef]

M. L. Dennis, W. I. Kaechele, W. K. Burns, T. F. Carruthers, and I. N. Duling, “Photonic serial-parallel conversion of high-speed OTDM data,” IEEE Photon. Technol. Lett.12(11), 1561–1563 (2000).
[CrossRef]

1998 (2)

K. Uchiyama, S. Kawanishi, and M. Saruwatari, “100-Gb/s multiple-channel output all-optical OTDM demultiplexing using multichannel four-wave mixing in a semiconductor optical amplifier,” IEEE Photon. Technol. Lett.10(6), 890–892 (1998).
[CrossRef]

K. Uchiyama, S. Kawanishi, and M. Saruwatari, “Multiple-channel output all-optical OTDM demultiplexer using XPM-induced chirp compensation (MOXIC),” Electron. Lett.34(6), 575–576 (1998).
[CrossRef]

1996 (1)

K. Uchiyama, H. Takara, T. Morioka, S. Kawanishi, and M. Saruwatari, “100Gbit/s multiple-channel output all-optical demultiplexing based on TDM-WDM conversion in a nonlinear optical loop mirror,” Electron. Lett.32(21), 1989–1990 (1996).
[CrossRef]

1994 (5)

B. H. Kolner, “Space-time duality and the theory of temporal imaging,” IEEE J. Sel. Top. Quantum Electron.30(8), 1951–1963 (1994).
[CrossRef]

C. V. Bennet, R. P. Scott, and B. H. Kolner, “Temporal magnification and reversal of 100 Gb/s optical data with an up-conversion time microscope,” Appl. Phys. Lett.65(20), 2513–2515 (1994).
[CrossRef]

M. T. Kauffman, W. C. Banyai, A. A. Godil, and D. M. Bloom, “Time-to-frequency converter for measuring picosecond optical pulses,” Appl. Phys. Lett.64(3), 270–272 (1994).
[CrossRef]

T. Morioka, S. Kawanishi, H. Takara, and M. Saruwatari, “Multiple-output, 100 Gbit/s all-optical demultiplexer based on multichannel four-wave mixing pumped by a linearly-chirped square pulse,” Electron. Lett.30(23), 1959–1960 (1994).
[CrossRef]

M. A. Summerfield, J. P. R. Lacey, A. J. Lowery, and R. S. Tucker, “All-optical TDM to WDM conversion in a semiconductor optical amplifier,” Electron. Lett.30(3), 255–256 (1994).
[CrossRef]

Alic, N.

Azaña, J.

J. Azaña, “Time-to-frequency conversion using a single time lens,” Opt. Commun.217(1-6), 205–209 (2003).
[CrossRef]

Banyai, W. C.

M. T. Kauffman, W. C. Banyai, A. A. Godil, and D. M. Bloom, “Time-to-frequency converter for measuring picosecond optical pulses,” Appl. Phys. Lett.64(3), 270–272 (1994).
[CrossRef]

Bennet, C. V.

C. V. Bennet, R. P. Scott, and B. H. Kolner, “Temporal magnification and reversal of 100 Gb/s optical data with an up-conversion time microscope,” Appl. Phys. Lett.65(20), 2513–2515 (1994).
[CrossRef]

Bloom, D. M.

M. T. Kauffman, W. C. Banyai, A. A. Godil, and D. M. Bloom, “Time-to-frequency converter for measuring picosecond optical pulses,” Appl. Phys. Lett.64(3), 270–272 (1994).
[CrossRef]

Boerner, C.

Brès, C. S.

Broaddus, D. H.

Bulla, D. A. P.

Burns, W. K.

M. L. Dennis, W. I. Kaechele, W. K. Burns, T. F. Carruthers, and I. N. Duling, “Photonic serial-parallel conversion of high-speed OTDM data,” IEEE Photon. Technol. Lett.12(11), 1561–1563 (2000).
[CrossRef]

Carruthers, T. F.

M. L. Dennis, W. I. Kaechele, W. K. Burns, T. F. Carruthers, and I. N. Duling, “Photonic serial-parallel conversion of high-speed OTDM data,” IEEE Photon. Technol. Lett.12(11), 1561–1563 (2000).
[CrossRef]

Chavez-Boggio, J. M.

Choi, D.-Y.

Clarke, A.

J. Schröder, F. Wang, A. Clarke, E. Ryckeboer, M. Pelusi, M. A. F. Roelens, and B. J. Eggleton, “Aberration-free ultra-fast optical oscilloscope using a four-wave mixing based time-lens,” Opt. Commun.283(12), 2611–2614 (2010).
[CrossRef]

Clausen, A. T.

Dennis, M. L.

M. L. Dennis, W. I. Kaechele, W. K. Burns, T. F. Carruthers, and I. N. Duling, “Photonic serial-parallel conversion of high-speed OTDM data,” IEEE Photon. Technol. Lett.12(11), 1561–1563 (2000).
[CrossRef]

Densmore, A.

Drummond, M. V.

Duling, I. N.

M. L. Dennis, W. I. Kaechele, W. K. Burns, T. F. Carruthers, and I. N. Duling, “Photonic serial-parallel conversion of high-speed OTDM data,” IEEE Photon. Technol. Lett.12(11), 1561–1563 (2000).
[CrossRef]

Eggleton, B. J.

T. D. Vo, H. Hu, M. Galili, E. Palushani, J. Xu, L. K. Oxenløwe, S. J. Madden, D.-Y. Choi, D. A. P. Bulla, M. D. Pelusi, J. Schröder, B. Luther-Davies, and B. J. Eggleton, “Photonic chip based transmitter optimization and receiver demultiplexing of a 1.28 Tbit/s OTDM signal,” Opt. Express18(16), 17252–17261 (2010).
[CrossRef] [PubMed]

J. Schröder, F. Wang, A. Clarke, E. Ryckeboer, M. Pelusi, M. A. F. Roelens, and B. J. Eggleton, “Aberration-free ultra-fast optical oscilloscope using a four-wave mixing based time-lens,” Opt. Commun.283(12), 2611–2614 (2010).
[CrossRef]

M. Galili, J. Xu, H. C. Mulvad, L. K. Oxenløwe, A. T. Clausen, P. Jeppesen, B. Luther-Davis, S. Madden, A. Rode, D.-Y. Choi, M. Pelusi, F. Luan, and B. J. Eggleton, “Breakthrough switching speed with an all-optical chalcogenide glass chip: 640 Gbit/s demultiplexing,” Opt. Express17(4), 2182–2187 (2009).
[CrossRef] [PubMed]

M. D. Pelusi, V. G. Ta’eed, M. R. E. Lamont, S. Madden, D.-Y. Choi, B. Luther-Davies, and B. J. Eggleton, “Ultra-high nonlinear As2 S3 planar waveguide for 160-Gb/s optical time-division demultiplexing by four-wave mixing,” IEEE Photon. Technol. Lett.19(19), 1496–1498 (2007).
[CrossRef]

Ferber, S.

Foster, A. C.

Foster, M. A.

Gaeta, A. L.

Galili, M.

E. Palushani, H. C. H. Mulvad, M. Galili, H. Hu, L. K. Oxenlowe, A. T. Clausen, and P. Jeppesen, “OTDM-to-WDM conversion based on time-to-frequency mapping by time-domain optical Fourier transform,” IEEE J. Sel. Top. Quantum Electron.18(2), 681–688 (2012).
[CrossRef]

H. C. H. Mulvad, E. Palushani, H. Hu, H. Ji, M. Lillieholm, M. Galili, A. T. Clausen, M. Pu, K. Yvind, J. M. Hvam, P. Jeppesen, and L. K. Oxenløwe, “Ultra-high-speed optical serial-to-parallel data conversion by time-domain optical Fourier transformation in a silicon nanowire,” Opt. Express19(26), B825–B835 (2011).
[CrossRef] [PubMed]

H. Ji, M. Pu, H. Hu, M. Galili, L. K. Oxenløwe, K. Yvind, J. M. Hvam, and P. Jeppesen, “Optical waveform sampling and error-free demultiplexing of 1.28 Tb/s serial data in a nanoengineered silicon waveguide,” J. Lightwave Technol.29(4), 426–431 (2011).
[CrossRef]

H. C. Hansen Mulvad, M. Galili, L. K. Oxenløwe, H. Hu, A. T. Clausen, J. B. Jensen, C. Peucheret, and P. Jeppesen, “Demonstration of 5.1 Tbit/s data capacity on a single-wavelength channel,” Opt. Express18(2), 1438–1443 (2010).
[CrossRef] [PubMed]

T. D. Vo, H. Hu, M. Galili, E. Palushani, J. Xu, L. K. Oxenløwe, S. J. Madden, D.-Y. Choi, D. A. P. Bulla, M. D. Pelusi, J. Schröder, B. Luther-Davies, and B. J. Eggleton, “Photonic chip based transmitter optimization and receiver demultiplexing of a 1.28 Tbit/s OTDM signal,” Opt. Express18(16), 17252–17261 (2010).
[CrossRef] [PubMed]

M. Galili, J. Xu, H. C. Mulvad, L. K. Oxenløwe, A. T. Clausen, P. Jeppesen, B. Luther-Davis, S. Madden, A. Rode, D.-Y. Choi, M. Pelusi, F. Luan, and B. J. Eggleton, “Breakthrough switching speed with an all-optical chalcogenide glass chip: 640 Gbit/s demultiplexing,” Opt. Express17(4), 2182–2187 (2009).
[CrossRef] [PubMed]

H. C. Hansen Mulvad, L. K. Oxenløwe, M. Galili, A. T. Clausen, L. Grüner-Nielsen, and P. Jeppesen, “1.28 Tbit/s single-polarisation serial OOK optical data generation, and demultiplexing,” Electron. Lett.45(5), 280–281 (2009).
[CrossRef]

Geraghty, D. F.

Godil, A. A.

M. T. Kauffman, W. C. Banyai, A. A. Godil, and D. M. Bloom, “Time-to-frequency converter for measuring picosecond optical pulses,” Appl. Phys. Lett.64(3), 270–272 (1994).
[CrossRef]

Grüner-Nielsen, L.

H. C. Hansen Mulvad, L. K. Oxenløwe, M. Galili, A. T. Clausen, L. Grüner-Nielsen, and P. Jeppesen, “1.28 Tbit/s single-polarisation serial OOK optical data generation, and demultiplexing,” Electron. Lett.45(5), 280–281 (2009).
[CrossRef]

Hansen Mulvad, H. C.

H. C. Hansen Mulvad, M. Galili, L. K. Oxenløwe, H. Hu, A. T. Clausen, J. B. Jensen, C. Peucheret, and P. Jeppesen, “Demonstration of 5.1 Tbit/s data capacity on a single-wavelength channel,” Opt. Express18(2), 1438–1443 (2010).
[CrossRef] [PubMed]

H. C. Hansen Mulvad, L. K. Oxenløwe, M. Galili, A. T. Clausen, L. Grüner-Nielsen, and P. Jeppesen, “1.28 Tbit/s single-polarisation serial OOK optical data generation, and demultiplexing,” Electron. Lett.45(5), 280–281 (2009).
[CrossRef]

Hong, X.

M. Wang, J. Wu, J. Li, K. Xu, X. Hong, and J. Lin, “All-optical serial-to-parallel converter for simultaneous multiple-channel OTDM demultiplexing,” Electron. Lett.45(9), 474–475 (2009).
[CrossRef]

Hu, H.

Hvam, J. M.

Janz, S.

Jensen, J. B.

Jeppesen, P.

E. Palushani, H. C. H. Mulvad, M. Galili, H. Hu, L. K. Oxenlowe, A. T. Clausen, and P. Jeppesen, “OTDM-to-WDM conversion based on time-to-frequency mapping by time-domain optical Fourier transform,” IEEE J. Sel. Top. Quantum Electron.18(2), 681–688 (2012).
[CrossRef]

H. C. H. Mulvad, E. Palushani, H. Hu, H. Ji, M. Lillieholm, M. Galili, A. T. Clausen, M. Pu, K. Yvind, J. M. Hvam, P. Jeppesen, and L. K. Oxenløwe, “Ultra-high-speed optical serial-to-parallel data conversion by time-domain optical Fourier transformation in a silicon nanowire,” Opt. Express19(26), B825–B835 (2011).
[CrossRef] [PubMed]

H. Ji, M. Pu, H. Hu, M. Galili, L. K. Oxenløwe, K. Yvind, J. M. Hvam, and P. Jeppesen, “Optical waveform sampling and error-free demultiplexing of 1.28 Tb/s serial data in a nanoengineered silicon waveguide,” J. Lightwave Technol.29(4), 426–431 (2011).
[CrossRef]

H. C. Hansen Mulvad, M. Galili, L. K. Oxenløwe, H. Hu, A. T. Clausen, J. B. Jensen, C. Peucheret, and P. Jeppesen, “Demonstration of 5.1 Tbit/s data capacity on a single-wavelength channel,” Opt. Express18(2), 1438–1443 (2010).
[CrossRef] [PubMed]

H. C. Hansen Mulvad, L. K. Oxenløwe, M. Galili, A. T. Clausen, L. Grüner-Nielsen, and P. Jeppesen, “1.28 Tbit/s single-polarisation serial OOK optical data generation, and demultiplexing,” Electron. Lett.45(5), 280–281 (2009).
[CrossRef]

M. Galili, J. Xu, H. C. Mulvad, L. K. Oxenløwe, A. T. Clausen, P. Jeppesen, B. Luther-Davis, S. Madden, A. Rode, D.-Y. Choi, M. Pelusi, F. Luan, and B. J. Eggleton, “Breakthrough switching speed with an all-optical chalcogenide glass chip: 640 Gbit/s demultiplexing,” Opt. Express17(4), 2182–2187 (2009).
[CrossRef] [PubMed]

Ji, H.

Kaechele, W. I.

M. L. Dennis, W. I. Kaechele, W. K. Burns, T. F. Carruthers, and I. N. Duling, “Photonic serial-parallel conversion of high-speed OTDM data,” IEEE Photon. Technol. Lett.12(11), 1561–1563 (2000).
[CrossRef]

Kauffman, M. T.

M. T. Kauffman, W. C. Banyai, A. A. Godil, and D. M. Bloom, “Time-to-frequency converter for measuring picosecond optical pulses,” Appl. Phys. Lett.64(3), 270–272 (1994).
[CrossRef]

Kawanishi, S.

K. Uchiyama, S. Kawanishi, and M. Saruwatari, “100-Gb/s multiple-channel output all-optical OTDM demultiplexing using multichannel four-wave mixing in a semiconductor optical amplifier,” IEEE Photon. Technol. Lett.10(6), 890–892 (1998).
[CrossRef]

K. Uchiyama, S. Kawanishi, and M. Saruwatari, “Multiple-channel output all-optical OTDM demultiplexer using XPM-induced chirp compensation (MOXIC),” Electron. Lett.34(6), 575–576 (1998).
[CrossRef]

K. Uchiyama, H. Takara, T. Morioka, S. Kawanishi, and M. Saruwatari, “100Gbit/s multiple-channel output all-optical demultiplexing based on TDM-WDM conversion in a nonlinear optical loop mirror,” Electron. Lett.32(21), 1989–1990 (1996).
[CrossRef]

T. Morioka, S. Kawanishi, H. Takara, and M. Saruwatari, “Multiple-output, 100 Gbit/s all-optical demultiplexer based on multichannel four-wave mixing pumped by a linearly-chirped square pulse,” Electron. Lett.30(23), 1959–1960 (1994).
[CrossRef]

Kishi, N.

Koch, K. W.

Kolner, B. H.

C. V. Bennet, R. P. Scott, and B. H. Kolner, “Temporal magnification and reversal of 100 Gb/s optical data with an up-conversion time microscope,” Appl. Phys. Lett.65(20), 2513–2515 (1994).
[CrossRef]

B. H. Kolner, “Space-time duality and the theory of temporal imaging,” IEEE J. Sel. Top. Quantum Electron.30(8), 1951–1963 (1994).
[CrossRef]

Kroh, M.

Kuo, B. P.

Kuzucu, O.

Lacey, J. P. R.

M. A. Summerfield, J. P. R. Lacey, A. J. Lowery, and R. S. Tucker, “All-optical TDM to WDM conversion in a semiconductor optical amplifier,” Electron. Lett.30(3), 255–256 (1994).
[CrossRef]

Lamont, M. R. E.

M. D. Pelusi, V. G. Ta’eed, M. R. E. Lamont, S. Madden, D.-Y. Choi, B. Luther-Davies, and B. J. Eggleton, “Ultra-high nonlinear As2 S3 planar waveguide for 160-Gb/s optical time-division demultiplexing by four-wave mixing,” IEEE Photon. Technol. Lett.19(19), 1496–1498 (2007).
[CrossRef]

Li, F.

Li, J.

M. Wang, J. Wu, J. Li, K. Xu, X. Hong, and J. Lin, “All-optical serial-to-parallel converter for simultaneous multiple-channel OTDM demultiplexing,” Electron. Lett.45(9), 474–475 (2009).
[CrossRef]

Lillieholm, M.

Lin, J.

M. Wang, J. Wu, J. Li, K. Xu, X. Hong, and J. Lin, “All-optical serial-to-parallel converter for simultaneous multiple-channel OTDM demultiplexing,” Electron. Lett.45(9), 474–475 (2009).
[CrossRef]

Lipson, M.

Lowery, A. J.

M. A. Summerfield, J. P. R. Lacey, A. J. Lowery, and R. S. Tucker, “All-optical TDM to WDM conversion in a semiconductor optical amplifier,” Electron. Lett.30(3), 255–256 (1994).
[CrossRef]

Luan, F.

Ludwig, R.

Luther-Davies, B.

T. D. Vo, H. Hu, M. Galili, E. Palushani, J. Xu, L. K. Oxenløwe, S. J. Madden, D.-Y. Choi, D. A. P. Bulla, M. D. Pelusi, J. Schröder, B. Luther-Davies, and B. J. Eggleton, “Photonic chip based transmitter optimization and receiver demultiplexing of a 1.28 Tbit/s OTDM signal,” Opt. Express18(16), 17252–17261 (2010).
[CrossRef] [PubMed]

M. D. Pelusi, V. G. Ta’eed, M. R. E. Lamont, S. Madden, D.-Y. Choi, B. Luther-Davies, and B. J. Eggleton, “Ultra-high nonlinear As2 S3 planar waveguide for 160-Gb/s optical time-division demultiplexing by four-wave mixing,” IEEE Photon. Technol. Lett.19(19), 1496–1498 (2007).
[CrossRef]

Luther-Davis, B.

Ma, R.

Madden, S.

M. Galili, J. Xu, H. C. Mulvad, L. K. Oxenløwe, A. T. Clausen, P. Jeppesen, B. Luther-Davis, S. Madden, A. Rode, D.-Y. Choi, M. Pelusi, F. Luan, and B. J. Eggleton, “Breakthrough switching speed with an all-optical chalcogenide glass chip: 640 Gbit/s demultiplexing,” Opt. Express17(4), 2182–2187 (2009).
[CrossRef] [PubMed]

M. D. Pelusi, V. G. Ta’eed, M. R. E. Lamont, S. Madden, D.-Y. Choi, B. Luther-Davies, and B. J. Eggleton, “Ultra-high nonlinear As2 S3 planar waveguide for 160-Gb/s optical time-division demultiplexing by four-wave mixing,” IEEE Photon. Technol. Lett.19(19), 1496–1498 (2007).
[CrossRef]

Madden, S. J.

Marembert, V.

Marki, C. F.

Matsuura, M.

Molle, L.

Monteiro, P. P.

Morioka, T.

K. Uchiyama, H. Takara, T. Morioka, S. Kawanishi, and M. Saruwatari, “100Gbit/s multiple-channel output all-optical demultiplexing based on TDM-WDM conversion in a nonlinear optical loop mirror,” Electron. Lett.32(21), 1989–1990 (1996).
[CrossRef]

T. Morioka, S. Kawanishi, H. Takara, and M. Saruwatari, “Multiple-output, 100 Gbit/s all-optical demultiplexer based on multichannel four-wave mixing pumped by a linearly-chirped square pulse,” Electron. Lett.30(23), 1959–1960 (1994).
[CrossRef]

Moss, D. J.

Mulvad, H. C.

Mulvad, H. C. H.

E. Palushani, H. C. H. Mulvad, M. Galili, H. Hu, L. K. Oxenlowe, A. T. Clausen, and P. Jeppesen, “OTDM-to-WDM conversion based on time-to-frequency mapping by time-domain optical Fourier transform,” IEEE J. Sel. Top. Quantum Electron.18(2), 681–688 (2012).
[CrossRef]

H. C. H. Mulvad, E. Palushani, H. Hu, H. Ji, M. Lillieholm, M. Galili, A. T. Clausen, M. Pu, K. Yvind, J. M. Hvam, P. Jeppesen, and L. K. Oxenløwe, “Ultra-high-speed optical serial-to-parallel data conversion by time-domain optical Fourier transformation in a silicon nanowire,” Opt. Express19(26), B825–B835 (2011).
[CrossRef] [PubMed]

Nakazawa, M.

M. Nakazawa, T. Yamamoto, and K. R. Tamura, “1.28 Tbit/s-70 km OTDM transmission using third- and fourth-order simultaneous dispersion compensation with a phase modulator,” Electron. Lett.36(24), 2027–2029 (2000).
[CrossRef]

Nguyen-The, Q.

Nogueira, R. N.

Nölle, M.

Okawachi, Y.

M. A. Foster, R. Salem, Y. Okawachi, A. C. Turner-Foster, M. Lipson, and A. L. Gaeta, “Ultrafast waveform compression using a time-domain telescope,” Nat. Photonics3(10), 581–585 (2009).
[CrossRef]

Oxenlowe, L. K.

E. Palushani, H. C. H. Mulvad, M. Galili, H. Hu, L. K. Oxenlowe, A. T. Clausen, and P. Jeppesen, “OTDM-to-WDM conversion based on time-to-frequency mapping by time-domain optical Fourier transform,” IEEE J. Sel. Top. Quantum Electron.18(2), 681–688 (2012).
[CrossRef]

Oxenløwe, L. K.

H. C. H. Mulvad, E. Palushani, H. Hu, H. Ji, M. Lillieholm, M. Galili, A. T. Clausen, M. Pu, K. Yvind, J. M. Hvam, P. Jeppesen, and L. K. Oxenløwe, “Ultra-high-speed optical serial-to-parallel data conversion by time-domain optical Fourier transformation in a silicon nanowire,” Opt. Express19(26), B825–B835 (2011).
[CrossRef] [PubMed]

H. Ji, M. Pu, H. Hu, M. Galili, L. K. Oxenløwe, K. Yvind, J. M. Hvam, and P. Jeppesen, “Optical waveform sampling and error-free demultiplexing of 1.28 Tb/s serial data in a nanoengineered silicon waveguide,” J. Lightwave Technol.29(4), 426–431 (2011).
[CrossRef]

H. C. Hansen Mulvad, M. Galili, L. K. Oxenløwe, H. Hu, A. T. Clausen, J. B. Jensen, C. Peucheret, and P. Jeppesen, “Demonstration of 5.1 Tbit/s data capacity on a single-wavelength channel,” Opt. Express18(2), 1438–1443 (2010).
[CrossRef] [PubMed]

T. D. Vo, H. Hu, M. Galili, E. Palushani, J. Xu, L. K. Oxenløwe, S. J. Madden, D.-Y. Choi, D. A. P. Bulla, M. D. Pelusi, J. Schröder, B. Luther-Davies, and B. J. Eggleton, “Photonic chip based transmitter optimization and receiver demultiplexing of a 1.28 Tbit/s OTDM signal,” Opt. Express18(16), 17252–17261 (2010).
[CrossRef] [PubMed]

M. Galili, J. Xu, H. C. Mulvad, L. K. Oxenløwe, A. T. Clausen, P. Jeppesen, B. Luther-Davis, S. Madden, A. Rode, D.-Y. Choi, M. Pelusi, F. Luan, and B. J. Eggleton, “Breakthrough switching speed with an all-optical chalcogenide glass chip: 640 Gbit/s demultiplexing,” Opt. Express17(4), 2182–2187 (2009).
[CrossRef] [PubMed]

H. C. Hansen Mulvad, L. K. Oxenløwe, M. Galili, A. T. Clausen, L. Grüner-Nielsen, and P. Jeppesen, “1.28 Tbit/s single-polarisation serial OOK optical data generation, and demultiplexing,” Electron. Lett.45(5), 280–281 (2009).
[CrossRef]

Palushani, E.

Pelusi, M.

Pelusi, M. D.

T. D. Vo, H. Hu, M. Galili, E. Palushani, J. Xu, L. K. Oxenløwe, S. J. Madden, D.-Y. Choi, D. A. P. Bulla, M. D. Pelusi, J. Schröder, B. Luther-Davies, and B. J. Eggleton, “Photonic chip based transmitter optimization and receiver demultiplexing of a 1.28 Tbit/s OTDM signal,” Opt. Express18(16), 17252–17261 (2010).
[CrossRef] [PubMed]

M. D. Pelusi, V. G. Ta’eed, M. R. E. Lamont, S. Madden, D.-Y. Choi, B. Luther-Davies, and B. J. Eggleton, “Ultra-high nonlinear As2 S3 planar waveguide for 160-Gb/s optical time-division demultiplexing by four-wave mixing,” IEEE Photon. Technol. Lett.19(19), 1496–1498 (2007).
[CrossRef]

Petrillo, K. G.

Peucheret, C.

Pu, M.

Radic, S.

Richter, T.

Rode, A.

Roelens, M. A. F.

J. Schröder, F. Wang, A. Clarke, E. Ryckeboer, M. Pelusi, M. A. F. Roelens, and B. J. Eggleton, “Aberration-free ultra-fast optical oscilloscope using a four-wave mixing based time-lens,” Opt. Commun.283(12), 2611–2614 (2010).
[CrossRef]

Ryckeboer, E.

J. Schröder, F. Wang, A. Clarke, E. Ryckeboer, M. Pelusi, M. A. F. Roelens, and B. J. Eggleton, “Aberration-free ultra-fast optical oscilloscope using a four-wave mixing based time-lens,” Opt. Commun.283(12), 2611–2614 (2010).
[CrossRef]

Saleh, A. A. M.

Salem, R.

R. Salem, M. A. Foster, A. C. Turner-Foster, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “High-speed optical sampling using a silicon-chip temporal magnifier,” Opt. Express17(6), 4324–4329 (2009).
[CrossRef] [PubMed]

M. A. Foster, R. Salem, Y. Okawachi, A. C. Turner-Foster, M. Lipson, and A. L. Gaeta, “Ultrafast waveform compression using a time-domain telescope,” Nat. Photonics3(10), 581–585 (2009).
[CrossRef]

M. A. Foster, R. Salem, D. F. Geraghty, A. C. Turner-Foster, M. Lipson, and A. L. Gaeta, “Silicon-chip-based ultrafast optical oscilloscope,” Nature456(7218), 81–84 (2008).
[CrossRef] [PubMed]

R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “Optical time lens based on four-wave mixing on a silicon chip,” Opt. Lett.33(10), 1047–1049 (2008).
[CrossRef] [PubMed]

Saruwatari, M.

K. Uchiyama, S. Kawanishi, and M. Saruwatari, “Multiple-channel output all-optical OTDM demultiplexer using XPM-induced chirp compensation (MOXIC),” Electron. Lett.34(6), 575–576 (1998).
[CrossRef]

K. Uchiyama, S. Kawanishi, and M. Saruwatari, “100-Gb/s multiple-channel output all-optical OTDM demultiplexing using multichannel four-wave mixing in a semiconductor optical amplifier,” IEEE Photon. Technol. Lett.10(6), 890–892 (1998).
[CrossRef]

K. Uchiyama, H. Takara, T. Morioka, S. Kawanishi, and M. Saruwatari, “100Gbit/s multiple-channel output all-optical demultiplexing based on TDM-WDM conversion in a nonlinear optical loop mirror,” Electron. Lett.32(21), 1989–1990 (1996).
[CrossRef]

T. Morioka, S. Kawanishi, H. Takara, and M. Saruwatari, “Multiple-output, 100 Gbit/s all-optical demultiplexer based on multichannel four-wave mixing pumped by a linearly-chirped square pulse,” Electron. Lett.30(23), 1959–1960 (1994).
[CrossRef]

Schmidt-Langhorst, C.

Schröder, J.

Schubert, C.

Scott, R. P.

C. V. Bennet, R. P. Scott, and B. H. Kolner, “Temporal magnification and reversal of 100 Gb/s optical data with an up-conversion time microscope,” Appl. Phys. Lett.65(20), 2513–2515 (1994).
[CrossRef]

Shubert, C.

Simmons, J. M.

Summerfield, M. A.

M. A. Summerfield, J. P. R. Lacey, A. J. Lowery, and R. S. Tucker, “All-optical TDM to WDM conversion in a semiconductor optical amplifier,” Electron. Lett.30(3), 255–256 (1994).
[CrossRef]

Ta’eed, V. G.

M. D. Pelusi, V. G. Ta’eed, M. R. E. Lamont, S. Madden, D.-Y. Choi, B. Luther-Davies, and B. J. Eggleton, “Ultra-high nonlinear As2 S3 planar waveguide for 160-Gb/s optical time-division demultiplexing by four-wave mixing,” IEEE Photon. Technol. Lett.19(19), 1496–1498 (2007).
[CrossRef]

Takara, H.

K. Uchiyama, H. Takara, T. Morioka, S. Kawanishi, and M. Saruwatari, “100Gbit/s multiple-channel output all-optical demultiplexing based on TDM-WDM conversion in a nonlinear optical loop mirror,” Electron. Lett.32(21), 1989–1990 (1996).
[CrossRef]

T. Morioka, S. Kawanishi, H. Takara, and M. Saruwatari, “Multiple-output, 100 Gbit/s all-optical demultiplexer based on multichannel four-wave mixing pumped by a linearly-chirped square pulse,” Electron. Lett.30(23), 1959–1960 (1994).
[CrossRef]

Tamura, K. R.

M. Nakazawa, T. Yamamoto, and K. R. Tamura, “1.28 Tbit/s-70 km OTDM transmission using third- and fourth-order simultaneous dispersion compensation with a phase modulator,” Electron. Lett.36(24), 2027–2029 (2000).
[CrossRef]

Tan, H. N.

Teixeira, A. L. J.

Tucker, R. S.

M. A. Summerfield, J. P. R. Lacey, A. J. Lowery, and R. S. Tucker, “All-optical TDM to WDM conversion in a semiconductor optical amplifier,” Electron. Lett.30(3), 255–256 (1994).
[CrossRef]

Turner, A. C.

Turner-Foster, A. C.

D. H. Broaddus, M. A. Foster, O. Kuzucu, A. C. Turner-Foster, K. W. Koch, M. Lipson, and A. L. Gaeta, “Temporal-imaging system with simple external-clock triggering,” Opt. Express18(13), 14262–14269 (2010).
[CrossRef] [PubMed]

M. A. Foster, R. Salem, Y. Okawachi, A. C. Turner-Foster, M. Lipson, and A. L. Gaeta, “Ultrafast waveform compression using a time-domain telescope,” Nat. Photonics3(10), 581–585 (2009).
[CrossRef]

R. Salem, M. A. Foster, A. C. Turner-Foster, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “High-speed optical sampling using a silicon-chip temporal magnifier,” Opt. Express17(6), 4324–4329 (2009).
[CrossRef] [PubMed]

M. A. Foster, R. Salem, D. F. Geraghty, A. C. Turner-Foster, M. Lipson, and A. L. Gaeta, “Silicon-chip-based ultrafast optical oscilloscope,” Nature456(7218), 81–84 (2008).
[CrossRef] [PubMed]

Uchiyama, K.

K. Uchiyama, S. Kawanishi, and M. Saruwatari, “100-Gb/s multiple-channel output all-optical OTDM demultiplexing using multichannel four-wave mixing in a semiconductor optical amplifier,” IEEE Photon. Technol. Lett.10(6), 890–892 (1998).
[CrossRef]

K. Uchiyama, S. Kawanishi, and M. Saruwatari, “Multiple-channel output all-optical OTDM demultiplexer using XPM-induced chirp compensation (MOXIC),” Electron. Lett.34(6), 575–576 (1998).
[CrossRef]

K. Uchiyama, H. Takara, T. Morioka, S. Kawanishi, and M. Saruwatari, “100Gbit/s multiple-channel output all-optical demultiplexing based on TDM-WDM conversion in a nonlinear optical loop mirror,” Electron. Lett.32(21), 1989–1990 (1996).
[CrossRef]

Vo, T. D.

Wang, F.

J. Schröder, F. Wang, A. Clarke, E. Ryckeboer, M. Pelusi, M. A. F. Roelens, and B. J. Eggleton, “Aberration-free ultra-fast optical oscilloscope using a four-wave mixing based time-lens,” Opt. Commun.283(12), 2611–2614 (2010).
[CrossRef]

Wang, K.-Y.

Wang, M.

M. Wang, J. Wu, J. Li, K. Xu, X. Hong, and J. Lin, “All-optical serial-to-parallel converter for simultaneous multiple-channel OTDM demultiplexing,” Electron. Lett.45(9), 474–475 (2009).
[CrossRef]

Weber, H. G.

Wiberg, A. O. J.

Wu, J.

M. Wang, J. Wu, J. Li, K. Xu, X. Hong, and J. Lin, “All-optical serial-to-parallel converter for simultaneous multiple-channel OTDM demultiplexing,” Electron. Lett.45(9), 474–475 (2009).
[CrossRef]

Xu, D.-X.

Xu, J.

Xu, K.

M. Wang, J. Wu, J. Li, K. Xu, X. Hong, and J. Lin, “All-optical serial-to-parallel converter for simultaneous multiple-channel OTDM demultiplexing,” Electron. Lett.45(9), 474–475 (2009).
[CrossRef]

Yamamoto, T.

M. Nakazawa, T. Yamamoto, and K. R. Tamura, “1.28 Tbit/s-70 km OTDM transmission using third- and fourth-order simultaneous dispersion compensation with a phase modulator,” Electron. Lett.36(24), 2027–2029 (2000).
[CrossRef]

Yvind, K.

Appl. Phys. Lett. (2)

C. V. Bennet, R. P. Scott, and B. H. Kolner, “Temporal magnification and reversal of 100 Gb/s optical data with an up-conversion time microscope,” Appl. Phys. Lett.65(20), 2513–2515 (1994).
[CrossRef]

M. T. Kauffman, W. C. Banyai, A. A. Godil, and D. M. Bloom, “Time-to-frequency converter for measuring picosecond optical pulses,” Appl. Phys. Lett.64(3), 270–272 (1994).
[CrossRef]

Electron. Lett. (7)

T. Morioka, S. Kawanishi, H. Takara, and M. Saruwatari, “Multiple-output, 100 Gbit/s all-optical demultiplexer based on multichannel four-wave mixing pumped by a linearly-chirped square pulse,” Electron. Lett.30(23), 1959–1960 (1994).
[CrossRef]

K. Uchiyama, H. Takara, T. Morioka, S. Kawanishi, and M. Saruwatari, “100Gbit/s multiple-channel output all-optical demultiplexing based on TDM-WDM conversion in a nonlinear optical loop mirror,” Electron. Lett.32(21), 1989–1990 (1996).
[CrossRef]

K. Uchiyama, S. Kawanishi, and M. Saruwatari, “Multiple-channel output all-optical OTDM demultiplexer using XPM-induced chirp compensation (MOXIC),” Electron. Lett.34(6), 575–576 (1998).
[CrossRef]

M. Nakazawa, T. Yamamoto, and K. R. Tamura, “1.28 Tbit/s-70 km OTDM transmission using third- and fourth-order simultaneous dispersion compensation with a phase modulator,” Electron. Lett.36(24), 2027–2029 (2000).
[CrossRef]

H. C. Hansen Mulvad, L. K. Oxenløwe, M. Galili, A. T. Clausen, L. Grüner-Nielsen, and P. Jeppesen, “1.28 Tbit/s single-polarisation serial OOK optical data generation, and demultiplexing,” Electron. Lett.45(5), 280–281 (2009).
[CrossRef]

M. Wang, J. Wu, J. Li, K. Xu, X. Hong, and J. Lin, “All-optical serial-to-parallel converter for simultaneous multiple-channel OTDM demultiplexing,” Electron. Lett.45(9), 474–475 (2009).
[CrossRef]

M. A. Summerfield, J. P. R. Lacey, A. J. Lowery, and R. S. Tucker, “All-optical TDM to WDM conversion in a semiconductor optical amplifier,” Electron. Lett.30(3), 255–256 (1994).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (2)

E. Palushani, H. C. H. Mulvad, M. Galili, H. Hu, L. K. Oxenlowe, A. T. Clausen, and P. Jeppesen, “OTDM-to-WDM conversion based on time-to-frequency mapping by time-domain optical Fourier transform,” IEEE J. Sel. Top. Quantum Electron.18(2), 681–688 (2012).
[CrossRef]

B. H. Kolner, “Space-time duality and the theory of temporal imaging,” IEEE J. Sel. Top. Quantum Electron.30(8), 1951–1963 (1994).
[CrossRef]

IEEE Photon. Technol. Lett. (3)

K. Uchiyama, S. Kawanishi, and M. Saruwatari, “100-Gb/s multiple-channel output all-optical OTDM demultiplexing using multichannel four-wave mixing in a semiconductor optical amplifier,” IEEE Photon. Technol. Lett.10(6), 890–892 (1998).
[CrossRef]

M. L. Dennis, W. I. Kaechele, W. K. Burns, T. F. Carruthers, and I. N. Duling, “Photonic serial-parallel conversion of high-speed OTDM data,” IEEE Photon. Technol. Lett.12(11), 1561–1563 (2000).
[CrossRef]

M. D. Pelusi, V. G. Ta’eed, M. R. E. Lamont, S. Madden, D.-Y. Choi, B. Luther-Davies, and B. J. Eggleton, “Ultra-high nonlinear As2 S3 planar waveguide for 160-Gb/s optical time-division demultiplexing by four-wave mixing,” IEEE Photon. Technol. Lett.19(19), 1496–1498 (2007).
[CrossRef]

J. Lightwave Technol. (6)

Nat. Photonics (1)

M. A. Foster, R. Salem, Y. Okawachi, A. C. Turner-Foster, M. Lipson, and A. L. Gaeta, “Ultrafast waveform compression using a time-domain telescope,” Nat. Photonics3(10), 581–585 (2009).
[CrossRef]

Nature (1)

M. A. Foster, R. Salem, D. F. Geraghty, A. C. Turner-Foster, M. Lipson, and A. L. Gaeta, “Silicon-chip-based ultrafast optical oscilloscope,” Nature456(7218), 81–84 (2008).
[CrossRef] [PubMed]

Opt. Commun. (2)

J. Azaña, “Time-to-frequency conversion using a single time lens,” Opt. Commun.217(1-6), 205–209 (2003).
[CrossRef]

J. Schröder, F. Wang, A. Clarke, E. Ryckeboer, M. Pelusi, M. A. F. Roelens, and B. J. Eggleton, “Aberration-free ultra-fast optical oscilloscope using a four-wave mixing based time-lens,” Opt. Commun.283(12), 2611–2614 (2010).
[CrossRef]

Opt. Express (10)

R. Salem, M. A. Foster, A. C. Turner-Foster, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “High-speed optical sampling using a silicon-chip temporal magnifier,” Opt. Express17(6), 4324–4329 (2009).
[CrossRef] [PubMed]

D. H. Broaddus, M. A. Foster, O. Kuzucu, A. C. Turner-Foster, K. W. Koch, M. Lipson, and A. L. Gaeta, “Temporal-imaging system with simple external-clock triggering,” Opt. Express18(13), 14262–14269 (2010).
[CrossRef] [PubMed]

K. G. Petrillo and M. A. Foster, “Scalable ultrahigh-speed optical transmultiplexer using a time lens,” Opt. Express19(15), 14051–14059 (2011).
[CrossRef] [PubMed]

H. C. H. Mulvad, E. Palushani, H. Hu, H. Ji, M. Lillieholm, M. Galili, A. T. Clausen, M. Pu, K. Yvind, J. M. Hvam, P. Jeppesen, and L. K. Oxenløwe, “Ultra-high-speed optical serial-to-parallel data conversion by time-domain optical Fourier transformation in a silicon nanowire,” Opt. Express19(26), B825–B835 (2011).
[CrossRef] [PubMed]

K.-Y. Wang, K. G. Petrillo, M. A. Foster, and A. C. Foster, “Ultralow-power all-optical processing of high-speed data signals in deposited silicon waveguides,” Opt. Express20(22), 24600–24606 (2012).
[CrossRef] [PubMed]

H. C. Hansen Mulvad, M. Galili, L. K. Oxenløwe, H. Hu, A. T. Clausen, J. B. Jensen, C. Peucheret, and P. Jeppesen, “Demonstration of 5.1 Tbit/s data capacity on a single-wavelength channel,” Opt. Express18(2), 1438–1443 (2010).
[CrossRef] [PubMed]

M. V. Drummond, A. L. J. Teixeira, P. P. Monteiro, and R. N. Nogueira, “Flexible OTDM to WDM converter enabled by a programmable optical processor,” Opt. Express20(2), 1783–1789 (2012).
[CrossRef] [PubMed]

M. Galili, J. Xu, H. C. Mulvad, L. K. Oxenløwe, A. T. Clausen, P. Jeppesen, B. Luther-Davis, S. Madden, A. Rode, D.-Y. Choi, M. Pelusi, F. Luan, and B. J. Eggleton, “Breakthrough switching speed with an all-optical chalcogenide glass chip: 640 Gbit/s demultiplexing,” Opt. Express17(4), 2182–2187 (2009).
[CrossRef] [PubMed]

F. Li, M. Pelusi, D.-X. Xu, A. Densmore, R. Ma, S. Janz, and D. J. Moss, “Error-free all-optical demultiplexing at 160Gb/s via FWM in a silicon nanowire,” Opt. Express18(4), 3905–3910 (2010).
[CrossRef] [PubMed]

T. D. Vo, H. Hu, M. Galili, E. Palushani, J. Xu, L. K. Oxenløwe, S. J. Madden, D.-Y. Choi, D. A. P. Bulla, M. D. Pelusi, J. Schröder, B. Luther-Davies, and B. J. Eggleton, “Photonic chip based transmitter optimization and receiver demultiplexing of a 1.28 Tbit/s OTDM signal,” Opt. Express18(16), 17252–17261 (2010).
[CrossRef] [PubMed]

Opt. Lett. (1)

Other (2)

E. Palushani, T. Richter, R. Ludwig, C. Schubert, H. C. H. Mulvad, A. Clausen, and L. Oxenløwe, “OTDM-to-WDM conversion of complex modulation formats by time-domain optical Fourier transformation,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2012), paper OTh3H.2.

G. P. Agrawal, Fiber-optic Communication Systems (John Wiley & Sons Inc., 2002).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

A temporal Fourier processor is created using a FWM time lens. The incoming signal waveform is chirped prior to FWM, combine with a pump pulse chirped by twice the amount of the signal, and the resulting converted waveform propagates through an equivalent but opposite dispersion length to the signal. The resulting temporal waveform is a scaled version of the incident spectrum and likewise the generated spectrum is a scaled version of the incident temporal waveform.

Fig. 2
Fig. 2

(a) A spectrogram depiction of the time lens FWM process (not to scale). (b) An example of non-degenerate FWM adding crosstalk to a center channel. The red ellipses outlined in black indicate the non-degenerate FWM conversion of channel 1 onto channel 3.

Fig. 3
Fig. 3

Simulated adjacent channel crosstalk (solid) and non-degenerate FWM crosstalk (dotted) as a function of 3-dB pump bandwidth and pump fill factor for no timing jitter (red) and RMS timing jitter between the pump and OTDM signal of 2 ps (blue), 4 ps (green), 6 ps (black). We define pump fill factor as the dispersed 3-dB pump pulsewidth divided by the pump period.

Fig. 4
Fig. 4

Experimental setup showing the generation of the OTDM test source as well as the temporal Fourier processor. BPF and TBPF represent optical bandpass filter and tunable optical bandpass filter, respectively. For BPFs, the optical wavelength range passed through the filter are indicated under the block as 1529nm→1538nm and 1554nm→1563nm. WDM stands for wavelength division multiplexer, APD is an avalanche photodiode, BERT is a bit error rate tester, EOM is an electrooptic modulator, MZI is a highly asymmetric Mach-Zehnder interferometer, and D3 and D38 represent optical fiber with dispersion parameters of 3 ps/nm-km (Vascade LS + ) and 38 ps/nm-km (Vascade S2000) respectively. The autocorrelation trace of the 160-Gb/s OTDM test source is shown as an inset above the OTDM test source stage.

Fig. 5
Fig. 5

(a) The full experimental spectrum after the FWM stage. (b) The idler spectrum after L-band amplifier for all 16 channels (red solid line), with half of the channels blocked (black dashed line), and the filtered spectrum for channel 16 prior to detection (purple dotted line). The resolution bandwidth of (a) and (b) is 0.01 nm with (a) 0.2 nm and (b) 0.08 nm between data points.

Fig. 6
Fig. 6

Eye diagrams for selected WDM channels. (a) channel 16, (b) channel 9, (c) channel 15, and (d) channel 15 with the filter bandwidth prior to detection widened to observe the effects of adjacent channel crosstalk.

Fig. 7
Fig. 7

(a) Bit error rate (BER) versus received optical power for all 16 channels and the back to back (B2B) measurement. (b) Spectrum of the generated WDM channels and their channel number. The resolution bandwidth of (b) is 0.01 nm with 0.08 nm between data points. (c) The received power necessary to achieve a BER of 10−6 and power penalties of each of the channels. (d) The received power necessary to achieve a BER of 10−9 and power penalties of each of the channels. In (c) and (d) the dashed line indicates the B2B power necessary to achieve the respective BER.

Metrics