Abstract

To realise novel, low-cost, photonic technologies that can support 100Gb/s Ethernet in next-generation dense wavelength-division-multiplexed metro transport networks, we are developing arrayed photonic integrated circuits that leverage colourless reflective modulators. Here, we demonstrate a single-channel, hybrid reflective electroabsorption modulator-based device, showing error-free 25.3Gb/s duobinary transmission with bit-error rates less than 1 × 10−12 over 35km of standard single-mode fibre. We further confirm the modulator’s colourless operation over the ITU C-band, with a 1.2dB variation in required optical signal-to-noise ratio over this wavelength range.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. D. Townsend, A. Clarke, P. Ossieur, D. W. Smith, A. Borghesani, D. G. Moodie, I. F. Lealman, X. Z. Qiu, J. Bauwelinck, X. Yin, K. Grobe, B. T. Teipen, R. Jensen, N. Parsons, and E. Kehayas, “Towards colourless coolerless components for low power optical networks,” in Proc. 37th European Conf. on Optical Commun. (ECOC), Geneva, Switzerland, Sep. 2011, paper Tu.LeSaleve.4.
  2. A. M. Clarke, A. Borghesani, D. W. Smith, P. Ossieur, P. D. Townsend, R. Jensen, and N. Parsons, “Demonstration of wavelength agile metro node using reflective colorless components,” in Proc. Optical Fiber Commun. Conf. (OFC), Los Angeles, CA, Mar. 2011, paper OMN2.
  3. R. Vaernewyck, J. Bauwelinck, X. Yin, R. Pierco, J. Verbrugghe, G. Torfs, Z. Li, X. Z. Qiu, J. Vandewege, R. Cronin, A. Borghesani, and D. Moodie, “A 113 Gb/s (10 × 11.3 Gb/s) ultra-low power EAM driver array,” in Proc. 38th European Conf. on Optical Commun. (ECOC), Amsterdam, Netherlands, Sep. 2012, paper Mo.2.B.2.
  4. D. Penninckx, M. Chbat, L. Pierre, and J.-P. Thiery, “The phase-shaped binary transmission (PSBT): A new technique to transmit far beyond the chromatic dispersion limit,” IEEE Photon. Technol. Lett.9(2), 259–261 (1997).
    [CrossRef]
  5. A. Naughton, P. Ossieur, C. Antony, D. W. Smith, A. Borghesani, D. G. Moodie, G. Maxwell, P. Healey, and P. D. Townsend, “Error-free 10Gb/s duobinary transmission over 215km of SSMF using a hybrid photonic integrated reflective modulator,” in Proc. Optical Fiber Commun. Conf. (OFC), Los Angeles, CA, Mar. 2012, paper OW4F.3.
  6. C. P. Lai, A. Naughton, P. Ossieur, C. Antony, D. W. Smith, A. Borghesani, D. G. Moodie, G. Maxwell, P. Healey, A. Poustie, and P. D. Townsend, “Demonstration of error-free 25Gb/s duobinary transmission using a colourless reflective integrated modulator,” in Proc. 38th European Conf. on Optical Commun. (ECOC), Amsterdam, Netherlands, Sep. 2012, paper We.1.E.4.
  7. I. Kang, S. Chandrasekhar, C. Kazmierski, M. Rasras, and N. Dupuis, “1650-km transmission of 50-Gb/s NRZ and RZ-DQPSK signals generated using an electroabsorption modulators-silica planar lightwave circuit hybrid integrated device,” in Proc. Optical Fiber Commun. Conf. (OFC), San Diego, CA, Mar. 2010, paper OMJ4.
  8. R. Jensen, A. Lord, and N. Parsons, “Colourless, directionless, contentionless ROADM architecture using low-loss optical matrix switches,” in Proc. 36th European Conf. on Optical Commun. (ECOC), Turin, Italy, Sep. 2010, paper Mo.2.D.2.
  9. D. G. Moodie, D. C. Rogers, P. J. Cannard, A. Borghesani, C. W. Ford, R. Firth, R. Cronin, M. J. Robertson, D. W. Smith, L. Ponnampalam, C. Renaud, A. J. Seeds, M. Thakur, T. Quinlan, and S. Walker, “Photodiodes and reflective electroabsorption modulators for mm-wave and UWB applications,” in Proc. European Workshop on Photonic Solutions for Wireless, Access, and in-House Networks, Duisburg, Germany, May 2009.
  10. A. Kilian, J. Kirchof, G. Przyrembel, and W. Wischmann, “Birefringence free planar optical waveguide made by flame hydrolysis deposition (FHD) through tailoring of the overcladding,” J. Lightwave Technol.18(2), 193–198 (2000).
    [CrossRef]
  11. S. Smolorz, E. Gottwald, H. Rohde, D. Smith, and A. Poustie, “Demonstration of a coherent UDWDM-PON with real-time processing,” in Proc. Optical Fiber Commun. Conf. (OFC), Los Angeles, CA, Mar. 2011, paper PDPD4.
  12. D. Smith, I. Lealman, X. Chen, D. Moodie, P. Cannard, J. Dosanjh, L. Rivers, C. Ford, R. Cronin, T. Kerr, L. Johnston, R. Waller, R. Firth, A. Borghesani, R. Wyatt, and A. Poustie, “Colourless 10Gb/s reflective SOA-EAM with low polarization sensitivity for long-reach DWDM-PON networks,” in Proc. 35th European Conf. on Optical Commun. (ECOC), Vienna, Austria, Sep. 2009, paper 8.6.3.
  13. P. J. Winzer and R.-J. Essiambre, “Advanced optical modulation formats,” Proc. IEEE94(5), 952–985 (2006).
    [CrossRef]

2006 (1)

P. J. Winzer and R.-J. Essiambre, “Advanced optical modulation formats,” Proc. IEEE94(5), 952–985 (2006).
[CrossRef]

2000 (1)

1997 (1)

D. Penninckx, M. Chbat, L. Pierre, and J.-P. Thiery, “The phase-shaped binary transmission (PSBT): A new technique to transmit far beyond the chromatic dispersion limit,” IEEE Photon. Technol. Lett.9(2), 259–261 (1997).
[CrossRef]

Chbat, M.

D. Penninckx, M. Chbat, L. Pierre, and J.-P. Thiery, “The phase-shaped binary transmission (PSBT): A new technique to transmit far beyond the chromatic dispersion limit,” IEEE Photon. Technol. Lett.9(2), 259–261 (1997).
[CrossRef]

Essiambre, R.-J.

P. J. Winzer and R.-J. Essiambre, “Advanced optical modulation formats,” Proc. IEEE94(5), 952–985 (2006).
[CrossRef]

Kilian, A.

Kirchof, J.

Penninckx, D.

D. Penninckx, M. Chbat, L. Pierre, and J.-P. Thiery, “The phase-shaped binary transmission (PSBT): A new technique to transmit far beyond the chromatic dispersion limit,” IEEE Photon. Technol. Lett.9(2), 259–261 (1997).
[CrossRef]

Pierre, L.

D. Penninckx, M. Chbat, L. Pierre, and J.-P. Thiery, “The phase-shaped binary transmission (PSBT): A new technique to transmit far beyond the chromatic dispersion limit,” IEEE Photon. Technol. Lett.9(2), 259–261 (1997).
[CrossRef]

Przyrembel, G.

Thiery, J.-P.

D. Penninckx, M. Chbat, L. Pierre, and J.-P. Thiery, “The phase-shaped binary transmission (PSBT): A new technique to transmit far beyond the chromatic dispersion limit,” IEEE Photon. Technol. Lett.9(2), 259–261 (1997).
[CrossRef]

Winzer, P. J.

P. J. Winzer and R.-J. Essiambre, “Advanced optical modulation formats,” Proc. IEEE94(5), 952–985 (2006).
[CrossRef]

Wischmann, W.

IEEE Photon. Technol. Lett. (1)

D. Penninckx, M. Chbat, L. Pierre, and J.-P. Thiery, “The phase-shaped binary transmission (PSBT): A new technique to transmit far beyond the chromatic dispersion limit,” IEEE Photon. Technol. Lett.9(2), 259–261 (1997).
[CrossRef]

J. Lightwave Technol. (1)

Proc. IEEE (1)

P. J. Winzer and R.-J. Essiambre, “Advanced optical modulation formats,” Proc. IEEE94(5), 952–985 (2006).
[CrossRef]

Other (10)

P. D. Townsend, A. Clarke, P. Ossieur, D. W. Smith, A. Borghesani, D. G. Moodie, I. F. Lealman, X. Z. Qiu, J. Bauwelinck, X. Yin, K. Grobe, B. T. Teipen, R. Jensen, N. Parsons, and E. Kehayas, “Towards colourless coolerless components for low power optical networks,” in Proc. 37th European Conf. on Optical Commun. (ECOC), Geneva, Switzerland, Sep. 2011, paper Tu.LeSaleve.4.

A. M. Clarke, A. Borghesani, D. W. Smith, P. Ossieur, P. D. Townsend, R. Jensen, and N. Parsons, “Demonstration of wavelength agile metro node using reflective colorless components,” in Proc. Optical Fiber Commun. Conf. (OFC), Los Angeles, CA, Mar. 2011, paper OMN2.

R. Vaernewyck, J. Bauwelinck, X. Yin, R. Pierco, J. Verbrugghe, G. Torfs, Z. Li, X. Z. Qiu, J. Vandewege, R. Cronin, A. Borghesani, and D. Moodie, “A 113 Gb/s (10 × 11.3 Gb/s) ultra-low power EAM driver array,” in Proc. 38th European Conf. on Optical Commun. (ECOC), Amsterdam, Netherlands, Sep. 2012, paper Mo.2.B.2.

A. Naughton, P. Ossieur, C. Antony, D. W. Smith, A. Borghesani, D. G. Moodie, G. Maxwell, P. Healey, and P. D. Townsend, “Error-free 10Gb/s duobinary transmission over 215km of SSMF using a hybrid photonic integrated reflective modulator,” in Proc. Optical Fiber Commun. Conf. (OFC), Los Angeles, CA, Mar. 2012, paper OW4F.3.

C. P. Lai, A. Naughton, P. Ossieur, C. Antony, D. W. Smith, A. Borghesani, D. G. Moodie, G. Maxwell, P. Healey, A. Poustie, and P. D. Townsend, “Demonstration of error-free 25Gb/s duobinary transmission using a colourless reflective integrated modulator,” in Proc. 38th European Conf. on Optical Commun. (ECOC), Amsterdam, Netherlands, Sep. 2012, paper We.1.E.4.

I. Kang, S. Chandrasekhar, C. Kazmierski, M. Rasras, and N. Dupuis, “1650-km transmission of 50-Gb/s NRZ and RZ-DQPSK signals generated using an electroabsorption modulators-silica planar lightwave circuit hybrid integrated device,” in Proc. Optical Fiber Commun. Conf. (OFC), San Diego, CA, Mar. 2010, paper OMJ4.

R. Jensen, A. Lord, and N. Parsons, “Colourless, directionless, contentionless ROADM architecture using low-loss optical matrix switches,” in Proc. 36th European Conf. on Optical Commun. (ECOC), Turin, Italy, Sep. 2010, paper Mo.2.D.2.

D. G. Moodie, D. C. Rogers, P. J. Cannard, A. Borghesani, C. W. Ford, R. Firth, R. Cronin, M. J. Robertson, D. W. Smith, L. Ponnampalam, C. Renaud, A. J. Seeds, M. Thakur, T. Quinlan, and S. Walker, “Photodiodes and reflective electroabsorption modulators for mm-wave and UWB applications,” in Proc. European Workshop on Photonic Solutions for Wireless, Access, and in-House Networks, Duisburg, Germany, May 2009.

S. Smolorz, E. Gottwald, H. Rohde, D. Smith, and A. Poustie, “Demonstration of a coherent UDWDM-PON with real-time processing,” in Proc. Optical Fiber Commun. Conf. (OFC), Los Angeles, CA, Mar. 2011, paper PDPD4.

D. Smith, I. Lealman, X. Chen, D. Moodie, P. Cannard, J. Dosanjh, L. Rivers, C. Ford, R. Cronin, T. Kerr, L. Johnston, R. Waller, R. Firth, A. Borghesani, R. Wyatt, and A. Poustie, “Colourless 10Gb/s reflective SOA-EAM with low polarization sensitivity for long-reach DWDM-PON networks,” in Proc. 35th European Conf. on Optical Commun. (ECOC), Vienna, Austria, Sep. 2009, paper 8.6.3.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

High-level schematic of the colourless reflective metro node architecture (AWG: arrayed waveguide grating; EDFA: erbium-doped fibre amplifier; MFL: multi-frequency laser; Rx: receiver; Tx: transmitter).

Fig. 2
Fig. 2

(a) Block schematic of the DB modulator. (b) Photograph of packaged device.

Fig. 3
Fig. 3

Experimental setup to evaluate the performance of the modulator PIC’s 25.3Gb/s DB signal (AWG: arrayed waveguide grating; BERTs: bit-error-rate testers; CRU: clock recovery unit; DEMUX: demultiplexer; EDFA: erbium-doped fibre amplifier; LPF: low-pass filter; MUX: multiplexer; OSA: optical spectrum analyser; PD: photodiode; PPGs: pulse pattern generators; VOA: variable optical attenuator).

Fig. 4
Fig. 4

(a) Optical spectra of the CW carrier and of the 25.3Gb/s duobinary modulated signal (λ = 1542.54nm). (b) The measured BER with respect to the OSNR for the DB modulator operating at λ = 1549.65nm.

Fig. 5
Fig. 5

Optical eye diagrams of the modulator at 25.3Gb/s after the indicated SSMF transmission lengths (λ = 1549.65nm).

Fig. 6
Fig. 6

(a) The measured BER with respect to OSNR at 35km for the DB modulator at four wavelength channels spanning the C-band. (b) The OSNR (at BER = 1 × 10−10) as a function of wavelength, validating the DB modulator’s colourless operation at 35km.

Metrics