Abstract

The dynamics of a water jet on a flat free surface are investigated using a nanosecond pulsed laser for creating an oscillating bubble with different depths beneath the free surface. A thin jet is shown to deform a crater surface resulted from surface depression and cause a circular ring-shaped crater on the connection surface between the crater of surface depression and the thin jet. The collapse of this circular ring-shaped crater is proposed to the crown-like formation around a thick jet. The evolution of the bubble depth suggests a classification of four distinctive ranges of the bubble depths: non-crown formation when the parameter of bubble depth over the maximum bubble radius γ ≤ 0.5, unstable crown formation when 0.5 ≤ γ ≤ 0.6, crown-like structure with a complete crown wall when 0.6 ≤ γ ≤ 1.1, and non-crown formation when 1.1 ≤ γ. Furthermore, the orientation of the crown wall gradually turns counterclockwise to vertical direction with increasing γ from 0.5 to 1.1, implying a high correlation between the orientation of the crown wall and the depth of the bubble. This correlation is explained and discussed by the directional change of the jet eruption from the collapse of circular ring-shaped crater.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. H. Cole, Underwater Explosions (Princeton, Princeton Univ. Press., 1948).
  2. J. B. Keller and I. I. Kolodner, “Damping of underwater explosion bubble oscillations,” J. Appl. Phys.27(10), 1152–1161 (1956).
    [CrossRef]
  3. A. Pearson, E. Cox, J. R. Blake, and S. R. Otto, “Bubble interactions near a free surface,” Eng. Anal. Bound. Elem.28(4), 295–313 (2004).
    [CrossRef]
  4. G. L. Chahine, “Interaction between an oscillating bubble and a free Surface,” J. Fluids Eng.99(4), 709–716 (1977).
    [CrossRef]
  5. P. B. Robinson, J. R. Blake, T. Kodama, A. Shima, and Y. Tomita, “Interaction of cavitation bubbles with a free surface,” J. Appl. Phys.89(12), 8225–8237 (2001).
    [CrossRef]
  6. R. H. Mellen, “An experimental study of the collapse of a spherical Cavity in Water,” J. Acoust. Soc. Am.28(3), 447–454 (1956).
    [CrossRef]
  7. A. Pain, B. H. T. Goh, E. Klaseboer, S. W. Ohl, and B. C. Khoo, “Jets in quiescent bubbles caused by a nearby oscillating bubble,” J. Appl. Phys.111(5), 054912 (2012).
    [CrossRef]
  8. W. Lauterborn and H. Bolle, “Experimental investigations of cavitation-bubble collapse in the neighbourhood of a solid boundary,” J. Fluid Mech.72(02), 391–393 (1975).
    [CrossRef]
  9. P. A. Quinto-Su, V. Venugopalan, and C. D. Ohl, “Generation of laser-induced cavitation bubbles with a digital hologram,” Opt. Express16(23), 18964–18969 (2008).
    [CrossRef] [PubMed]
  10. J. C. Ramirez-San-Juan, E. Rodriguez-Aboytes, A. E. Martinez-Canton, O. Baldovino-Pantaleon, A. Robledo-Martinez, N. Korneev, and R. Ramos-Garcia, “Time-resolved analysis of cavitation induced by CW lasers in absorbing liquids,” Opt. Express18(9), 8735–8742 (2010).
    [CrossRef] [PubMed]
  11. Y. Tomita, P. B. Robinson, R. P. Tong, and J. R. Blake, “Growth and collapse of cavitation bubbles near a curved rigid boundary,” J. Fluid Mech.446, 259–283 (2002).
  12. P. Gregorčič, R. Petkovšek, and J. Možina, “Investigation of a cavitation bubble between a rigid boundary and a free surface,” J. Appl. Phys.102(9), 094904 (2007).
    [CrossRef]
  13. A. Philipp and W. Lauterborn, “Cavitation erosion by single laser-produced bubbles,” J. Fluid Mech.361, 75–116 (1998).
    [CrossRef]
  14. R. Dijkink and C. D. Ohl, “Laser-induced cavitation based micropump,” Lab Chip8(10), 1676–1681 (2008).
    [CrossRef] [PubMed]
  15. Y. Tomita and T. Kodama, “Interaction of laser-induced cavitation bubbles with composite surfaces,” J. Appl. Phys.94(5), 2809–2816 (2003).
    [CrossRef]
  16. T. H. Wu, S. Kalim, C. Callahan, M. A. Teitell, and P. Y. Chiou, “Image patterned molecular delivery into live cells using gold particle coated substrates,” Opt. Express18(2), 938–946 (2010).
    [CrossRef] [PubMed]
  17. M. Duocastella, A. Patrascioiu, J. M. Fernández-Pradas, J. L. Morenza, and P. Serra, “Film-free laser forward printing of transparent and weakly absorbing liquids,” Opt. Express18(21), 21815–21825 (2010).
    [CrossRef] [PubMed]
  18. E. Klaseboer, B. C. Khoo, and K. C. Hung, “Dynamics of an oscillating bubble near a floating structure,” J. Fluids Structures21(4), 395–412 (2005).
    [CrossRef]
  19. J. Li and J. Rong, “Bubble and free surface dynamics in shallow underwater explosion,” Ocean Eng.38(17-18), 1861–1868 (2011).
    [CrossRef]
  20. B. R. Ringeisen, B. J. Spargo, and P. K. Wu, Cell and Organ Printing (Springer, 2010).
  21. B. W. Zeff, B. Kleber, J. Fineberg, and D. P. Lathrop, “Singularity dynamics in curvature collapse and jet eruption on a fluid surface,” Nature403(6768), 401–404 (2000).
    [CrossRef] [PubMed]
  22. A. M. Worthington and R. S. Cole, “Impact with a liquid surface, studied by the aid of instantaneous photography,” Phil. Trans. Roy. Soc.189, 137–148 (1897).
  23. S. T. Thoroddsen and A. Q. Shen, “Granular jets,” Phys. Fluids13(1), 4–6 (2001).
    [CrossRef]
  24. J. M. Boulton-Stone and J. R. Blake, “Gas Bubble bursting at a free surface,” J. Fluid Mech.254(-1), 437–466 (1993).
    [CrossRef]
  25. I. Apitz and A. Vogel, “Material ejection in nanosecond Er:YAG laser ablation of water, liver, and skin,” Appl. Phys., A Mater. Sci. Process.81(2), 329–338 (2005).
    [CrossRef]
  26. S. T. Thoroddsen, K. Takehara, T. G. Etoh, and C. D. Ohl, “Spray and microjets produced by focusing a laser pulse into a hemispherical drop,” Phys. Fluids21(11), 112101 (2009).
    [CrossRef]

2012 (1)

A. Pain, B. H. T. Goh, E. Klaseboer, S. W. Ohl, and B. C. Khoo, “Jets in quiescent bubbles caused by a nearby oscillating bubble,” J. Appl. Phys.111(5), 054912 (2012).
[CrossRef]

2011 (1)

J. Li and J. Rong, “Bubble and free surface dynamics in shallow underwater explosion,” Ocean Eng.38(17-18), 1861–1868 (2011).
[CrossRef]

2010 (3)

2009 (1)

S. T. Thoroddsen, K. Takehara, T. G. Etoh, and C. D. Ohl, “Spray and microjets produced by focusing a laser pulse into a hemispherical drop,” Phys. Fluids21(11), 112101 (2009).
[CrossRef]

2008 (2)

2007 (1)

P. Gregorčič, R. Petkovšek, and J. Možina, “Investigation of a cavitation bubble between a rigid boundary and a free surface,” J. Appl. Phys.102(9), 094904 (2007).
[CrossRef]

2005 (2)

E. Klaseboer, B. C. Khoo, and K. C. Hung, “Dynamics of an oscillating bubble near a floating structure,” J. Fluids Structures21(4), 395–412 (2005).
[CrossRef]

I. Apitz and A. Vogel, “Material ejection in nanosecond Er:YAG laser ablation of water, liver, and skin,” Appl. Phys., A Mater. Sci. Process.81(2), 329–338 (2005).
[CrossRef]

2004 (1)

A. Pearson, E. Cox, J. R. Blake, and S. R. Otto, “Bubble interactions near a free surface,” Eng. Anal. Bound. Elem.28(4), 295–313 (2004).
[CrossRef]

2003 (1)

Y. Tomita and T. Kodama, “Interaction of laser-induced cavitation bubbles with composite surfaces,” J. Appl. Phys.94(5), 2809–2816 (2003).
[CrossRef]

2002 (1)

Y. Tomita, P. B. Robinson, R. P. Tong, and J. R. Blake, “Growth and collapse of cavitation bubbles near a curved rigid boundary,” J. Fluid Mech.446, 259–283 (2002).

2001 (2)

S. T. Thoroddsen and A. Q. Shen, “Granular jets,” Phys. Fluids13(1), 4–6 (2001).
[CrossRef]

P. B. Robinson, J. R. Blake, T. Kodama, A. Shima, and Y. Tomita, “Interaction of cavitation bubbles with a free surface,” J. Appl. Phys.89(12), 8225–8237 (2001).
[CrossRef]

2000 (1)

B. W. Zeff, B. Kleber, J. Fineberg, and D. P. Lathrop, “Singularity dynamics in curvature collapse and jet eruption on a fluid surface,” Nature403(6768), 401–404 (2000).
[CrossRef] [PubMed]

1998 (1)

A. Philipp and W. Lauterborn, “Cavitation erosion by single laser-produced bubbles,” J. Fluid Mech.361, 75–116 (1998).
[CrossRef]

1993 (1)

J. M. Boulton-Stone and J. R. Blake, “Gas Bubble bursting at a free surface,” J. Fluid Mech.254(-1), 437–466 (1993).
[CrossRef]

1977 (1)

G. L. Chahine, “Interaction between an oscillating bubble and a free Surface,” J. Fluids Eng.99(4), 709–716 (1977).
[CrossRef]

1975 (1)

W. Lauterborn and H. Bolle, “Experimental investigations of cavitation-bubble collapse in the neighbourhood of a solid boundary,” J. Fluid Mech.72(02), 391–393 (1975).
[CrossRef]

1956 (2)

J. B. Keller and I. I. Kolodner, “Damping of underwater explosion bubble oscillations,” J. Appl. Phys.27(10), 1152–1161 (1956).
[CrossRef]

R. H. Mellen, “An experimental study of the collapse of a spherical Cavity in Water,” J. Acoust. Soc. Am.28(3), 447–454 (1956).
[CrossRef]

1897 (1)

A. M. Worthington and R. S. Cole, “Impact with a liquid surface, studied by the aid of instantaneous photography,” Phil. Trans. Roy. Soc.189, 137–148 (1897).

Apitz, I.

I. Apitz and A. Vogel, “Material ejection in nanosecond Er:YAG laser ablation of water, liver, and skin,” Appl. Phys., A Mater. Sci. Process.81(2), 329–338 (2005).
[CrossRef]

Baldovino-Pantaleon, O.

Blake, J. R.

A. Pearson, E. Cox, J. R. Blake, and S. R. Otto, “Bubble interactions near a free surface,” Eng. Anal. Bound. Elem.28(4), 295–313 (2004).
[CrossRef]

Y. Tomita, P. B. Robinson, R. P. Tong, and J. R. Blake, “Growth and collapse of cavitation bubbles near a curved rigid boundary,” J. Fluid Mech.446, 259–283 (2002).

P. B. Robinson, J. R. Blake, T. Kodama, A. Shima, and Y. Tomita, “Interaction of cavitation bubbles with a free surface,” J. Appl. Phys.89(12), 8225–8237 (2001).
[CrossRef]

J. M. Boulton-Stone and J. R. Blake, “Gas Bubble bursting at a free surface,” J. Fluid Mech.254(-1), 437–466 (1993).
[CrossRef]

Bolle, H.

W. Lauterborn and H. Bolle, “Experimental investigations of cavitation-bubble collapse in the neighbourhood of a solid boundary,” J. Fluid Mech.72(02), 391–393 (1975).
[CrossRef]

Boulton-Stone, J. M.

J. M. Boulton-Stone and J. R. Blake, “Gas Bubble bursting at a free surface,” J. Fluid Mech.254(-1), 437–466 (1993).
[CrossRef]

Callahan, C.

Chahine, G. L.

G. L. Chahine, “Interaction between an oscillating bubble and a free Surface,” J. Fluids Eng.99(4), 709–716 (1977).
[CrossRef]

Chiou, P. Y.

Cole, R. S.

A. M. Worthington and R. S. Cole, “Impact with a liquid surface, studied by the aid of instantaneous photography,” Phil. Trans. Roy. Soc.189, 137–148 (1897).

Cox, E.

A. Pearson, E. Cox, J. R. Blake, and S. R. Otto, “Bubble interactions near a free surface,” Eng. Anal. Bound. Elem.28(4), 295–313 (2004).
[CrossRef]

Dijkink, R.

R. Dijkink and C. D. Ohl, “Laser-induced cavitation based micropump,” Lab Chip8(10), 1676–1681 (2008).
[CrossRef] [PubMed]

Duocastella, M.

Etoh, T. G.

S. T. Thoroddsen, K. Takehara, T. G. Etoh, and C. D. Ohl, “Spray and microjets produced by focusing a laser pulse into a hemispherical drop,” Phys. Fluids21(11), 112101 (2009).
[CrossRef]

Fernández-Pradas, J. M.

Fineberg, J.

B. W. Zeff, B. Kleber, J. Fineberg, and D. P. Lathrop, “Singularity dynamics in curvature collapse and jet eruption on a fluid surface,” Nature403(6768), 401–404 (2000).
[CrossRef] [PubMed]

Goh, B. H. T.

A. Pain, B. H. T. Goh, E. Klaseboer, S. W. Ohl, and B. C. Khoo, “Jets in quiescent bubbles caused by a nearby oscillating bubble,” J. Appl. Phys.111(5), 054912 (2012).
[CrossRef]

Gregorcic, P.

P. Gregorčič, R. Petkovšek, and J. Možina, “Investigation of a cavitation bubble between a rigid boundary and a free surface,” J. Appl. Phys.102(9), 094904 (2007).
[CrossRef]

Hung, K. C.

E. Klaseboer, B. C. Khoo, and K. C. Hung, “Dynamics of an oscillating bubble near a floating structure,” J. Fluids Structures21(4), 395–412 (2005).
[CrossRef]

Kalim, S.

Keller, J. B.

J. B. Keller and I. I. Kolodner, “Damping of underwater explosion bubble oscillations,” J. Appl. Phys.27(10), 1152–1161 (1956).
[CrossRef]

Khoo, B. C.

A. Pain, B. H. T. Goh, E. Klaseboer, S. W. Ohl, and B. C. Khoo, “Jets in quiescent bubbles caused by a nearby oscillating bubble,” J. Appl. Phys.111(5), 054912 (2012).
[CrossRef]

E. Klaseboer, B. C. Khoo, and K. C. Hung, “Dynamics of an oscillating bubble near a floating structure,” J. Fluids Structures21(4), 395–412 (2005).
[CrossRef]

Klaseboer, E.

A. Pain, B. H. T. Goh, E. Klaseboer, S. W. Ohl, and B. C. Khoo, “Jets in quiescent bubbles caused by a nearby oscillating bubble,” J. Appl. Phys.111(5), 054912 (2012).
[CrossRef]

E. Klaseboer, B. C. Khoo, and K. C. Hung, “Dynamics of an oscillating bubble near a floating structure,” J. Fluids Structures21(4), 395–412 (2005).
[CrossRef]

Kleber, B.

B. W. Zeff, B. Kleber, J. Fineberg, and D. P. Lathrop, “Singularity dynamics in curvature collapse and jet eruption on a fluid surface,” Nature403(6768), 401–404 (2000).
[CrossRef] [PubMed]

Kodama, T.

Y. Tomita and T. Kodama, “Interaction of laser-induced cavitation bubbles with composite surfaces,” J. Appl. Phys.94(5), 2809–2816 (2003).
[CrossRef]

P. B. Robinson, J. R. Blake, T. Kodama, A. Shima, and Y. Tomita, “Interaction of cavitation bubbles with a free surface,” J. Appl. Phys.89(12), 8225–8237 (2001).
[CrossRef]

Kolodner, I. I.

J. B. Keller and I. I. Kolodner, “Damping of underwater explosion bubble oscillations,” J. Appl. Phys.27(10), 1152–1161 (1956).
[CrossRef]

Korneev, N.

Lathrop, D. P.

B. W. Zeff, B. Kleber, J. Fineberg, and D. P. Lathrop, “Singularity dynamics in curvature collapse and jet eruption on a fluid surface,” Nature403(6768), 401–404 (2000).
[CrossRef] [PubMed]

Lauterborn, W.

A. Philipp and W. Lauterborn, “Cavitation erosion by single laser-produced bubbles,” J. Fluid Mech.361, 75–116 (1998).
[CrossRef]

W. Lauterborn and H. Bolle, “Experimental investigations of cavitation-bubble collapse in the neighbourhood of a solid boundary,” J. Fluid Mech.72(02), 391–393 (1975).
[CrossRef]

Li, J.

J. Li and J. Rong, “Bubble and free surface dynamics in shallow underwater explosion,” Ocean Eng.38(17-18), 1861–1868 (2011).
[CrossRef]

Martinez-Canton, A. E.

Mellen, R. H.

R. H. Mellen, “An experimental study of the collapse of a spherical Cavity in Water,” J. Acoust. Soc. Am.28(3), 447–454 (1956).
[CrossRef]

Morenza, J. L.

Možina, J.

P. Gregorčič, R. Petkovšek, and J. Možina, “Investigation of a cavitation bubble between a rigid boundary and a free surface,” J. Appl. Phys.102(9), 094904 (2007).
[CrossRef]

Ohl, C. D.

S. T. Thoroddsen, K. Takehara, T. G. Etoh, and C. D. Ohl, “Spray and microjets produced by focusing a laser pulse into a hemispherical drop,” Phys. Fluids21(11), 112101 (2009).
[CrossRef]

R. Dijkink and C. D. Ohl, “Laser-induced cavitation based micropump,” Lab Chip8(10), 1676–1681 (2008).
[CrossRef] [PubMed]

P. A. Quinto-Su, V. Venugopalan, and C. D. Ohl, “Generation of laser-induced cavitation bubbles with a digital hologram,” Opt. Express16(23), 18964–18969 (2008).
[CrossRef] [PubMed]

Ohl, S. W.

A. Pain, B. H. T. Goh, E. Klaseboer, S. W. Ohl, and B. C. Khoo, “Jets in quiescent bubbles caused by a nearby oscillating bubble,” J. Appl. Phys.111(5), 054912 (2012).
[CrossRef]

Otto, S. R.

A. Pearson, E. Cox, J. R. Blake, and S. R. Otto, “Bubble interactions near a free surface,” Eng. Anal. Bound. Elem.28(4), 295–313 (2004).
[CrossRef]

Pain, A.

A. Pain, B. H. T. Goh, E. Klaseboer, S. W. Ohl, and B. C. Khoo, “Jets in quiescent bubbles caused by a nearby oscillating bubble,” J. Appl. Phys.111(5), 054912 (2012).
[CrossRef]

Patrascioiu, A.

Pearson, A.

A. Pearson, E. Cox, J. R. Blake, and S. R. Otto, “Bubble interactions near a free surface,” Eng. Anal. Bound. Elem.28(4), 295–313 (2004).
[CrossRef]

Petkovšek, R.

P. Gregorčič, R. Petkovšek, and J. Možina, “Investigation of a cavitation bubble between a rigid boundary and a free surface,” J. Appl. Phys.102(9), 094904 (2007).
[CrossRef]

Philipp, A.

A. Philipp and W. Lauterborn, “Cavitation erosion by single laser-produced bubbles,” J. Fluid Mech.361, 75–116 (1998).
[CrossRef]

Quinto-Su, P. A.

Ramirez-San-Juan, J. C.

Ramos-Garcia, R.

Robinson, P. B.

Y. Tomita, P. B. Robinson, R. P. Tong, and J. R. Blake, “Growth and collapse of cavitation bubbles near a curved rigid boundary,” J. Fluid Mech.446, 259–283 (2002).

P. B. Robinson, J. R. Blake, T. Kodama, A. Shima, and Y. Tomita, “Interaction of cavitation bubbles with a free surface,” J. Appl. Phys.89(12), 8225–8237 (2001).
[CrossRef]

Robledo-Martinez, A.

Rodriguez-Aboytes, E.

Rong, J.

J. Li and J. Rong, “Bubble and free surface dynamics in shallow underwater explosion,” Ocean Eng.38(17-18), 1861–1868 (2011).
[CrossRef]

Serra, P.

Shen, A. Q.

S. T. Thoroddsen and A. Q. Shen, “Granular jets,” Phys. Fluids13(1), 4–6 (2001).
[CrossRef]

Shima, A.

P. B. Robinson, J. R. Blake, T. Kodama, A. Shima, and Y. Tomita, “Interaction of cavitation bubbles with a free surface,” J. Appl. Phys.89(12), 8225–8237 (2001).
[CrossRef]

Takehara, K.

S. T. Thoroddsen, K. Takehara, T. G. Etoh, and C. D. Ohl, “Spray and microjets produced by focusing a laser pulse into a hemispherical drop,” Phys. Fluids21(11), 112101 (2009).
[CrossRef]

Teitell, M. A.

Thoroddsen, S. T.

S. T. Thoroddsen, K. Takehara, T. G. Etoh, and C. D. Ohl, “Spray and microjets produced by focusing a laser pulse into a hemispherical drop,” Phys. Fluids21(11), 112101 (2009).
[CrossRef]

S. T. Thoroddsen and A. Q. Shen, “Granular jets,” Phys. Fluids13(1), 4–6 (2001).
[CrossRef]

Tomita, Y.

Y. Tomita and T. Kodama, “Interaction of laser-induced cavitation bubbles with composite surfaces,” J. Appl. Phys.94(5), 2809–2816 (2003).
[CrossRef]

Y. Tomita, P. B. Robinson, R. P. Tong, and J. R. Blake, “Growth and collapse of cavitation bubbles near a curved rigid boundary,” J. Fluid Mech.446, 259–283 (2002).

P. B. Robinson, J. R. Blake, T. Kodama, A. Shima, and Y. Tomita, “Interaction of cavitation bubbles with a free surface,” J. Appl. Phys.89(12), 8225–8237 (2001).
[CrossRef]

Tong, R. P.

Y. Tomita, P. B. Robinson, R. P. Tong, and J. R. Blake, “Growth and collapse of cavitation bubbles near a curved rigid boundary,” J. Fluid Mech.446, 259–283 (2002).

Venugopalan, V.

Vogel, A.

I. Apitz and A. Vogel, “Material ejection in nanosecond Er:YAG laser ablation of water, liver, and skin,” Appl. Phys., A Mater. Sci. Process.81(2), 329–338 (2005).
[CrossRef]

Worthington, A. M.

A. M. Worthington and R. S. Cole, “Impact with a liquid surface, studied by the aid of instantaneous photography,” Phil. Trans. Roy. Soc.189, 137–148 (1897).

Wu, T. H.

Zeff, B. W.

B. W. Zeff, B. Kleber, J. Fineberg, and D. P. Lathrop, “Singularity dynamics in curvature collapse and jet eruption on a fluid surface,” Nature403(6768), 401–404 (2000).
[CrossRef] [PubMed]

Appl. Phys., A Mater. Sci. Process. (1)

I. Apitz and A. Vogel, “Material ejection in nanosecond Er:YAG laser ablation of water, liver, and skin,” Appl. Phys., A Mater. Sci. Process.81(2), 329–338 (2005).
[CrossRef]

Eng. Anal. Bound. Elem. (1)

A. Pearson, E. Cox, J. R. Blake, and S. R. Otto, “Bubble interactions near a free surface,” Eng. Anal. Bound. Elem.28(4), 295–313 (2004).
[CrossRef]

J. Acoust. Soc. Am. (1)

R. H. Mellen, “An experimental study of the collapse of a spherical Cavity in Water,” J. Acoust. Soc. Am.28(3), 447–454 (1956).
[CrossRef]

J. Appl. Phys. (5)

A. Pain, B. H. T. Goh, E. Klaseboer, S. W. Ohl, and B. C. Khoo, “Jets in quiescent bubbles caused by a nearby oscillating bubble,” J. Appl. Phys.111(5), 054912 (2012).
[CrossRef]

J. B. Keller and I. I. Kolodner, “Damping of underwater explosion bubble oscillations,” J. Appl. Phys.27(10), 1152–1161 (1956).
[CrossRef]

P. Gregorčič, R. Petkovšek, and J. Možina, “Investigation of a cavitation bubble between a rigid boundary and a free surface,” J. Appl. Phys.102(9), 094904 (2007).
[CrossRef]

P. B. Robinson, J. R. Blake, T. Kodama, A. Shima, and Y. Tomita, “Interaction of cavitation bubbles with a free surface,” J. Appl. Phys.89(12), 8225–8237 (2001).
[CrossRef]

Y. Tomita and T. Kodama, “Interaction of laser-induced cavitation bubbles with composite surfaces,” J. Appl. Phys.94(5), 2809–2816 (2003).
[CrossRef]

J. Fluid Mech. (4)

Y. Tomita, P. B. Robinson, R. P. Tong, and J. R. Blake, “Growth and collapse of cavitation bubbles near a curved rigid boundary,” J. Fluid Mech.446, 259–283 (2002).

J. M. Boulton-Stone and J. R. Blake, “Gas Bubble bursting at a free surface,” J. Fluid Mech.254(-1), 437–466 (1993).
[CrossRef]

A. Philipp and W. Lauterborn, “Cavitation erosion by single laser-produced bubbles,” J. Fluid Mech.361, 75–116 (1998).
[CrossRef]

W. Lauterborn and H. Bolle, “Experimental investigations of cavitation-bubble collapse in the neighbourhood of a solid boundary,” J. Fluid Mech.72(02), 391–393 (1975).
[CrossRef]

J. Fluids Eng. (1)

G. L. Chahine, “Interaction between an oscillating bubble and a free Surface,” J. Fluids Eng.99(4), 709–716 (1977).
[CrossRef]

J. Fluids Structures (1)

E. Klaseboer, B. C. Khoo, and K. C. Hung, “Dynamics of an oscillating bubble near a floating structure,” J. Fluids Structures21(4), 395–412 (2005).
[CrossRef]

Lab Chip (1)

R. Dijkink and C. D. Ohl, “Laser-induced cavitation based micropump,” Lab Chip8(10), 1676–1681 (2008).
[CrossRef] [PubMed]

Nature (1)

B. W. Zeff, B. Kleber, J. Fineberg, and D. P. Lathrop, “Singularity dynamics in curvature collapse and jet eruption on a fluid surface,” Nature403(6768), 401–404 (2000).
[CrossRef] [PubMed]

Ocean Eng. (1)

J. Li and J. Rong, “Bubble and free surface dynamics in shallow underwater explosion,” Ocean Eng.38(17-18), 1861–1868 (2011).
[CrossRef]

Opt. Express (4)

Phil. Trans. Roy. Soc. (1)

A. M. Worthington and R. S. Cole, “Impact with a liquid surface, studied by the aid of instantaneous photography,” Phil. Trans. Roy. Soc.189, 137–148 (1897).

Phys. Fluids (2)

S. T. Thoroddsen and A. Q. Shen, “Granular jets,” Phys. Fluids13(1), 4–6 (2001).
[CrossRef]

S. T. Thoroddsen, K. Takehara, T. G. Etoh, and C. D. Ohl, “Spray and microjets produced by focusing a laser pulse into a hemispherical drop,” Phys. Fluids21(11), 112101 (2009).
[CrossRef]

Other (2)

B. R. Ringeisen, B. J. Spargo, and P. K. Wu, Cell and Organ Printing (Springer, 2010).

R. H. Cole, Underwater Explosions (Princeton, Princeton Univ. Press., 1948).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic diagram of the experimental setup.

Fig. 2
Fig. 2

A complete water jet is generated on a flat free surface with γ = 0.8. The frame rate is 80,000 fps. In the pictures of surface sinking, the exposure time is set to 1μs.

Fig. 3
Fig. 3

The numerical simulation and curvature schematic of the surface depression are shown. The z and r of cylindrical coordinate are normalized to the Rmax of the bubble.

Fig. 4
Fig. 4

The frame rate is 80,000 fps as same as Fig. 2. Figures 4(a) and (c) illustrate the non-crown formation when γ-value is smaller than 0.5 and larger than 1.1, respectively. Figure 4(b) shows another structure of the crown formation as compared to Fig. 2. This crown is denoted as unstable crown formation.

Fig. 5
Fig. 5

The structures of the thin jets and crowns with different γ-values which are labeled on the left top of each image. The fame rate is 30,000 fps but the time interval between each frame is 0.166 ms. The arrow shows the orientation of the crown wall, which rotates counterclockwise to vertical direction when γ is increased from 0.5 to 1.02.

Metrics