Abstract

Based on the full integration formula of Purcell factor (PF) deduced from Fermi’s Golden Rule, the plasmonic enhancement in Au(1-α)Si3N4(α) cermet waveguides is evaluated with the joint impact of finite emission linewidth and the broadening of PF spectrum. The calculation results indicate that the PF would be significantly degraded by the two broadening effects though the SPP resonance frequency can be tuned with different volume fractions (α) of Si3N4. It is also found that the critical emission linewidth is approximately linear to the PF spectrum linewidth. Thus in order to achieve strong plasmonic enhancement, both the emission and PF spectrum linewidths should be dramatically reduced.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep.408(3-4), 131–314 (2005).
    [CrossRef]
  2. M. Gontijo, M. Boroditsky, E. Yablonovitch, S. Keller, U. Mishra, and S. DenBaars, “Coupling of InGaN quantum-well photoluminescence to silver surface plasmons,” Phys. Rev. B60(16), 11564–11567 (1999).
    [CrossRef]
  3. K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater.3(9), 601–605 (2004).
    [CrossRef] [PubMed]
  4. C. W. Lai, J. An, and H. C. Ong, “Surface-plasmon-mediated emission from metal-capped ZnO thin films,” Appl. Phys. Lett.86(25), 251105 (2005).
    [CrossRef]
  5. J. S. Biteen, D. Pacifici, N. S. Lewis, and H. A. Atwater, “Enhanced radiative emission rate and quantum efficiency in coupled silicon nanocrystal-nanostructured gold emitters,” Nano Lett.5(9), 1768–1773 (2005).
    [CrossRef] [PubMed]
  6. Y. Y. Gong, J. Lu, S. L. Cheng, Y. Nishi, and J. Vučković, “Plasmonic enhancement of emission from Si-nanocrystals,” Appl. Phys. Lett.94(1), 013106 (2009).
    [CrossRef]
  7. K. Okamoto, A. Scherer, and Y. Kawakami, “Surface plasmon enhanced light emission from semiconductor materials,” Phys. Status Solidi C5(9), 2822–2824 (2008).
    [CrossRef]
  8. F. Hatami, V. Lordi, J. S. Harris, H. Kostial, and W. T. Masselink, “Red light-emitting diodes based on InP/GaP quantum dots,” J. Appl. Phys.97(9), 096106 (2005).
    [CrossRef]
  9. H. Yokoyama and K. Ujihara, eds., Spontaneous Emission and Laser Oscillation in Microcavities (CRC, 1995), Chap. 8.
  10. E. M. Purcell, H. C. Torrey, and R. V. Pound, “Resonance absorption by nuclear magnetic moments in a solid,” Phys. Rev.69(1-2), 37–38 (1946).
    [CrossRef]
  11. X. Hu, Y. Huang, W. Zhang, and J. Peng, “Dominating radiative recombination in a nanoporous silicon layer with a metal-rich Au(1-α)SiO2(α) cermet waveguide,” Appl. Phys. Lett.89(8), 081112 (2006).
    [CrossRef]
  12. X. Tang, Y. Wang, W. Ke, X. Feng, Y. Huang, and J. Peng, “Internal quantum efficiency enhancement of silicon nanocrystals using double layer Au-rich cermet films,” Opt. Commun.283(13), 2754–2757 (2010).
    [CrossRef]
  13. D. Lu, J. Kan, E. E. Fullerton, and Z. Liu, “Tunable surface plasmon polaritons in Ag composite films by adding dielectrics or semiconductors,” Appl. Phys. Lett.98(24), 243114 (2011).
    [CrossRef]
  14. X. Feng, F. Liu, and Y. D. Huang, “Calculated plasmonic enhancement of spontaneous emission from silicon nanocrystals with metallic gratings,” Opt. Commun.283(13), 2758–2761 (2010).
    [CrossRef]
  15. X. Feng, F. Liu, and Y. D. Huang, “Spontaneous emission rate enhancement of silicon nanocrystals by plasmonic bandgap on copper grating,” J. Lightwave Technol.28(9), 1420–1430 (2010).
    [CrossRef]
  16. G. Sun, J. B. Khurgin, and R. A. Soref, “Practicable enhancement of spontaneous emission using surface plasmons,” Appl. Phys. Lett.90(11), 111107 (2007).
    [CrossRef]
  17. J. T. Robinson, C. Manolatou, L. Chen, and M. Lipson, “Ultrasmall mode volumes in dielectric optical microcavities,” Phys. Rev. Lett.95(14), 143901 (2005).
    [CrossRef] [PubMed]
  18. P. Cheng, D. Li, Z. Yuan, P. Chen, and D. Yang, “Enhancement of ZnO light emission via coupling with localized surface plasmon of Ag island film,” Appl. Phys. Lett.92(4), 041119 (2008).
    [CrossRef]
  19. C. Hong, H. Kim, S. Park, and C. Lee, “Optical properties of porous silicon coated with ultrathin gold film by RF-magnetron sputtering,” J. Eur. Ceram. Soc.30(2), 459–463 (2010).
    [CrossRef]
  20. M. van Exter, G. Nienhuis, and J. Woerdman, “Two simple expressions for the spontaneous emission factor β,” Phys. Rev. A54(4), 3553–3558 (1996).
    [CrossRef] [PubMed]
  21. T. Baba and D. Sano, “Low-threshold lasing and Purcell effect in microdisk lasers at room temperature,” IEEE J. Sel. Top. Quantum Electron.9(5), 1340–1346 (2003).
    [CrossRef]
  22. H. Iwase, D. Englund, and J. Vučković, “Analysis of the Purcell effect in photonic and plasmonic crystals with losses,” Opt. Express18(16), 16546–16560 (2010).
    [CrossRef] [PubMed]
  23. X. Feng, K. Cui, F. Liu, and Y. Huang, “Impact of spectral broadening on plasmonic enhancement with metallic gratings,” Appl. Phys. Lett.101(12), 121102 (2012).
    [CrossRef]
  24. Y. Gong and J. Vučković, “Design of plasmon cavities for solid-state cavity quantum electrodynamics applications,” Appl. Phys. Lett.90(3), 033113 (2007).
    [CrossRef]
  25. P. Milonni, The Quantum Vacuum: An Introduction to Quantum Electrodynamics (Academic, 1994).
  26. P. Sheng, “Theory for the dielectric function of granular composite media,” Phys. Rev. Lett.45(1), 60–63 (1980).
    [CrossRef]
  27. U. J. Gibson and R. A. Buhrman, “Optical response of cermet composite films in the microstructural transition region,” Phys. Rev. B27(8), 5046–5051 (1983).
    [CrossRef]
  28. T. Bååk, “Silicon oxynitride; a material for GRIN optics,” Appl. Opt.21(6), 1069–1072 (1982).
    [CrossRef] [PubMed]
  29. W. Chen, M. D. Thoreson, A. V. Kildishev, and V. M. Shalaev, “Fabrication and optical characterizations of smooth silver-silica nanocomposite films,” Laser Phys. Lett.7(9), 677–684 (2010).
    [CrossRef]
  30. N. C. Miller, B. Hardiman, and G. A. Shirn, “Transport properties, microstructure, and conduction model of cosputtered Au-SiO2 cermet films,” J. Appl. Phys.41(4), 1850–1856 (1970).
    [CrossRef]
  31. J. J. Burke, G. I. Stegeman, and T. Tamir, “Surface-polariton-like waves guided by thin, lossy metal films,” Phys. Rev. B Condens. Matter33(8), 5186–5201 (1986).
    [CrossRef] [PubMed]
  32. R. R. Chance, A. Prock, and R. Silbey, “Molecular fluorescence and energy transfer near interfaces,” Adv. Chem. Phys.37, 1–65 (1978).
    [CrossRef]
  33. G. W. Ford and W. H. Weber, “Electromagnetic interactions of molecules with metal surfaces,” Phys. Rep.113(4), 195–287 (1984).
    [CrossRef]
  34. W. L. Barnes, “Electromagnetic crystals for surface plasmon polaritons and the extraction of light from emissive devices,” J. Lightwave Technol.17(11), 2170–2182 (1999).
    [CrossRef]

2012 (1)

X. Feng, K. Cui, F. Liu, and Y. Huang, “Impact of spectral broadening on plasmonic enhancement with metallic gratings,” Appl. Phys. Lett.101(12), 121102 (2012).
[CrossRef]

2011 (1)

D. Lu, J. Kan, E. E. Fullerton, and Z. Liu, “Tunable surface plasmon polaritons in Ag composite films by adding dielectrics or semiconductors,” Appl. Phys. Lett.98(24), 243114 (2011).
[CrossRef]

2010 (6)

X. Feng, F. Liu, and Y. D. Huang, “Calculated plasmonic enhancement of spontaneous emission from silicon nanocrystals with metallic gratings,” Opt. Commun.283(13), 2758–2761 (2010).
[CrossRef]

X. Feng, F. Liu, and Y. D. Huang, “Spontaneous emission rate enhancement of silicon nanocrystals by plasmonic bandgap on copper grating,” J. Lightwave Technol.28(9), 1420–1430 (2010).
[CrossRef]

X. Tang, Y. Wang, W. Ke, X. Feng, Y. Huang, and J. Peng, “Internal quantum efficiency enhancement of silicon nanocrystals using double layer Au-rich cermet films,” Opt. Commun.283(13), 2754–2757 (2010).
[CrossRef]

C. Hong, H. Kim, S. Park, and C. Lee, “Optical properties of porous silicon coated with ultrathin gold film by RF-magnetron sputtering,” J. Eur. Ceram. Soc.30(2), 459–463 (2010).
[CrossRef]

H. Iwase, D. Englund, and J. Vučković, “Analysis of the Purcell effect in photonic and plasmonic crystals with losses,” Opt. Express18(16), 16546–16560 (2010).
[CrossRef] [PubMed]

W. Chen, M. D. Thoreson, A. V. Kildishev, and V. M. Shalaev, “Fabrication and optical characterizations of smooth silver-silica nanocomposite films,” Laser Phys. Lett.7(9), 677–684 (2010).
[CrossRef]

2009 (1)

Y. Y. Gong, J. Lu, S. L. Cheng, Y. Nishi, and J. Vučković, “Plasmonic enhancement of emission from Si-nanocrystals,” Appl. Phys. Lett.94(1), 013106 (2009).
[CrossRef]

2008 (2)

K. Okamoto, A. Scherer, and Y. Kawakami, “Surface plasmon enhanced light emission from semiconductor materials,” Phys. Status Solidi C5(9), 2822–2824 (2008).
[CrossRef]

P. Cheng, D. Li, Z. Yuan, P. Chen, and D. Yang, “Enhancement of ZnO light emission via coupling with localized surface plasmon of Ag island film,” Appl. Phys. Lett.92(4), 041119 (2008).
[CrossRef]

2007 (2)

G. Sun, J. B. Khurgin, and R. A. Soref, “Practicable enhancement of spontaneous emission using surface plasmons,” Appl. Phys. Lett.90(11), 111107 (2007).
[CrossRef]

Y. Gong and J. Vučković, “Design of plasmon cavities for solid-state cavity quantum electrodynamics applications,” Appl. Phys. Lett.90(3), 033113 (2007).
[CrossRef]

2006 (1)

X. Hu, Y. Huang, W. Zhang, and J. Peng, “Dominating radiative recombination in a nanoporous silicon layer with a metal-rich Au(1-α)SiO2(α) cermet waveguide,” Appl. Phys. Lett.89(8), 081112 (2006).
[CrossRef]

2005 (5)

J. T. Robinson, C. Manolatou, L. Chen, and M. Lipson, “Ultrasmall mode volumes in dielectric optical microcavities,” Phys. Rev. Lett.95(14), 143901 (2005).
[CrossRef] [PubMed]

F. Hatami, V. Lordi, J. S. Harris, H. Kostial, and W. T. Masselink, “Red light-emitting diodes based on InP/GaP quantum dots,” J. Appl. Phys.97(9), 096106 (2005).
[CrossRef]

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep.408(3-4), 131–314 (2005).
[CrossRef]

C. W. Lai, J. An, and H. C. Ong, “Surface-plasmon-mediated emission from metal-capped ZnO thin films,” Appl. Phys. Lett.86(25), 251105 (2005).
[CrossRef]

J. S. Biteen, D. Pacifici, N. S. Lewis, and H. A. Atwater, “Enhanced radiative emission rate and quantum efficiency in coupled silicon nanocrystal-nanostructured gold emitters,” Nano Lett.5(9), 1768–1773 (2005).
[CrossRef] [PubMed]

2004 (1)

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater.3(9), 601–605 (2004).
[CrossRef] [PubMed]

2003 (1)

T. Baba and D. Sano, “Low-threshold lasing and Purcell effect in microdisk lasers at room temperature,” IEEE J. Sel. Top. Quantum Electron.9(5), 1340–1346 (2003).
[CrossRef]

1999 (2)

W. L. Barnes, “Electromagnetic crystals for surface plasmon polaritons and the extraction of light from emissive devices,” J. Lightwave Technol.17(11), 2170–2182 (1999).
[CrossRef]

M. Gontijo, M. Boroditsky, E. Yablonovitch, S. Keller, U. Mishra, and S. DenBaars, “Coupling of InGaN quantum-well photoluminescence to silver surface plasmons,” Phys. Rev. B60(16), 11564–11567 (1999).
[CrossRef]

1996 (1)

M. van Exter, G. Nienhuis, and J. Woerdman, “Two simple expressions for the spontaneous emission factor β,” Phys. Rev. A54(4), 3553–3558 (1996).
[CrossRef] [PubMed]

1986 (1)

J. J. Burke, G. I. Stegeman, and T. Tamir, “Surface-polariton-like waves guided by thin, lossy metal films,” Phys. Rev. B Condens. Matter33(8), 5186–5201 (1986).
[CrossRef] [PubMed]

1984 (1)

G. W. Ford and W. H. Weber, “Electromagnetic interactions of molecules with metal surfaces,” Phys. Rep.113(4), 195–287 (1984).
[CrossRef]

1983 (1)

U. J. Gibson and R. A. Buhrman, “Optical response of cermet composite films in the microstructural transition region,” Phys. Rev. B27(8), 5046–5051 (1983).
[CrossRef]

1982 (1)

1980 (1)

P. Sheng, “Theory for the dielectric function of granular composite media,” Phys. Rev. Lett.45(1), 60–63 (1980).
[CrossRef]

1978 (1)

R. R. Chance, A. Prock, and R. Silbey, “Molecular fluorescence and energy transfer near interfaces,” Adv. Chem. Phys.37, 1–65 (1978).
[CrossRef]

1970 (1)

N. C. Miller, B. Hardiman, and G. A. Shirn, “Transport properties, microstructure, and conduction model of cosputtered Au-SiO2 cermet films,” J. Appl. Phys.41(4), 1850–1856 (1970).
[CrossRef]

1946 (1)

E. M. Purcell, H. C. Torrey, and R. V. Pound, “Resonance absorption by nuclear magnetic moments in a solid,” Phys. Rev.69(1-2), 37–38 (1946).
[CrossRef]

An, J.

C. W. Lai, J. An, and H. C. Ong, “Surface-plasmon-mediated emission from metal-capped ZnO thin films,” Appl. Phys. Lett.86(25), 251105 (2005).
[CrossRef]

Atwater, H. A.

J. S. Biteen, D. Pacifici, N. S. Lewis, and H. A. Atwater, “Enhanced radiative emission rate and quantum efficiency in coupled silicon nanocrystal-nanostructured gold emitters,” Nano Lett.5(9), 1768–1773 (2005).
[CrossRef] [PubMed]

Bååk, T.

Baba, T.

T. Baba and D. Sano, “Low-threshold lasing and Purcell effect in microdisk lasers at room temperature,” IEEE J. Sel. Top. Quantum Electron.9(5), 1340–1346 (2003).
[CrossRef]

Barnes, W. L.

Biteen, J. S.

J. S. Biteen, D. Pacifici, N. S. Lewis, and H. A. Atwater, “Enhanced radiative emission rate and quantum efficiency in coupled silicon nanocrystal-nanostructured gold emitters,” Nano Lett.5(9), 1768–1773 (2005).
[CrossRef] [PubMed]

Boroditsky, M.

M. Gontijo, M. Boroditsky, E. Yablonovitch, S. Keller, U. Mishra, and S. DenBaars, “Coupling of InGaN quantum-well photoluminescence to silver surface plasmons,” Phys. Rev. B60(16), 11564–11567 (1999).
[CrossRef]

Buhrman, R. A.

U. J. Gibson and R. A. Buhrman, “Optical response of cermet composite films in the microstructural transition region,” Phys. Rev. B27(8), 5046–5051 (1983).
[CrossRef]

Burke, J. J.

J. J. Burke, G. I. Stegeman, and T. Tamir, “Surface-polariton-like waves guided by thin, lossy metal films,” Phys. Rev. B Condens. Matter33(8), 5186–5201 (1986).
[CrossRef] [PubMed]

Chance, R. R.

R. R. Chance, A. Prock, and R. Silbey, “Molecular fluorescence and energy transfer near interfaces,” Adv. Chem. Phys.37, 1–65 (1978).
[CrossRef]

Chen, L.

J. T. Robinson, C. Manolatou, L. Chen, and M. Lipson, “Ultrasmall mode volumes in dielectric optical microcavities,” Phys. Rev. Lett.95(14), 143901 (2005).
[CrossRef] [PubMed]

Chen, P.

P. Cheng, D. Li, Z. Yuan, P. Chen, and D. Yang, “Enhancement of ZnO light emission via coupling with localized surface plasmon of Ag island film,” Appl. Phys. Lett.92(4), 041119 (2008).
[CrossRef]

Chen, W.

W. Chen, M. D. Thoreson, A. V. Kildishev, and V. M. Shalaev, “Fabrication and optical characterizations of smooth silver-silica nanocomposite films,” Laser Phys. Lett.7(9), 677–684 (2010).
[CrossRef]

Cheng, P.

P. Cheng, D. Li, Z. Yuan, P. Chen, and D. Yang, “Enhancement of ZnO light emission via coupling with localized surface plasmon of Ag island film,” Appl. Phys. Lett.92(4), 041119 (2008).
[CrossRef]

Cheng, S. L.

Y. Y. Gong, J. Lu, S. L. Cheng, Y. Nishi, and J. Vučković, “Plasmonic enhancement of emission from Si-nanocrystals,” Appl. Phys. Lett.94(1), 013106 (2009).
[CrossRef]

Cui, K.

X. Feng, K. Cui, F. Liu, and Y. Huang, “Impact of spectral broadening on plasmonic enhancement with metallic gratings,” Appl. Phys. Lett.101(12), 121102 (2012).
[CrossRef]

DenBaars, S.

M. Gontijo, M. Boroditsky, E. Yablonovitch, S. Keller, U. Mishra, and S. DenBaars, “Coupling of InGaN quantum-well photoluminescence to silver surface plasmons,” Phys. Rev. B60(16), 11564–11567 (1999).
[CrossRef]

Englund, D.

Feng, X.

X. Feng, K. Cui, F. Liu, and Y. Huang, “Impact of spectral broadening on plasmonic enhancement with metallic gratings,” Appl. Phys. Lett.101(12), 121102 (2012).
[CrossRef]

X. Feng, F. Liu, and Y. D. Huang, “Spontaneous emission rate enhancement of silicon nanocrystals by plasmonic bandgap on copper grating,” J. Lightwave Technol.28(9), 1420–1430 (2010).
[CrossRef]

X. Tang, Y. Wang, W. Ke, X. Feng, Y. Huang, and J. Peng, “Internal quantum efficiency enhancement of silicon nanocrystals using double layer Au-rich cermet films,” Opt. Commun.283(13), 2754–2757 (2010).
[CrossRef]

X. Feng, F. Liu, and Y. D. Huang, “Calculated plasmonic enhancement of spontaneous emission from silicon nanocrystals with metallic gratings,” Opt. Commun.283(13), 2758–2761 (2010).
[CrossRef]

Ford, G. W.

G. W. Ford and W. H. Weber, “Electromagnetic interactions of molecules with metal surfaces,” Phys. Rep.113(4), 195–287 (1984).
[CrossRef]

Fullerton, E. E.

D. Lu, J. Kan, E. E. Fullerton, and Z. Liu, “Tunable surface plasmon polaritons in Ag composite films by adding dielectrics or semiconductors,” Appl. Phys. Lett.98(24), 243114 (2011).
[CrossRef]

Gibson, U. J.

U. J. Gibson and R. A. Buhrman, “Optical response of cermet composite films in the microstructural transition region,” Phys. Rev. B27(8), 5046–5051 (1983).
[CrossRef]

Gong, Y.

Y. Gong and J. Vučković, “Design of plasmon cavities for solid-state cavity quantum electrodynamics applications,” Appl. Phys. Lett.90(3), 033113 (2007).
[CrossRef]

Gong, Y. Y.

Y. Y. Gong, J. Lu, S. L. Cheng, Y. Nishi, and J. Vučković, “Plasmonic enhancement of emission from Si-nanocrystals,” Appl. Phys. Lett.94(1), 013106 (2009).
[CrossRef]

Gontijo, M.

M. Gontijo, M. Boroditsky, E. Yablonovitch, S. Keller, U. Mishra, and S. DenBaars, “Coupling of InGaN quantum-well photoluminescence to silver surface plasmons,” Phys. Rev. B60(16), 11564–11567 (1999).
[CrossRef]

Hardiman, B.

N. C. Miller, B. Hardiman, and G. A. Shirn, “Transport properties, microstructure, and conduction model of cosputtered Au-SiO2 cermet films,” J. Appl. Phys.41(4), 1850–1856 (1970).
[CrossRef]

Harris, J. S.

F. Hatami, V. Lordi, J. S. Harris, H. Kostial, and W. T. Masselink, “Red light-emitting diodes based on InP/GaP quantum dots,” J. Appl. Phys.97(9), 096106 (2005).
[CrossRef]

Hatami, F.

F. Hatami, V. Lordi, J. S. Harris, H. Kostial, and W. T. Masselink, “Red light-emitting diodes based on InP/GaP quantum dots,” J. Appl. Phys.97(9), 096106 (2005).
[CrossRef]

Hong, C.

C. Hong, H. Kim, S. Park, and C. Lee, “Optical properties of porous silicon coated with ultrathin gold film by RF-magnetron sputtering,” J. Eur. Ceram. Soc.30(2), 459–463 (2010).
[CrossRef]

Hu, X.

X. Hu, Y. Huang, W. Zhang, and J. Peng, “Dominating radiative recombination in a nanoporous silicon layer with a metal-rich Au(1-α)SiO2(α) cermet waveguide,” Appl. Phys. Lett.89(8), 081112 (2006).
[CrossRef]

Huang, Y.

X. Feng, K. Cui, F. Liu, and Y. Huang, “Impact of spectral broadening on plasmonic enhancement with metallic gratings,” Appl. Phys. Lett.101(12), 121102 (2012).
[CrossRef]

X. Tang, Y. Wang, W. Ke, X. Feng, Y. Huang, and J. Peng, “Internal quantum efficiency enhancement of silicon nanocrystals using double layer Au-rich cermet films,” Opt. Commun.283(13), 2754–2757 (2010).
[CrossRef]

X. Hu, Y. Huang, W. Zhang, and J. Peng, “Dominating radiative recombination in a nanoporous silicon layer with a metal-rich Au(1-α)SiO2(α) cermet waveguide,” Appl. Phys. Lett.89(8), 081112 (2006).
[CrossRef]

Huang, Y. D.

X. Feng, F. Liu, and Y. D. Huang, “Spontaneous emission rate enhancement of silicon nanocrystals by plasmonic bandgap on copper grating,” J. Lightwave Technol.28(9), 1420–1430 (2010).
[CrossRef]

X. Feng, F. Liu, and Y. D. Huang, “Calculated plasmonic enhancement of spontaneous emission from silicon nanocrystals with metallic gratings,” Opt. Commun.283(13), 2758–2761 (2010).
[CrossRef]

Iwase, H.

Kan, J.

D. Lu, J. Kan, E. E. Fullerton, and Z. Liu, “Tunable surface plasmon polaritons in Ag composite films by adding dielectrics or semiconductors,” Appl. Phys. Lett.98(24), 243114 (2011).
[CrossRef]

Kawakami, Y.

K. Okamoto, A. Scherer, and Y. Kawakami, “Surface plasmon enhanced light emission from semiconductor materials,” Phys. Status Solidi C5(9), 2822–2824 (2008).
[CrossRef]

Ke, W.

X. Tang, Y. Wang, W. Ke, X. Feng, Y. Huang, and J. Peng, “Internal quantum efficiency enhancement of silicon nanocrystals using double layer Au-rich cermet films,” Opt. Commun.283(13), 2754–2757 (2010).
[CrossRef]

Keller, S.

M. Gontijo, M. Boroditsky, E. Yablonovitch, S. Keller, U. Mishra, and S. DenBaars, “Coupling of InGaN quantum-well photoluminescence to silver surface plasmons,” Phys. Rev. B60(16), 11564–11567 (1999).
[CrossRef]

Khurgin, J. B.

G. Sun, J. B. Khurgin, and R. A. Soref, “Practicable enhancement of spontaneous emission using surface plasmons,” Appl. Phys. Lett.90(11), 111107 (2007).
[CrossRef]

Kildishev, A. V.

W. Chen, M. D. Thoreson, A. V. Kildishev, and V. M. Shalaev, “Fabrication and optical characterizations of smooth silver-silica nanocomposite films,” Laser Phys. Lett.7(9), 677–684 (2010).
[CrossRef]

Kim, H.

C. Hong, H. Kim, S. Park, and C. Lee, “Optical properties of porous silicon coated with ultrathin gold film by RF-magnetron sputtering,” J. Eur. Ceram. Soc.30(2), 459–463 (2010).
[CrossRef]

Kostial, H.

F. Hatami, V. Lordi, J. S. Harris, H. Kostial, and W. T. Masselink, “Red light-emitting diodes based on InP/GaP quantum dots,” J. Appl. Phys.97(9), 096106 (2005).
[CrossRef]

Lai, C. W.

C. W. Lai, J. An, and H. C. Ong, “Surface-plasmon-mediated emission from metal-capped ZnO thin films,” Appl. Phys. Lett.86(25), 251105 (2005).
[CrossRef]

Lee, C.

C. Hong, H. Kim, S. Park, and C. Lee, “Optical properties of porous silicon coated with ultrathin gold film by RF-magnetron sputtering,” J. Eur. Ceram. Soc.30(2), 459–463 (2010).
[CrossRef]

Lewis, N. S.

J. S. Biteen, D. Pacifici, N. S. Lewis, and H. A. Atwater, “Enhanced radiative emission rate and quantum efficiency in coupled silicon nanocrystal-nanostructured gold emitters,” Nano Lett.5(9), 1768–1773 (2005).
[CrossRef] [PubMed]

Li, D.

P. Cheng, D. Li, Z. Yuan, P. Chen, and D. Yang, “Enhancement of ZnO light emission via coupling with localized surface plasmon of Ag island film,” Appl. Phys. Lett.92(4), 041119 (2008).
[CrossRef]

Lipson, M.

J. T. Robinson, C. Manolatou, L. Chen, and M. Lipson, “Ultrasmall mode volumes in dielectric optical microcavities,” Phys. Rev. Lett.95(14), 143901 (2005).
[CrossRef] [PubMed]

Liu, F.

X. Feng, K. Cui, F. Liu, and Y. Huang, “Impact of spectral broadening on plasmonic enhancement with metallic gratings,” Appl. Phys. Lett.101(12), 121102 (2012).
[CrossRef]

X. Feng, F. Liu, and Y. D. Huang, “Spontaneous emission rate enhancement of silicon nanocrystals by plasmonic bandgap on copper grating,” J. Lightwave Technol.28(9), 1420–1430 (2010).
[CrossRef]

X. Feng, F. Liu, and Y. D. Huang, “Calculated plasmonic enhancement of spontaneous emission from silicon nanocrystals with metallic gratings,” Opt. Commun.283(13), 2758–2761 (2010).
[CrossRef]

Liu, Z.

D. Lu, J. Kan, E. E. Fullerton, and Z. Liu, “Tunable surface plasmon polaritons in Ag composite films by adding dielectrics or semiconductors,” Appl. Phys. Lett.98(24), 243114 (2011).
[CrossRef]

Lordi, V.

F. Hatami, V. Lordi, J. S. Harris, H. Kostial, and W. T. Masselink, “Red light-emitting diodes based on InP/GaP quantum dots,” J. Appl. Phys.97(9), 096106 (2005).
[CrossRef]

Lu, D.

D. Lu, J. Kan, E. E. Fullerton, and Z. Liu, “Tunable surface plasmon polaritons in Ag composite films by adding dielectrics or semiconductors,” Appl. Phys. Lett.98(24), 243114 (2011).
[CrossRef]

Lu, J.

Y. Y. Gong, J. Lu, S. L. Cheng, Y. Nishi, and J. Vučković, “Plasmonic enhancement of emission from Si-nanocrystals,” Appl. Phys. Lett.94(1), 013106 (2009).
[CrossRef]

Manolatou, C.

J. T. Robinson, C. Manolatou, L. Chen, and M. Lipson, “Ultrasmall mode volumes in dielectric optical microcavities,” Phys. Rev. Lett.95(14), 143901 (2005).
[CrossRef] [PubMed]

Maradudin, A. A.

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep.408(3-4), 131–314 (2005).
[CrossRef]

Masselink, W. T.

F. Hatami, V. Lordi, J. S. Harris, H. Kostial, and W. T. Masselink, “Red light-emitting diodes based on InP/GaP quantum dots,” J. Appl. Phys.97(9), 096106 (2005).
[CrossRef]

Miller, N. C.

N. C. Miller, B. Hardiman, and G. A. Shirn, “Transport properties, microstructure, and conduction model of cosputtered Au-SiO2 cermet films,” J. Appl. Phys.41(4), 1850–1856 (1970).
[CrossRef]

Mishra, U.

M. Gontijo, M. Boroditsky, E. Yablonovitch, S. Keller, U. Mishra, and S. DenBaars, “Coupling of InGaN quantum-well photoluminescence to silver surface plasmons,” Phys. Rev. B60(16), 11564–11567 (1999).
[CrossRef]

Mukai, T.

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater.3(9), 601–605 (2004).
[CrossRef] [PubMed]

Narukawa, Y.

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater.3(9), 601–605 (2004).
[CrossRef] [PubMed]

Nienhuis, G.

M. van Exter, G. Nienhuis, and J. Woerdman, “Two simple expressions for the spontaneous emission factor β,” Phys. Rev. A54(4), 3553–3558 (1996).
[CrossRef] [PubMed]

Niki, I.

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater.3(9), 601–605 (2004).
[CrossRef] [PubMed]

Nishi, Y.

Y. Y. Gong, J. Lu, S. L. Cheng, Y. Nishi, and J. Vučković, “Plasmonic enhancement of emission from Si-nanocrystals,” Appl. Phys. Lett.94(1), 013106 (2009).
[CrossRef]

Okamoto, K.

K. Okamoto, A. Scherer, and Y. Kawakami, “Surface plasmon enhanced light emission from semiconductor materials,” Phys. Status Solidi C5(9), 2822–2824 (2008).
[CrossRef]

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater.3(9), 601–605 (2004).
[CrossRef] [PubMed]

Ong, H. C.

C. W. Lai, J. An, and H. C. Ong, “Surface-plasmon-mediated emission from metal-capped ZnO thin films,” Appl. Phys. Lett.86(25), 251105 (2005).
[CrossRef]

Pacifici, D.

J. S. Biteen, D. Pacifici, N. S. Lewis, and H. A. Atwater, “Enhanced radiative emission rate and quantum efficiency in coupled silicon nanocrystal-nanostructured gold emitters,” Nano Lett.5(9), 1768–1773 (2005).
[CrossRef] [PubMed]

Park, S.

C. Hong, H. Kim, S. Park, and C. Lee, “Optical properties of porous silicon coated with ultrathin gold film by RF-magnetron sputtering,” J. Eur. Ceram. Soc.30(2), 459–463 (2010).
[CrossRef]

Peng, J.

X. Tang, Y. Wang, W. Ke, X. Feng, Y. Huang, and J. Peng, “Internal quantum efficiency enhancement of silicon nanocrystals using double layer Au-rich cermet films,” Opt. Commun.283(13), 2754–2757 (2010).
[CrossRef]

X. Hu, Y. Huang, W. Zhang, and J. Peng, “Dominating radiative recombination in a nanoporous silicon layer with a metal-rich Au(1-α)SiO2(α) cermet waveguide,” Appl. Phys. Lett.89(8), 081112 (2006).
[CrossRef]

Pound, R. V.

E. M. Purcell, H. C. Torrey, and R. V. Pound, “Resonance absorption by nuclear magnetic moments in a solid,” Phys. Rev.69(1-2), 37–38 (1946).
[CrossRef]

Prock, A.

R. R. Chance, A. Prock, and R. Silbey, “Molecular fluorescence and energy transfer near interfaces,” Adv. Chem. Phys.37, 1–65 (1978).
[CrossRef]

Purcell, E. M.

E. M. Purcell, H. C. Torrey, and R. V. Pound, “Resonance absorption by nuclear magnetic moments in a solid,” Phys. Rev.69(1-2), 37–38 (1946).
[CrossRef]

Robinson, J. T.

J. T. Robinson, C. Manolatou, L. Chen, and M. Lipson, “Ultrasmall mode volumes in dielectric optical microcavities,” Phys. Rev. Lett.95(14), 143901 (2005).
[CrossRef] [PubMed]

Sano, D.

T. Baba and D. Sano, “Low-threshold lasing and Purcell effect in microdisk lasers at room temperature,” IEEE J. Sel. Top. Quantum Electron.9(5), 1340–1346 (2003).
[CrossRef]

Scherer, A.

K. Okamoto, A. Scherer, and Y. Kawakami, “Surface plasmon enhanced light emission from semiconductor materials,” Phys. Status Solidi C5(9), 2822–2824 (2008).
[CrossRef]

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater.3(9), 601–605 (2004).
[CrossRef] [PubMed]

Shalaev, V. M.

W. Chen, M. D. Thoreson, A. V. Kildishev, and V. M. Shalaev, “Fabrication and optical characterizations of smooth silver-silica nanocomposite films,” Laser Phys. Lett.7(9), 677–684 (2010).
[CrossRef]

Sheng, P.

P. Sheng, “Theory for the dielectric function of granular composite media,” Phys. Rev. Lett.45(1), 60–63 (1980).
[CrossRef]

Shirn, G. A.

N. C. Miller, B. Hardiman, and G. A. Shirn, “Transport properties, microstructure, and conduction model of cosputtered Au-SiO2 cermet films,” J. Appl. Phys.41(4), 1850–1856 (1970).
[CrossRef]

Shvartser, A.

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater.3(9), 601–605 (2004).
[CrossRef] [PubMed]

Silbey, R.

R. R. Chance, A. Prock, and R. Silbey, “Molecular fluorescence and energy transfer near interfaces,” Adv. Chem. Phys.37, 1–65 (1978).
[CrossRef]

Smolyaninov, I. I.

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep.408(3-4), 131–314 (2005).
[CrossRef]

Soref, R. A.

G. Sun, J. B. Khurgin, and R. A. Soref, “Practicable enhancement of spontaneous emission using surface plasmons,” Appl. Phys. Lett.90(11), 111107 (2007).
[CrossRef]

Stegeman, G. I.

J. J. Burke, G. I. Stegeman, and T. Tamir, “Surface-polariton-like waves guided by thin, lossy metal films,” Phys. Rev. B Condens. Matter33(8), 5186–5201 (1986).
[CrossRef] [PubMed]

Sun, G.

G. Sun, J. B. Khurgin, and R. A. Soref, “Practicable enhancement of spontaneous emission using surface plasmons,” Appl. Phys. Lett.90(11), 111107 (2007).
[CrossRef]

Tamir, T.

J. J. Burke, G. I. Stegeman, and T. Tamir, “Surface-polariton-like waves guided by thin, lossy metal films,” Phys. Rev. B Condens. Matter33(8), 5186–5201 (1986).
[CrossRef] [PubMed]

Tang, X.

X. Tang, Y. Wang, W. Ke, X. Feng, Y. Huang, and J. Peng, “Internal quantum efficiency enhancement of silicon nanocrystals using double layer Au-rich cermet films,” Opt. Commun.283(13), 2754–2757 (2010).
[CrossRef]

Thoreson, M. D.

W. Chen, M. D. Thoreson, A. V. Kildishev, and V. M. Shalaev, “Fabrication and optical characterizations of smooth silver-silica nanocomposite films,” Laser Phys. Lett.7(9), 677–684 (2010).
[CrossRef]

Torrey, H. C.

E. M. Purcell, H. C. Torrey, and R. V. Pound, “Resonance absorption by nuclear magnetic moments in a solid,” Phys. Rev.69(1-2), 37–38 (1946).
[CrossRef]

van Exter, M.

M. van Exter, G. Nienhuis, and J. Woerdman, “Two simple expressions for the spontaneous emission factor β,” Phys. Rev. A54(4), 3553–3558 (1996).
[CrossRef] [PubMed]

Vuckovic, J.

H. Iwase, D. Englund, and J. Vučković, “Analysis of the Purcell effect in photonic and plasmonic crystals with losses,” Opt. Express18(16), 16546–16560 (2010).
[CrossRef] [PubMed]

Y. Y. Gong, J. Lu, S. L. Cheng, Y. Nishi, and J. Vučković, “Plasmonic enhancement of emission from Si-nanocrystals,” Appl. Phys. Lett.94(1), 013106 (2009).
[CrossRef]

Y. Gong and J. Vučković, “Design of plasmon cavities for solid-state cavity quantum electrodynamics applications,” Appl. Phys. Lett.90(3), 033113 (2007).
[CrossRef]

Wang, Y.

X. Tang, Y. Wang, W. Ke, X. Feng, Y. Huang, and J. Peng, “Internal quantum efficiency enhancement of silicon nanocrystals using double layer Au-rich cermet films,” Opt. Commun.283(13), 2754–2757 (2010).
[CrossRef]

Weber, W. H.

G. W. Ford and W. H. Weber, “Electromagnetic interactions of molecules with metal surfaces,” Phys. Rep.113(4), 195–287 (1984).
[CrossRef]

Woerdman, J.

M. van Exter, G. Nienhuis, and J. Woerdman, “Two simple expressions for the spontaneous emission factor β,” Phys. Rev. A54(4), 3553–3558 (1996).
[CrossRef] [PubMed]

Yablonovitch, E.

M. Gontijo, M. Boroditsky, E. Yablonovitch, S. Keller, U. Mishra, and S. DenBaars, “Coupling of InGaN quantum-well photoluminescence to silver surface plasmons,” Phys. Rev. B60(16), 11564–11567 (1999).
[CrossRef]

Yang, D.

P. Cheng, D. Li, Z. Yuan, P. Chen, and D. Yang, “Enhancement of ZnO light emission via coupling with localized surface plasmon of Ag island film,” Appl. Phys. Lett.92(4), 041119 (2008).
[CrossRef]

Yuan, Z.

P. Cheng, D. Li, Z. Yuan, P. Chen, and D. Yang, “Enhancement of ZnO light emission via coupling with localized surface plasmon of Ag island film,” Appl. Phys. Lett.92(4), 041119 (2008).
[CrossRef]

Zayats, A. V.

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep.408(3-4), 131–314 (2005).
[CrossRef]

Zhang, W.

X. Hu, Y. Huang, W. Zhang, and J. Peng, “Dominating radiative recombination in a nanoporous silicon layer with a metal-rich Au(1-α)SiO2(α) cermet waveguide,” Appl. Phys. Lett.89(8), 081112 (2006).
[CrossRef]

Adv. Chem. Phys. (1)

R. R. Chance, A. Prock, and R. Silbey, “Molecular fluorescence and energy transfer near interfaces,” Adv. Chem. Phys.37, 1–65 (1978).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (8)

P. Cheng, D. Li, Z. Yuan, P. Chen, and D. Yang, “Enhancement of ZnO light emission via coupling with localized surface plasmon of Ag island film,” Appl. Phys. Lett.92(4), 041119 (2008).
[CrossRef]

X. Feng, K. Cui, F. Liu, and Y. Huang, “Impact of spectral broadening on plasmonic enhancement with metallic gratings,” Appl. Phys. Lett.101(12), 121102 (2012).
[CrossRef]

Y. Gong and J. Vučković, “Design of plasmon cavities for solid-state cavity quantum electrodynamics applications,” Appl. Phys. Lett.90(3), 033113 (2007).
[CrossRef]

C. W. Lai, J. An, and H. C. Ong, “Surface-plasmon-mediated emission from metal-capped ZnO thin films,” Appl. Phys. Lett.86(25), 251105 (2005).
[CrossRef]

Y. Y. Gong, J. Lu, S. L. Cheng, Y. Nishi, and J. Vučković, “Plasmonic enhancement of emission from Si-nanocrystals,” Appl. Phys. Lett.94(1), 013106 (2009).
[CrossRef]

X. Hu, Y. Huang, W. Zhang, and J. Peng, “Dominating radiative recombination in a nanoporous silicon layer with a metal-rich Au(1-α)SiO2(α) cermet waveguide,” Appl. Phys. Lett.89(8), 081112 (2006).
[CrossRef]

D. Lu, J. Kan, E. E. Fullerton, and Z. Liu, “Tunable surface plasmon polaritons in Ag composite films by adding dielectrics or semiconductors,” Appl. Phys. Lett.98(24), 243114 (2011).
[CrossRef]

G. Sun, J. B. Khurgin, and R. A. Soref, “Practicable enhancement of spontaneous emission using surface plasmons,” Appl. Phys. Lett.90(11), 111107 (2007).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

T. Baba and D. Sano, “Low-threshold lasing and Purcell effect in microdisk lasers at room temperature,” IEEE J. Sel. Top. Quantum Electron.9(5), 1340–1346 (2003).
[CrossRef]

J. Appl. Phys. (2)

N. C. Miller, B. Hardiman, and G. A. Shirn, “Transport properties, microstructure, and conduction model of cosputtered Au-SiO2 cermet films,” J. Appl. Phys.41(4), 1850–1856 (1970).
[CrossRef]

F. Hatami, V. Lordi, J. S. Harris, H. Kostial, and W. T. Masselink, “Red light-emitting diodes based on InP/GaP quantum dots,” J. Appl. Phys.97(9), 096106 (2005).
[CrossRef]

J. Eur. Ceram. Soc. (1)

C. Hong, H. Kim, S. Park, and C. Lee, “Optical properties of porous silicon coated with ultrathin gold film by RF-magnetron sputtering,” J. Eur. Ceram. Soc.30(2), 459–463 (2010).
[CrossRef]

J. Lightwave Technol. (2)

Laser Phys. Lett. (1)

W. Chen, M. D. Thoreson, A. V. Kildishev, and V. M. Shalaev, “Fabrication and optical characterizations of smooth silver-silica nanocomposite films,” Laser Phys. Lett.7(9), 677–684 (2010).
[CrossRef]

Nano Lett. (1)

J. S. Biteen, D. Pacifici, N. S. Lewis, and H. A. Atwater, “Enhanced radiative emission rate and quantum efficiency in coupled silicon nanocrystal-nanostructured gold emitters,” Nano Lett.5(9), 1768–1773 (2005).
[CrossRef] [PubMed]

Nat. Mater. (1)

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater.3(9), 601–605 (2004).
[CrossRef] [PubMed]

Opt. Commun. (2)

X. Tang, Y. Wang, W. Ke, X. Feng, Y. Huang, and J. Peng, “Internal quantum efficiency enhancement of silicon nanocrystals using double layer Au-rich cermet films,” Opt. Commun.283(13), 2754–2757 (2010).
[CrossRef]

X. Feng, F. Liu, and Y. D. Huang, “Calculated plasmonic enhancement of spontaneous emission from silicon nanocrystals with metallic gratings,” Opt. Commun.283(13), 2758–2761 (2010).
[CrossRef]

Opt. Express (1)

Phys. Rep. (2)

G. W. Ford and W. H. Weber, “Electromagnetic interactions of molecules with metal surfaces,” Phys. Rep.113(4), 195–287 (1984).
[CrossRef]

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep.408(3-4), 131–314 (2005).
[CrossRef]

Phys. Rev. (1)

E. M. Purcell, H. C. Torrey, and R. V. Pound, “Resonance absorption by nuclear magnetic moments in a solid,” Phys. Rev.69(1-2), 37–38 (1946).
[CrossRef]

Phys. Rev. A (1)

M. van Exter, G. Nienhuis, and J. Woerdman, “Two simple expressions for the spontaneous emission factor β,” Phys. Rev. A54(4), 3553–3558 (1996).
[CrossRef] [PubMed]

Phys. Rev. B (2)

U. J. Gibson and R. A. Buhrman, “Optical response of cermet composite films in the microstructural transition region,” Phys. Rev. B27(8), 5046–5051 (1983).
[CrossRef]

M. Gontijo, M. Boroditsky, E. Yablonovitch, S. Keller, U. Mishra, and S. DenBaars, “Coupling of InGaN quantum-well photoluminescence to silver surface plasmons,” Phys. Rev. B60(16), 11564–11567 (1999).
[CrossRef]

Phys. Rev. B Condens. Matter (1)

J. J. Burke, G. I. Stegeman, and T. Tamir, “Surface-polariton-like waves guided by thin, lossy metal films,” Phys. Rev. B Condens. Matter33(8), 5186–5201 (1986).
[CrossRef] [PubMed]

Phys. Rev. Lett. (2)

P. Sheng, “Theory for the dielectric function of granular composite media,” Phys. Rev. Lett.45(1), 60–63 (1980).
[CrossRef]

J. T. Robinson, C. Manolatou, L. Chen, and M. Lipson, “Ultrasmall mode volumes in dielectric optical microcavities,” Phys. Rev. Lett.95(14), 143901 (2005).
[CrossRef] [PubMed]

Phys. Status Solidi C (1)

K. Okamoto, A. Scherer, and Y. Kawakami, “Surface plasmon enhanced light emission from semiconductor materials,” Phys. Status Solidi C5(9), 2822–2824 (2008).
[CrossRef]

Other (2)

H. Yokoyama and K. Ujihara, eds., Spontaneous Emission and Laser Oscillation in Microcavities (CRC, 1995), Chap. 8.

P. Milonni, The Quantum Vacuum: An Introduction to Quantum Electrodynamics (Academic, 1994).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Schematic diagram of a SPP waveguide on the uniformly distributed QDs active layer in an air/waveguide/emitter structure, and reference coordinate system.

Fig. 2
Fig. 2

Calculated permittivity of different Au(1-α)Si3N4(α) cermet with α = 0, 0.1, 0.2 and 0.3, respectively.

Fig. 3
Fig. 3

Dispersion curves of SPP mode on different Au(1-α)Si3N4(α) cermet waveguides with α = 0~0.3.

Fig. 4
Fig. 4

Normalized distributions of electric field along z at SPP resonance frequencies for α = 0~0.3.

Fig. 5
Fig. 5

Calculated PF spectra at the locations of z = 5 nm, 10 nm and 15 nm, for α = 0 and 0.3, respectively.

Fig. 6
Fig. 6

Peak values PFpeak of PF spectra (a) and corresponding energies ħω0 (b) at various locations of z = 0~30 nm for α = 0~0.3.

Fig. 7
Fig. 7

Calculated PFs in the full integral form at z = 5 nm (a) and on average over the active layer (b) with varied emission linewidth (Δω) for α = 0~0.3; the central frequency of the emitter (ω0) is matched with that of the PF spectrum (ω1) at the spacer-emitter interface (z = 5 nm).

Fig. 8
Fig. 8

Maximum PFave and PF spectrum linewidth at the spacer-emitter interface (ΔωPF) versus central emission frequency (ω0) of the emitter for α = 0~0.3.

Fig. 9
Fig. 9

Critical emission linewidth (CEL, Δω*) versus DOS spectrum linewidth (Δω DOS) under ω k = ω 1 (a); critical emission linewidth (CEL, Δω*) and corresponding PFave (PF*) versus PF spectrum linewidth (Δω PF) at the spacer-emitter interface of z = 5nm (b), for α = 0~0.3 and for α = 0.3 with the imaginary part of its permittivity multiplied by a factor δ = 1~0.01, respectively.

Equations (17)

Equations on this page are rendered with MathJax. Learn more.

Γ sp = 2π 0 | f|d E(r)|i | 2 ρ(ω) (ω)dω,
(ω ω 0 )= Δω/2π (ω ω 0 ) 2 + (Δω/2) 2 ,
Γ sp ( ω 0 )= 2π | f|d E(r)|i | 2 ρ( ω 0 ).
ρ(ω ω k )= ω k /2π Q k (ω ω k ) 2 + ( ω k /2 Q k ) 2 ,
Γ sp ( ω 0 )= 0 k 2π 2 | f|d E k (r)|i | 2 ρ(ω ω k ) (ω ω 0 )dω.
| E k | 2 = ω/2 | E 0 k ( r ) | 2 1/8π L x L y L z [ (ε ω k )/ ω k ]| E 0 k ( x,y,z ) | 2 dxdydz ,
Γ sp k ( ω 0 )= 2 d 2 ω 0 3 | E 0 k ( z ) | 2 + [ (ε ω k )/ ω k ] | E 0 k ( z ) | 2 dz ρ( ω 0 ω k )Δ k x Δ k y .
Γ 0 (ω)= 4n d 2 ω 3 3 c 3 ,
PF( z| ω 0 )=1+ k Γ sp k ( ω 0 ) Γ 0 ( ω 0 ) =1+ c 3 2n ω 0 2 k | E 0 k ( z ) | 2 + [ (ε ω k )/ ω k ] | E 0 k ( z ) | 2 dz ρ( ω 0 ω k ) Δ k x Δ k y .
PF( z| ω 0 )=1+ π c 3 n ω 0 2 0 0 H( ω k )ρ(ω ω k )(ω ω 0 ) kdk d ω k d ω k dω,
PF( ω 0 ,z )=1+ π c 3 n ω 0 2 0 H( ω k )ρ( ω 0 ω k ) kdk d ω k d ω k
p ε MetalCoat ε 2 ε MetalCoat +2 ε 2 +(1p) ε DielectricCoat ε 2 ε DielectricCoat +2 ε 2 =0,
ε MetalCoat = ε M (2α( ε D ε M )+( ε D +2 ε M )) ( ε D +2 ε M )α( ε D ε M ) ,
ε DielectricCoat = ε D (2(1α)( ε M ε D )+( ε M +2 ε D )) ( ε M +2 ε D )(1α)( ε M ε D ) ,
p= (1 α 1/3 ) 3 (1 α 1/3 ) 3 + (1 (1α) 1/3 ) 3 .
tanh( γ 2 h)( ε 1 ε 3 γ 2 2 + ε 2 2 γ 1 γ 3 )+[ γ 2 ( ε 1 γ 3 + ε 3 γ 1 ) ε 2 ]=0,
P F ave =1+ 1 D z s D z (PF(z| ω 0 ) 1)dz,

Metrics