Abstract

We report for the first time on the experimental response of a Surface Plasmon Resonance fiber optic sensor based on wavelength modulation for hydrogen sensing. This approach of measuring the hydrogen concentration makes the sensor insensitive to intensity fluctuations. The intrinsic fiber sensor developed provides remote sensing and enables the possibility of multi-points sensing. The sensor consists of a multilayer of 35 nm Au / 180 nm SiO2/ Pd deposited on a step- index multimode fiber core. The sensitivity and selectivity of the sensor are optimal at a Pd thickness of 3.75 nm. The sensor is sensitive to a hydrogen concentration ranging between 0.5 and 4% H2 in Ar, with a response time less than 15 s.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Villatoro and D. Monzón-Hernández, “Fast detection of hydrogen with nano fiber tapers coated with ultra thin palladium layers,” Opt. Express13(13), 5087–5092 (2005).
    [CrossRef] [PubMed]
  2. D. Luna-Moreno, D. Monzon-Hernandez, S. Calixto-Carrera, and R. Espinosa-Luna, “Tailored Pd-Au layer produced by conventional evaporation process for hydrogen sensing,” Opt. Lasers Eng.49(6), 693–697 (2011).
    [CrossRef]
  3. A. Trouillet, E. Marin, and C. Veillas, “Fibre gratings for hydrogen sensing,” Meas. Sci. Technol.17(5), 1124–1128 (2006).
    [CrossRef]
  4. B. Sutapun, M. Tabib-Azar, and A. Kazemi, “Pd-coated elastooptic fiber optic Bragg grating sensors for multiplexed hydrogen sensing,” Sens. Actuators B60(1), 27–34 (1999).
    [CrossRef]
  5. M. Buric, K. P. Chen, M. Bhattarai, P. R. Swinehart, and M. Maklad, “Active fiber Bragg grating hydrogen sensors for all-temperature operation,” IEEE Photon. Technol. Lett.19(5), 255–257 (2007).
    [CrossRef]
  6. R. Maier, B. Jones, J. Barton, S. McCulloch, T. Allsop, J. Jones, and I. Bennion, “Fibre optics in palladium-based hydrogen sensing,” J. Opt. A, Pure Appl. Opt.9(6), S45–S59 (2007).
    [CrossRef]
  7. X. Wei, T. Wei, H. Xiao, and Y. Lin, “Nano-structured Pd-long period fiber gratings integrated optical sensor for hydrogen detection,” Sens. Actuators B134(2), 687–693 (2008).
    [CrossRef]
  8. K. Schroeder, W. Ecke, and R. Willsch, “Optical fiber Bragg grating hydrogen sensor based on evanescent-field interaction with palladium thin-film transducer,” Opt. Lasers Eng.47(10), 1018–1022 (2009).
    [CrossRef]
  9. L. Boon-Brett, J. Bousek, G. Black, P. Moretto, P. Castello, T. Hübert, and U. Banach, “Identifying performance gaps in hydrogen safety sensor technology for automotive and stationary applications,” Int. J. Hydrogen Energy35(1), 373–384 (2010).
    [CrossRef]
  10. B. Liedberg, C. Nylander, and I. Lunstrom, “Surface plasmon resonance for gas detection and biosensing,” Sens. Actuators4, 299–304 (1983).
    [CrossRef]
  11. I. Garcés, C. Aldea, and J. Mateo, “Four-layer chemical fibre optic plasmon-based sensor,” Sens. Actuators B7(1-3), 771–774 (1992).
    [CrossRef]
  12. C. Lavers and J. Wilkinson, “A waveguide-coupled surface-plasmon sensor for an aqueous environment,” Sens. Actuators B22(1), 75–81 (1994).
    [CrossRef]
  13. B. Chadwick and M. Gal, “Enhanced optical detection of hydrogen using the excitation of surface plasmons in palladium,” Appl. Surf. Sci.68(1), 135–138 (1993).
    [CrossRef]
  14. X. Bévenot, A. Trouillet, C. Veillas, H. Gagnaire, and M. Clement, “Surface plasmon resonance hydrogen sensor using an optical fibre,” Meas. Sci. Technol.13(1), 118–124 (2002).
    [CrossRef]
  15. C. Perrotton, M. Slaman, N. Javahiraly, H. Schreuders, B. Dam, and P. Meyrueis, “Wavelength response of a surface plasmon resonance palladium-coated optical fiber sensor for hydrogen detection,” Opt. Eng.50(1), 014403 (2011).
    [CrossRef]
  16. D. Nau, A. Seidel, R. B. Orzekowsky, S. H. Lee, S. Deb, and H. Giessen, “Hydrogen sensor based on metallic photonic crystal slabs,” Opt. Lett.35(18), 3150–3152 (2010).
    [CrossRef] [PubMed]
  17. C. Langhammer, I. Zorić, B. Kasemo, and B. M. Clemens, “Hydrogen storage in Pd nanodisks characterized with a novel nanoplasmonic sensing scheme,” Nano Lett.7(10), 3122–3127 (2007).
    [CrossRef] [PubMed]
  18. C. Langhammer, E. M. Larsson, B. Kasemo, and I. Zorić, “Indirect nanoplasmonic sensing: Ultrasensitive experimental platform for nanomaterials science and optical nanocalorimetry,” Nano Lett.10(9), 3529–3538 (2010).
    [CrossRef] [PubMed]
  19. N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett.10(7), 2342–2348 (2010).
    [CrossRef] [PubMed]
  20. E. Maeda, S. Mikuriya, K. Endo, I. Yamada, A. Suda, and J. J. Delaunay, “Optical hydrogen detection with periodic subwavelength palladium hole arrays,” Appl. Phys. Lett.95(13), 133504 (2009).
    [CrossRef]
  21. N. R. Fong, P. Berini, and R. N. Tait, “Modeling and design of hydrogen gas sensors based on a membrane-supported surface plasmon waveguide,” Sens. Act. B, 285–291 (2011).
  22. R. Jorgenson and S. Yee, “A fiber-optic chemical sensor based on surface plasmon resonance,” Sens. Actuators B12(3), 213–220 (1993).
    [CrossRef]
  23. C. Perrotton, N. Javahiraly, M. Slaman, B. Dam, and P. Meyrueis, , “Fiber optic Surface Plasmon Resonance sensor based on wavelength modulation for hydrogen sensing,” Opt. Express19(S6Suppl 6), A1175–A1183 (2011).
    [CrossRef] [PubMed]
  24. K. von Rottkay, M. Rubin, and P. Duine, “Refractive index changes of Pd-coated magnesium lanthanide switchable mirrors upon hydrogen insertion,” J. Appl. Phys.85(1), 408–413 (1999).
    [CrossRef]
  25. M. A. Ordal, L. L. Long, R. J. Bell, S. E. Bell, R. R. Bell, R. W. Alexander, and C. A. Ward, “Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared,” Appl. Opt.22(7), 1099–20 (1983).
    [CrossRef] [PubMed]
  26. I. Pockrand, “Resonance anomalies in the light intensity reflected at silver gratings with dielectric coatings,” J. Phys. D9(17), 2423–2432 (1976).
    [CrossRef]
  27. R. Gremaud, M. Gonzalez-Silveira, Y. Pivak, S. de Man, M. Slaman, H. Schreuders, B. Dam, and R. Griessen, “Hydrogenography of PdHx thin films: Influence of H-induced stress relaxation processes,” Acta Mater.57(4), 1209–1219 (2009).
    [CrossRef]
  28. Y. Pivak, R. Gremaud, K. Gross, M. Gonzalez-Silveira, A. Walton, D. Book, H. Schreuders, B. Dam, and R. Griessen, “Effect of the substrate on the thermodynamic properties of PdHx films studied by hydrogenography,” Scr. Mater.60(5), 348–351 (2009).
    [CrossRef]
  29. F. A. Lewis, ed., The Palladium Hydrogen System (Academic Press, London and New York, 1967).
  30. R. Gremaud, Hydrogenography: A Thin Film Optical Combinatorial Study of Hydrogen Storage Materials (Ipskamp, 2008).
  31. X. Bévenot, A. Trouillet, C. Veillas, H. Gagnaire, and M. Clement, “Hydrogen leak detection using an optical fibre sensor for aerospace applications,” Sens. Actuators B67(1-2), 57–67 (2000).
    [CrossRef]
  32. Z. Zhao, M. Carpenter, H. Xia, and D. Welch, “All-optical hydrogen sensor based on a high alloy content palladium thin film,” Sens. Actuators B113(1), 532–538 (2006).
    [CrossRef]
  33. Z. Zhao, Y. Sevryugina, M. A. Carpenter, D. Welch, and H. Xia, “All-optical hydrogen-sensing materials based on tailored palladium alloy thin films,” Anal. Chem.76(21), 6321–6326 (2004).
    [CrossRef] [PubMed]
  34. J. Huiberts, J. Rector, R. Wijngaarden, S. Jetten, D. De Groot, B. Dam, N. Koeman, R. Griessen, B. Hjorvarsson, S. Olafsson, and Y. S. Cho, “Synthesis of yttriumtrihydride films for ex-situ measurements,” J. Alloy. Comp.239(2), 158–171 (1996).
    [CrossRef]
  35. B. Fisher and D. Malocha, “A study on the aging of ultra-thin Palladium films on SAW hydrogen gas sensors,” in IEEE Frequency Control Symposium, pp. 242–247 (2010).
  36. F. Favier, E. C. Walter, M. P. Zach, T. Benter, and R. M. Penner, “Hydrogen sensors and switches from electrodeposited palladium mesowire arrays,” Science293(5538), 2227–2231 (2001).
    [CrossRef] [PubMed]
  37. K. Kalli, A. Othonos, and C. Christofides, “Characterization of reflectivity inversion, α-and β-phase transitions and nanostructure formation in hydrogen activated thin Pd films on silicon based substrates,” J. Appl. Phys.91(6), 3829–3840 (2002).
    [CrossRef]
  38. A. Tittl, P. Mai, R. Taubert, D. Dregely, N. Liu, and H. Giessen, “Palladium-based plasmonic perfect absorber in the visible wavelength range and its application to hydrogen sensing,” Nano Lett.11, 4366–4369 (2011).
    [CrossRef] [PubMed]

2011 (4)

D. Luna-Moreno, D. Monzon-Hernandez, S. Calixto-Carrera, and R. Espinosa-Luna, “Tailored Pd-Au layer produced by conventional evaporation process for hydrogen sensing,” Opt. Lasers Eng.49(6), 693–697 (2011).
[CrossRef]

C. Perrotton, M. Slaman, N. Javahiraly, H. Schreuders, B. Dam, and P. Meyrueis, “Wavelength response of a surface plasmon resonance palladium-coated optical fiber sensor for hydrogen detection,” Opt. Eng.50(1), 014403 (2011).
[CrossRef]

A. Tittl, P. Mai, R. Taubert, D. Dregely, N. Liu, and H. Giessen, “Palladium-based plasmonic perfect absorber in the visible wavelength range and its application to hydrogen sensing,” Nano Lett.11, 4366–4369 (2011).
[CrossRef] [PubMed]

C. Perrotton, N. Javahiraly, M. Slaman, B. Dam, and P. Meyrueis, , “Fiber optic Surface Plasmon Resonance sensor based on wavelength modulation for hydrogen sensing,” Opt. Express19(S6Suppl 6), A1175–A1183 (2011).
[CrossRef] [PubMed]

2010 (4)

D. Nau, A. Seidel, R. B. Orzekowsky, S. H. Lee, S. Deb, and H. Giessen, “Hydrogen sensor based on metallic photonic crystal slabs,” Opt. Lett.35(18), 3150–3152 (2010).
[CrossRef] [PubMed]

C. Langhammer, E. M. Larsson, B. Kasemo, and I. Zorić, “Indirect nanoplasmonic sensing: Ultrasensitive experimental platform for nanomaterials science and optical nanocalorimetry,” Nano Lett.10(9), 3529–3538 (2010).
[CrossRef] [PubMed]

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett.10(7), 2342–2348 (2010).
[CrossRef] [PubMed]

L. Boon-Brett, J. Bousek, G. Black, P. Moretto, P. Castello, T. Hübert, and U. Banach, “Identifying performance gaps in hydrogen safety sensor technology for automotive and stationary applications,” Int. J. Hydrogen Energy35(1), 373–384 (2010).
[CrossRef]

2009 (4)

K. Schroeder, W. Ecke, and R. Willsch, “Optical fiber Bragg grating hydrogen sensor based on evanescent-field interaction with palladium thin-film transducer,” Opt. Lasers Eng.47(10), 1018–1022 (2009).
[CrossRef]

R. Gremaud, M. Gonzalez-Silveira, Y. Pivak, S. de Man, M. Slaman, H. Schreuders, B. Dam, and R. Griessen, “Hydrogenography of PdHx thin films: Influence of H-induced stress relaxation processes,” Acta Mater.57(4), 1209–1219 (2009).
[CrossRef]

Y. Pivak, R. Gremaud, K. Gross, M. Gonzalez-Silveira, A. Walton, D. Book, H. Schreuders, B. Dam, and R. Griessen, “Effect of the substrate on the thermodynamic properties of PdHx films studied by hydrogenography,” Scr. Mater.60(5), 348–351 (2009).
[CrossRef]

E. Maeda, S. Mikuriya, K. Endo, I. Yamada, A. Suda, and J. J. Delaunay, “Optical hydrogen detection with periodic subwavelength palladium hole arrays,” Appl. Phys. Lett.95(13), 133504 (2009).
[CrossRef]

2008 (1)

X. Wei, T. Wei, H. Xiao, and Y. Lin, “Nano-structured Pd-long period fiber gratings integrated optical sensor for hydrogen detection,” Sens. Actuators B134(2), 687–693 (2008).
[CrossRef]

2007 (3)

M. Buric, K. P. Chen, M. Bhattarai, P. R. Swinehart, and M. Maklad, “Active fiber Bragg grating hydrogen sensors for all-temperature operation,” IEEE Photon. Technol. Lett.19(5), 255–257 (2007).
[CrossRef]

R. Maier, B. Jones, J. Barton, S. McCulloch, T. Allsop, J. Jones, and I. Bennion, “Fibre optics in palladium-based hydrogen sensing,” J. Opt. A, Pure Appl. Opt.9(6), S45–S59 (2007).
[CrossRef]

C. Langhammer, I. Zorić, B. Kasemo, and B. M. Clemens, “Hydrogen storage in Pd nanodisks characterized with a novel nanoplasmonic sensing scheme,” Nano Lett.7(10), 3122–3127 (2007).
[CrossRef] [PubMed]

2006 (2)

Z. Zhao, M. Carpenter, H. Xia, and D. Welch, “All-optical hydrogen sensor based on a high alloy content palladium thin film,” Sens. Actuators B113(1), 532–538 (2006).
[CrossRef]

A. Trouillet, E. Marin, and C. Veillas, “Fibre gratings for hydrogen sensing,” Meas. Sci. Technol.17(5), 1124–1128 (2006).
[CrossRef]

2005 (1)

2004 (1)

Z. Zhao, Y. Sevryugina, M. A. Carpenter, D. Welch, and H. Xia, “All-optical hydrogen-sensing materials based on tailored palladium alloy thin films,” Anal. Chem.76(21), 6321–6326 (2004).
[CrossRef] [PubMed]

2002 (2)

K. Kalli, A. Othonos, and C. Christofides, “Characterization of reflectivity inversion, α-and β-phase transitions and nanostructure formation in hydrogen activated thin Pd films on silicon based substrates,” J. Appl. Phys.91(6), 3829–3840 (2002).
[CrossRef]

X. Bévenot, A. Trouillet, C. Veillas, H. Gagnaire, and M. Clement, “Surface plasmon resonance hydrogen sensor using an optical fibre,” Meas. Sci. Technol.13(1), 118–124 (2002).
[CrossRef]

2001 (1)

F. Favier, E. C. Walter, M. P. Zach, T. Benter, and R. M. Penner, “Hydrogen sensors and switches from electrodeposited palladium mesowire arrays,” Science293(5538), 2227–2231 (2001).
[CrossRef] [PubMed]

2000 (1)

X. Bévenot, A. Trouillet, C. Veillas, H. Gagnaire, and M. Clement, “Hydrogen leak detection using an optical fibre sensor for aerospace applications,” Sens. Actuators B67(1-2), 57–67 (2000).
[CrossRef]

1999 (2)

B. Sutapun, M. Tabib-Azar, and A. Kazemi, “Pd-coated elastooptic fiber optic Bragg grating sensors for multiplexed hydrogen sensing,” Sens. Actuators B60(1), 27–34 (1999).
[CrossRef]

K. von Rottkay, M. Rubin, and P. Duine, “Refractive index changes of Pd-coated magnesium lanthanide switchable mirrors upon hydrogen insertion,” J. Appl. Phys.85(1), 408–413 (1999).
[CrossRef]

1996 (1)

J. Huiberts, J. Rector, R. Wijngaarden, S. Jetten, D. De Groot, B. Dam, N. Koeman, R. Griessen, B. Hjorvarsson, S. Olafsson, and Y. S. Cho, “Synthesis of yttriumtrihydride films for ex-situ measurements,” J. Alloy. Comp.239(2), 158–171 (1996).
[CrossRef]

1994 (1)

C. Lavers and J. Wilkinson, “A waveguide-coupled surface-plasmon sensor for an aqueous environment,” Sens. Actuators B22(1), 75–81 (1994).
[CrossRef]

1993 (2)

B. Chadwick and M. Gal, “Enhanced optical detection of hydrogen using the excitation of surface plasmons in palladium,” Appl. Surf. Sci.68(1), 135–138 (1993).
[CrossRef]

R. Jorgenson and S. Yee, “A fiber-optic chemical sensor based on surface plasmon resonance,” Sens. Actuators B12(3), 213–220 (1993).
[CrossRef]

1992 (1)

I. Garcés, C. Aldea, and J. Mateo, “Four-layer chemical fibre optic plasmon-based sensor,” Sens. Actuators B7(1-3), 771–774 (1992).
[CrossRef]

1983 (2)

1976 (1)

I. Pockrand, “Resonance anomalies in the light intensity reflected at silver gratings with dielectric coatings,” J. Phys. D9(17), 2423–2432 (1976).
[CrossRef]

Aldea, C.

I. Garcés, C. Aldea, and J. Mateo, “Four-layer chemical fibre optic plasmon-based sensor,” Sens. Actuators B7(1-3), 771–774 (1992).
[CrossRef]

Alexander, R. W.

Allsop, T.

R. Maier, B. Jones, J. Barton, S. McCulloch, T. Allsop, J. Jones, and I. Bennion, “Fibre optics in palladium-based hydrogen sensing,” J. Opt. A, Pure Appl. Opt.9(6), S45–S59 (2007).
[CrossRef]

Banach, U.

L. Boon-Brett, J. Bousek, G. Black, P. Moretto, P. Castello, T. Hübert, and U. Banach, “Identifying performance gaps in hydrogen safety sensor technology for automotive and stationary applications,” Int. J. Hydrogen Energy35(1), 373–384 (2010).
[CrossRef]

Barton, J.

R. Maier, B. Jones, J. Barton, S. McCulloch, T. Allsop, J. Jones, and I. Bennion, “Fibre optics in palladium-based hydrogen sensing,” J. Opt. A, Pure Appl. Opt.9(6), S45–S59 (2007).
[CrossRef]

Bell, R. J.

Bell, R. R.

Bell, S. E.

Bennion, I.

R. Maier, B. Jones, J. Barton, S. McCulloch, T. Allsop, J. Jones, and I. Bennion, “Fibre optics in palladium-based hydrogen sensing,” J. Opt. A, Pure Appl. Opt.9(6), S45–S59 (2007).
[CrossRef]

Benter, T.

F. Favier, E. C. Walter, M. P. Zach, T. Benter, and R. M. Penner, “Hydrogen sensors and switches from electrodeposited palladium mesowire arrays,” Science293(5538), 2227–2231 (2001).
[CrossRef] [PubMed]

Bévenot, X.

X. Bévenot, A. Trouillet, C. Veillas, H. Gagnaire, and M. Clement, “Surface plasmon resonance hydrogen sensor using an optical fibre,” Meas. Sci. Technol.13(1), 118–124 (2002).
[CrossRef]

X. Bévenot, A. Trouillet, C. Veillas, H. Gagnaire, and M. Clement, “Hydrogen leak detection using an optical fibre sensor for aerospace applications,” Sens. Actuators B67(1-2), 57–67 (2000).
[CrossRef]

Bhattarai, M.

M. Buric, K. P. Chen, M. Bhattarai, P. R. Swinehart, and M. Maklad, “Active fiber Bragg grating hydrogen sensors for all-temperature operation,” IEEE Photon. Technol. Lett.19(5), 255–257 (2007).
[CrossRef]

Black, G.

L. Boon-Brett, J. Bousek, G. Black, P. Moretto, P. Castello, T. Hübert, and U. Banach, “Identifying performance gaps in hydrogen safety sensor technology for automotive and stationary applications,” Int. J. Hydrogen Energy35(1), 373–384 (2010).
[CrossRef]

Book, D.

Y. Pivak, R. Gremaud, K. Gross, M. Gonzalez-Silveira, A. Walton, D. Book, H. Schreuders, B. Dam, and R. Griessen, “Effect of the substrate on the thermodynamic properties of PdHx films studied by hydrogenography,” Scr. Mater.60(5), 348–351 (2009).
[CrossRef]

Boon-Brett, L.

L. Boon-Brett, J. Bousek, G. Black, P. Moretto, P. Castello, T. Hübert, and U. Banach, “Identifying performance gaps in hydrogen safety sensor technology for automotive and stationary applications,” Int. J. Hydrogen Energy35(1), 373–384 (2010).
[CrossRef]

Bousek, J.

L. Boon-Brett, J. Bousek, G. Black, P. Moretto, P. Castello, T. Hübert, and U. Banach, “Identifying performance gaps in hydrogen safety sensor technology for automotive and stationary applications,” Int. J. Hydrogen Energy35(1), 373–384 (2010).
[CrossRef]

Buric, M.

M. Buric, K. P. Chen, M. Bhattarai, P. R. Swinehart, and M. Maklad, “Active fiber Bragg grating hydrogen sensors for all-temperature operation,” IEEE Photon. Technol. Lett.19(5), 255–257 (2007).
[CrossRef]

Calixto-Carrera, S.

D. Luna-Moreno, D. Monzon-Hernandez, S. Calixto-Carrera, and R. Espinosa-Luna, “Tailored Pd-Au layer produced by conventional evaporation process for hydrogen sensing,” Opt. Lasers Eng.49(6), 693–697 (2011).
[CrossRef]

Carpenter, M.

Z. Zhao, M. Carpenter, H. Xia, and D. Welch, “All-optical hydrogen sensor based on a high alloy content palladium thin film,” Sens. Actuators B113(1), 532–538 (2006).
[CrossRef]

Carpenter, M. A.

Z. Zhao, Y. Sevryugina, M. A. Carpenter, D. Welch, and H. Xia, “All-optical hydrogen-sensing materials based on tailored palladium alloy thin films,” Anal. Chem.76(21), 6321–6326 (2004).
[CrossRef] [PubMed]

Castello, P.

L. Boon-Brett, J. Bousek, G. Black, P. Moretto, P. Castello, T. Hübert, and U. Banach, “Identifying performance gaps in hydrogen safety sensor technology for automotive and stationary applications,” Int. J. Hydrogen Energy35(1), 373–384 (2010).
[CrossRef]

Chadwick, B.

B. Chadwick and M. Gal, “Enhanced optical detection of hydrogen using the excitation of surface plasmons in palladium,” Appl. Surf. Sci.68(1), 135–138 (1993).
[CrossRef]

Chen, K. P.

M. Buric, K. P. Chen, M. Bhattarai, P. R. Swinehart, and M. Maklad, “Active fiber Bragg grating hydrogen sensors for all-temperature operation,” IEEE Photon. Technol. Lett.19(5), 255–257 (2007).
[CrossRef]

Cho, Y. S.

J. Huiberts, J. Rector, R. Wijngaarden, S. Jetten, D. De Groot, B. Dam, N. Koeman, R. Griessen, B. Hjorvarsson, S. Olafsson, and Y. S. Cho, “Synthesis of yttriumtrihydride films for ex-situ measurements,” J. Alloy. Comp.239(2), 158–171 (1996).
[CrossRef]

Christofides, C.

K. Kalli, A. Othonos, and C. Christofides, “Characterization of reflectivity inversion, α-and β-phase transitions and nanostructure formation in hydrogen activated thin Pd films on silicon based substrates,” J. Appl. Phys.91(6), 3829–3840 (2002).
[CrossRef]

Clemens, B. M.

C. Langhammer, I. Zorić, B. Kasemo, and B. M. Clemens, “Hydrogen storage in Pd nanodisks characterized with a novel nanoplasmonic sensing scheme,” Nano Lett.7(10), 3122–3127 (2007).
[CrossRef] [PubMed]

Clement, M.

X. Bévenot, A. Trouillet, C. Veillas, H. Gagnaire, and M. Clement, “Surface plasmon resonance hydrogen sensor using an optical fibre,” Meas. Sci. Technol.13(1), 118–124 (2002).
[CrossRef]

X. Bévenot, A. Trouillet, C. Veillas, H. Gagnaire, and M. Clement, “Hydrogen leak detection using an optical fibre sensor for aerospace applications,” Sens. Actuators B67(1-2), 57–67 (2000).
[CrossRef]

Dam, B.

C. Perrotton, N. Javahiraly, M. Slaman, B. Dam, and P. Meyrueis, , “Fiber optic Surface Plasmon Resonance sensor based on wavelength modulation for hydrogen sensing,” Opt. Express19(S6Suppl 6), A1175–A1183 (2011).
[CrossRef] [PubMed]

C. Perrotton, M. Slaman, N. Javahiraly, H. Schreuders, B. Dam, and P. Meyrueis, “Wavelength response of a surface plasmon resonance palladium-coated optical fiber sensor for hydrogen detection,” Opt. Eng.50(1), 014403 (2011).
[CrossRef]

Y. Pivak, R. Gremaud, K. Gross, M. Gonzalez-Silveira, A. Walton, D. Book, H. Schreuders, B. Dam, and R. Griessen, “Effect of the substrate on the thermodynamic properties of PdHx films studied by hydrogenography,” Scr. Mater.60(5), 348–351 (2009).
[CrossRef]

R. Gremaud, M. Gonzalez-Silveira, Y. Pivak, S. de Man, M. Slaman, H. Schreuders, B. Dam, and R. Griessen, “Hydrogenography of PdHx thin films: Influence of H-induced stress relaxation processes,” Acta Mater.57(4), 1209–1219 (2009).
[CrossRef]

J. Huiberts, J. Rector, R. Wijngaarden, S. Jetten, D. De Groot, B. Dam, N. Koeman, R. Griessen, B. Hjorvarsson, S. Olafsson, and Y. S. Cho, “Synthesis of yttriumtrihydride films for ex-situ measurements,” J. Alloy. Comp.239(2), 158–171 (1996).
[CrossRef]

De Groot, D.

J. Huiberts, J. Rector, R. Wijngaarden, S. Jetten, D. De Groot, B. Dam, N. Koeman, R. Griessen, B. Hjorvarsson, S. Olafsson, and Y. S. Cho, “Synthesis of yttriumtrihydride films for ex-situ measurements,” J. Alloy. Comp.239(2), 158–171 (1996).
[CrossRef]

de Man, S.

R. Gremaud, M. Gonzalez-Silveira, Y. Pivak, S. de Man, M. Slaman, H. Schreuders, B. Dam, and R. Griessen, “Hydrogenography of PdHx thin films: Influence of H-induced stress relaxation processes,” Acta Mater.57(4), 1209–1219 (2009).
[CrossRef]

Deb, S.

Delaunay, J. J.

E. Maeda, S. Mikuriya, K. Endo, I. Yamada, A. Suda, and J. J. Delaunay, “Optical hydrogen detection with periodic subwavelength palladium hole arrays,” Appl. Phys. Lett.95(13), 133504 (2009).
[CrossRef]

Dregely, D.

A. Tittl, P. Mai, R. Taubert, D. Dregely, N. Liu, and H. Giessen, “Palladium-based plasmonic perfect absorber in the visible wavelength range and its application to hydrogen sensing,” Nano Lett.11, 4366–4369 (2011).
[CrossRef] [PubMed]

Duine, P.

K. von Rottkay, M. Rubin, and P. Duine, “Refractive index changes of Pd-coated magnesium lanthanide switchable mirrors upon hydrogen insertion,” J. Appl. Phys.85(1), 408–413 (1999).
[CrossRef]

Ecke, W.

K. Schroeder, W. Ecke, and R. Willsch, “Optical fiber Bragg grating hydrogen sensor based on evanescent-field interaction with palladium thin-film transducer,” Opt. Lasers Eng.47(10), 1018–1022 (2009).
[CrossRef]

Endo, K.

E. Maeda, S. Mikuriya, K. Endo, I. Yamada, A. Suda, and J. J. Delaunay, “Optical hydrogen detection with periodic subwavelength palladium hole arrays,” Appl. Phys. Lett.95(13), 133504 (2009).
[CrossRef]

Espinosa-Luna, R.

D. Luna-Moreno, D. Monzon-Hernandez, S. Calixto-Carrera, and R. Espinosa-Luna, “Tailored Pd-Au layer produced by conventional evaporation process for hydrogen sensing,” Opt. Lasers Eng.49(6), 693–697 (2011).
[CrossRef]

Favier, F.

F. Favier, E. C. Walter, M. P. Zach, T. Benter, and R. M. Penner, “Hydrogen sensors and switches from electrodeposited palladium mesowire arrays,” Science293(5538), 2227–2231 (2001).
[CrossRef] [PubMed]

Gagnaire, H.

X. Bévenot, A. Trouillet, C. Veillas, H. Gagnaire, and M. Clement, “Surface plasmon resonance hydrogen sensor using an optical fibre,” Meas. Sci. Technol.13(1), 118–124 (2002).
[CrossRef]

X. Bévenot, A. Trouillet, C. Veillas, H. Gagnaire, and M. Clement, “Hydrogen leak detection using an optical fibre sensor for aerospace applications,” Sens. Actuators B67(1-2), 57–67 (2000).
[CrossRef]

Gal, M.

B. Chadwick and M. Gal, “Enhanced optical detection of hydrogen using the excitation of surface plasmons in palladium,” Appl. Surf. Sci.68(1), 135–138 (1993).
[CrossRef]

Garcés, I.

I. Garcés, C. Aldea, and J. Mateo, “Four-layer chemical fibre optic plasmon-based sensor,” Sens. Actuators B7(1-3), 771–774 (1992).
[CrossRef]

Giessen, H.

A. Tittl, P. Mai, R. Taubert, D. Dregely, N. Liu, and H. Giessen, “Palladium-based plasmonic perfect absorber in the visible wavelength range and its application to hydrogen sensing,” Nano Lett.11, 4366–4369 (2011).
[CrossRef] [PubMed]

D. Nau, A. Seidel, R. B. Orzekowsky, S. H. Lee, S. Deb, and H. Giessen, “Hydrogen sensor based on metallic photonic crystal slabs,” Opt. Lett.35(18), 3150–3152 (2010).
[CrossRef] [PubMed]

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett.10(7), 2342–2348 (2010).
[CrossRef] [PubMed]

Gonzalez-Silveira, M.

R. Gremaud, M. Gonzalez-Silveira, Y. Pivak, S. de Man, M. Slaman, H. Schreuders, B. Dam, and R. Griessen, “Hydrogenography of PdHx thin films: Influence of H-induced stress relaxation processes,” Acta Mater.57(4), 1209–1219 (2009).
[CrossRef]

Y. Pivak, R. Gremaud, K. Gross, M. Gonzalez-Silveira, A. Walton, D. Book, H. Schreuders, B. Dam, and R. Griessen, “Effect of the substrate on the thermodynamic properties of PdHx films studied by hydrogenography,” Scr. Mater.60(5), 348–351 (2009).
[CrossRef]

Gremaud, R.

Y. Pivak, R. Gremaud, K. Gross, M. Gonzalez-Silveira, A. Walton, D. Book, H. Schreuders, B. Dam, and R. Griessen, “Effect of the substrate on the thermodynamic properties of PdHx films studied by hydrogenography,” Scr. Mater.60(5), 348–351 (2009).
[CrossRef]

R. Gremaud, M. Gonzalez-Silveira, Y. Pivak, S. de Man, M. Slaman, H. Schreuders, B. Dam, and R. Griessen, “Hydrogenography of PdHx thin films: Influence of H-induced stress relaxation processes,” Acta Mater.57(4), 1209–1219 (2009).
[CrossRef]

Griessen, R.

R. Gremaud, M. Gonzalez-Silveira, Y. Pivak, S. de Man, M. Slaman, H. Schreuders, B. Dam, and R. Griessen, “Hydrogenography of PdHx thin films: Influence of H-induced stress relaxation processes,” Acta Mater.57(4), 1209–1219 (2009).
[CrossRef]

Y. Pivak, R. Gremaud, K. Gross, M. Gonzalez-Silveira, A. Walton, D. Book, H. Schreuders, B. Dam, and R. Griessen, “Effect of the substrate on the thermodynamic properties of PdHx films studied by hydrogenography,” Scr. Mater.60(5), 348–351 (2009).
[CrossRef]

J. Huiberts, J. Rector, R. Wijngaarden, S. Jetten, D. De Groot, B. Dam, N. Koeman, R. Griessen, B. Hjorvarsson, S. Olafsson, and Y. S. Cho, “Synthesis of yttriumtrihydride films for ex-situ measurements,” J. Alloy. Comp.239(2), 158–171 (1996).
[CrossRef]

Gross, K.

Y. Pivak, R. Gremaud, K. Gross, M. Gonzalez-Silveira, A. Walton, D. Book, H. Schreuders, B. Dam, and R. Griessen, “Effect of the substrate on the thermodynamic properties of PdHx films studied by hydrogenography,” Scr. Mater.60(5), 348–351 (2009).
[CrossRef]

Hentschel, M.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett.10(7), 2342–2348 (2010).
[CrossRef] [PubMed]

Hjorvarsson, B.

J. Huiberts, J. Rector, R. Wijngaarden, S. Jetten, D. De Groot, B. Dam, N. Koeman, R. Griessen, B. Hjorvarsson, S. Olafsson, and Y. S. Cho, “Synthesis of yttriumtrihydride films for ex-situ measurements,” J. Alloy. Comp.239(2), 158–171 (1996).
[CrossRef]

Hübert, T.

L. Boon-Brett, J. Bousek, G. Black, P. Moretto, P. Castello, T. Hübert, and U. Banach, “Identifying performance gaps in hydrogen safety sensor technology for automotive and stationary applications,” Int. J. Hydrogen Energy35(1), 373–384 (2010).
[CrossRef]

Huiberts, J.

J. Huiberts, J. Rector, R. Wijngaarden, S. Jetten, D. De Groot, B. Dam, N. Koeman, R. Griessen, B. Hjorvarsson, S. Olafsson, and Y. S. Cho, “Synthesis of yttriumtrihydride films for ex-situ measurements,” J. Alloy. Comp.239(2), 158–171 (1996).
[CrossRef]

Javahiraly, N.

C. Perrotton, N. Javahiraly, M. Slaman, B. Dam, and P. Meyrueis, , “Fiber optic Surface Plasmon Resonance sensor based on wavelength modulation for hydrogen sensing,” Opt. Express19(S6Suppl 6), A1175–A1183 (2011).
[CrossRef] [PubMed]

C. Perrotton, M. Slaman, N. Javahiraly, H. Schreuders, B. Dam, and P. Meyrueis, “Wavelength response of a surface plasmon resonance palladium-coated optical fiber sensor for hydrogen detection,” Opt. Eng.50(1), 014403 (2011).
[CrossRef]

Jetten, S.

J. Huiberts, J. Rector, R. Wijngaarden, S. Jetten, D. De Groot, B. Dam, N. Koeman, R. Griessen, B. Hjorvarsson, S. Olafsson, and Y. S. Cho, “Synthesis of yttriumtrihydride films for ex-situ measurements,” J. Alloy. Comp.239(2), 158–171 (1996).
[CrossRef]

Jones, B.

R. Maier, B. Jones, J. Barton, S. McCulloch, T. Allsop, J. Jones, and I. Bennion, “Fibre optics in palladium-based hydrogen sensing,” J. Opt. A, Pure Appl. Opt.9(6), S45–S59 (2007).
[CrossRef]

Jones, J.

R. Maier, B. Jones, J. Barton, S. McCulloch, T. Allsop, J. Jones, and I. Bennion, “Fibre optics in palladium-based hydrogen sensing,” J. Opt. A, Pure Appl. Opt.9(6), S45–S59 (2007).
[CrossRef]

Jorgenson, R.

R. Jorgenson and S. Yee, “A fiber-optic chemical sensor based on surface plasmon resonance,” Sens. Actuators B12(3), 213–220 (1993).
[CrossRef]

Kalli, K.

K. Kalli, A. Othonos, and C. Christofides, “Characterization of reflectivity inversion, α-and β-phase transitions and nanostructure formation in hydrogen activated thin Pd films on silicon based substrates,” J. Appl. Phys.91(6), 3829–3840 (2002).
[CrossRef]

Kasemo, B.

C. Langhammer, E. M. Larsson, B. Kasemo, and I. Zorić, “Indirect nanoplasmonic sensing: Ultrasensitive experimental platform for nanomaterials science and optical nanocalorimetry,” Nano Lett.10(9), 3529–3538 (2010).
[CrossRef] [PubMed]

C. Langhammer, I. Zorić, B. Kasemo, and B. M. Clemens, “Hydrogen storage in Pd nanodisks characterized with a novel nanoplasmonic sensing scheme,” Nano Lett.7(10), 3122–3127 (2007).
[CrossRef] [PubMed]

Kazemi, A.

B. Sutapun, M. Tabib-Azar, and A. Kazemi, “Pd-coated elastooptic fiber optic Bragg grating sensors for multiplexed hydrogen sensing,” Sens. Actuators B60(1), 27–34 (1999).
[CrossRef]

Koeman, N.

J. Huiberts, J. Rector, R. Wijngaarden, S. Jetten, D. De Groot, B. Dam, N. Koeman, R. Griessen, B. Hjorvarsson, S. Olafsson, and Y. S. Cho, “Synthesis of yttriumtrihydride films for ex-situ measurements,” J. Alloy. Comp.239(2), 158–171 (1996).
[CrossRef]

Langhammer, C.

C. Langhammer, E. M. Larsson, B. Kasemo, and I. Zorić, “Indirect nanoplasmonic sensing: Ultrasensitive experimental platform for nanomaterials science and optical nanocalorimetry,” Nano Lett.10(9), 3529–3538 (2010).
[CrossRef] [PubMed]

C. Langhammer, I. Zorić, B. Kasemo, and B. M. Clemens, “Hydrogen storage in Pd nanodisks characterized with a novel nanoplasmonic sensing scheme,” Nano Lett.7(10), 3122–3127 (2007).
[CrossRef] [PubMed]

Larsson, E. M.

C. Langhammer, E. M. Larsson, B. Kasemo, and I. Zorić, “Indirect nanoplasmonic sensing: Ultrasensitive experimental platform for nanomaterials science and optical nanocalorimetry,” Nano Lett.10(9), 3529–3538 (2010).
[CrossRef] [PubMed]

Lavers, C.

C. Lavers and J. Wilkinson, “A waveguide-coupled surface-plasmon sensor for an aqueous environment,” Sens. Actuators B22(1), 75–81 (1994).
[CrossRef]

Lee, S. H.

Liedberg, B.

B. Liedberg, C. Nylander, and I. Lunstrom, “Surface plasmon resonance for gas detection and biosensing,” Sens. Actuators4, 299–304 (1983).
[CrossRef]

Lin, Y.

X. Wei, T. Wei, H. Xiao, and Y. Lin, “Nano-structured Pd-long period fiber gratings integrated optical sensor for hydrogen detection,” Sens. Actuators B134(2), 687–693 (2008).
[CrossRef]

Liu, N.

A. Tittl, P. Mai, R. Taubert, D. Dregely, N. Liu, and H. Giessen, “Palladium-based plasmonic perfect absorber in the visible wavelength range and its application to hydrogen sensing,” Nano Lett.11, 4366–4369 (2011).
[CrossRef] [PubMed]

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett.10(7), 2342–2348 (2010).
[CrossRef] [PubMed]

Long, L. L.

Luna-Moreno, D.

D. Luna-Moreno, D. Monzon-Hernandez, S. Calixto-Carrera, and R. Espinosa-Luna, “Tailored Pd-Au layer produced by conventional evaporation process for hydrogen sensing,” Opt. Lasers Eng.49(6), 693–697 (2011).
[CrossRef]

Lunstrom, I.

B. Liedberg, C. Nylander, and I. Lunstrom, “Surface plasmon resonance for gas detection and biosensing,” Sens. Actuators4, 299–304 (1983).
[CrossRef]

Maeda, E.

E. Maeda, S. Mikuriya, K. Endo, I. Yamada, A. Suda, and J. J. Delaunay, “Optical hydrogen detection with periodic subwavelength palladium hole arrays,” Appl. Phys. Lett.95(13), 133504 (2009).
[CrossRef]

Mai, P.

A. Tittl, P. Mai, R. Taubert, D. Dregely, N. Liu, and H. Giessen, “Palladium-based plasmonic perfect absorber in the visible wavelength range and its application to hydrogen sensing,” Nano Lett.11, 4366–4369 (2011).
[CrossRef] [PubMed]

Maier, R.

R. Maier, B. Jones, J. Barton, S. McCulloch, T. Allsop, J. Jones, and I. Bennion, “Fibre optics in palladium-based hydrogen sensing,” J. Opt. A, Pure Appl. Opt.9(6), S45–S59 (2007).
[CrossRef]

Maklad, M.

M. Buric, K. P. Chen, M. Bhattarai, P. R. Swinehart, and M. Maklad, “Active fiber Bragg grating hydrogen sensors for all-temperature operation,” IEEE Photon. Technol. Lett.19(5), 255–257 (2007).
[CrossRef]

Marin, E.

A. Trouillet, E. Marin, and C. Veillas, “Fibre gratings for hydrogen sensing,” Meas. Sci. Technol.17(5), 1124–1128 (2006).
[CrossRef]

Mateo, J.

I. Garcés, C. Aldea, and J. Mateo, “Four-layer chemical fibre optic plasmon-based sensor,” Sens. Actuators B7(1-3), 771–774 (1992).
[CrossRef]

McCulloch, S.

R. Maier, B. Jones, J. Barton, S. McCulloch, T. Allsop, J. Jones, and I. Bennion, “Fibre optics in palladium-based hydrogen sensing,” J. Opt. A, Pure Appl. Opt.9(6), S45–S59 (2007).
[CrossRef]

Mesch, M.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett.10(7), 2342–2348 (2010).
[CrossRef] [PubMed]

Meyrueis, P.

C. Perrotton, N. Javahiraly, M. Slaman, B. Dam, and P. Meyrueis, , “Fiber optic Surface Plasmon Resonance sensor based on wavelength modulation for hydrogen sensing,” Opt. Express19(S6Suppl 6), A1175–A1183 (2011).
[CrossRef] [PubMed]

C. Perrotton, M. Slaman, N. Javahiraly, H. Schreuders, B. Dam, and P. Meyrueis, “Wavelength response of a surface plasmon resonance palladium-coated optical fiber sensor for hydrogen detection,” Opt. Eng.50(1), 014403 (2011).
[CrossRef]

Mikuriya, S.

E. Maeda, S. Mikuriya, K. Endo, I. Yamada, A. Suda, and J. J. Delaunay, “Optical hydrogen detection with periodic subwavelength palladium hole arrays,” Appl. Phys. Lett.95(13), 133504 (2009).
[CrossRef]

Monzon-Hernandez, D.

D. Luna-Moreno, D. Monzon-Hernandez, S. Calixto-Carrera, and R. Espinosa-Luna, “Tailored Pd-Au layer produced by conventional evaporation process for hydrogen sensing,” Opt. Lasers Eng.49(6), 693–697 (2011).
[CrossRef]

Monzón-Hernández, D.

Moretto, P.

L. Boon-Brett, J. Bousek, G. Black, P. Moretto, P. Castello, T. Hübert, and U. Banach, “Identifying performance gaps in hydrogen safety sensor technology for automotive and stationary applications,” Int. J. Hydrogen Energy35(1), 373–384 (2010).
[CrossRef]

Nau, D.

Nylander, C.

B. Liedberg, C. Nylander, and I. Lunstrom, “Surface plasmon resonance for gas detection and biosensing,” Sens. Actuators4, 299–304 (1983).
[CrossRef]

Olafsson, S.

J. Huiberts, J. Rector, R. Wijngaarden, S. Jetten, D. De Groot, B. Dam, N. Koeman, R. Griessen, B. Hjorvarsson, S. Olafsson, and Y. S. Cho, “Synthesis of yttriumtrihydride films for ex-situ measurements,” J. Alloy. Comp.239(2), 158–171 (1996).
[CrossRef]

Ordal, M. A.

Orzekowsky, R. B.

Othonos, A.

K. Kalli, A. Othonos, and C. Christofides, “Characterization of reflectivity inversion, α-and β-phase transitions and nanostructure formation in hydrogen activated thin Pd films on silicon based substrates,” J. Appl. Phys.91(6), 3829–3840 (2002).
[CrossRef]

Penner, R. M.

F. Favier, E. C. Walter, M. P. Zach, T. Benter, and R. M. Penner, “Hydrogen sensors and switches from electrodeposited palladium mesowire arrays,” Science293(5538), 2227–2231 (2001).
[CrossRef] [PubMed]

Perrotton, C.

C. Perrotton, M. Slaman, N. Javahiraly, H. Schreuders, B. Dam, and P. Meyrueis, “Wavelength response of a surface plasmon resonance palladium-coated optical fiber sensor for hydrogen detection,” Opt. Eng.50(1), 014403 (2011).
[CrossRef]

C. Perrotton, N. Javahiraly, M. Slaman, B. Dam, and P. Meyrueis, , “Fiber optic Surface Plasmon Resonance sensor based on wavelength modulation for hydrogen sensing,” Opt. Express19(S6Suppl 6), A1175–A1183 (2011).
[CrossRef] [PubMed]

Pivak, Y.

R. Gremaud, M. Gonzalez-Silveira, Y. Pivak, S. de Man, M. Slaman, H. Schreuders, B. Dam, and R. Griessen, “Hydrogenography of PdHx thin films: Influence of H-induced stress relaxation processes,” Acta Mater.57(4), 1209–1219 (2009).
[CrossRef]

Y. Pivak, R. Gremaud, K. Gross, M. Gonzalez-Silveira, A. Walton, D. Book, H. Schreuders, B. Dam, and R. Griessen, “Effect of the substrate on the thermodynamic properties of PdHx films studied by hydrogenography,” Scr. Mater.60(5), 348–351 (2009).
[CrossRef]

Pockrand, I.

I. Pockrand, “Resonance anomalies in the light intensity reflected at silver gratings with dielectric coatings,” J. Phys. D9(17), 2423–2432 (1976).
[CrossRef]

Rector, J.

J. Huiberts, J. Rector, R. Wijngaarden, S. Jetten, D. De Groot, B. Dam, N. Koeman, R. Griessen, B. Hjorvarsson, S. Olafsson, and Y. S. Cho, “Synthesis of yttriumtrihydride films for ex-situ measurements,” J. Alloy. Comp.239(2), 158–171 (1996).
[CrossRef]

Rubin, M.

K. von Rottkay, M. Rubin, and P. Duine, “Refractive index changes of Pd-coated magnesium lanthanide switchable mirrors upon hydrogen insertion,” J. Appl. Phys.85(1), 408–413 (1999).
[CrossRef]

Schreuders, H.

C. Perrotton, M. Slaman, N. Javahiraly, H. Schreuders, B. Dam, and P. Meyrueis, “Wavelength response of a surface plasmon resonance palladium-coated optical fiber sensor for hydrogen detection,” Opt. Eng.50(1), 014403 (2011).
[CrossRef]

Y. Pivak, R. Gremaud, K. Gross, M. Gonzalez-Silveira, A. Walton, D. Book, H. Schreuders, B. Dam, and R. Griessen, “Effect of the substrate on the thermodynamic properties of PdHx films studied by hydrogenography,” Scr. Mater.60(5), 348–351 (2009).
[CrossRef]

R. Gremaud, M. Gonzalez-Silveira, Y. Pivak, S. de Man, M. Slaman, H. Schreuders, B. Dam, and R. Griessen, “Hydrogenography of PdHx thin films: Influence of H-induced stress relaxation processes,” Acta Mater.57(4), 1209–1219 (2009).
[CrossRef]

Schroeder, K.

K. Schroeder, W. Ecke, and R. Willsch, “Optical fiber Bragg grating hydrogen sensor based on evanescent-field interaction with palladium thin-film transducer,” Opt. Lasers Eng.47(10), 1018–1022 (2009).
[CrossRef]

Seidel, A.

Sevryugina, Y.

Z. Zhao, Y. Sevryugina, M. A. Carpenter, D. Welch, and H. Xia, “All-optical hydrogen-sensing materials based on tailored palladium alloy thin films,” Anal. Chem.76(21), 6321–6326 (2004).
[CrossRef] [PubMed]

Slaman, M.

C. Perrotton, M. Slaman, N. Javahiraly, H. Schreuders, B. Dam, and P. Meyrueis, “Wavelength response of a surface plasmon resonance palladium-coated optical fiber sensor for hydrogen detection,” Opt. Eng.50(1), 014403 (2011).
[CrossRef]

C. Perrotton, N. Javahiraly, M. Slaman, B. Dam, and P. Meyrueis, , “Fiber optic Surface Plasmon Resonance sensor based on wavelength modulation for hydrogen sensing,” Opt. Express19(S6Suppl 6), A1175–A1183 (2011).
[CrossRef] [PubMed]

R. Gremaud, M. Gonzalez-Silveira, Y. Pivak, S. de Man, M. Slaman, H. Schreuders, B. Dam, and R. Griessen, “Hydrogenography of PdHx thin films: Influence of H-induced stress relaxation processes,” Acta Mater.57(4), 1209–1219 (2009).
[CrossRef]

Suda, A.

E. Maeda, S. Mikuriya, K. Endo, I. Yamada, A. Suda, and J. J. Delaunay, “Optical hydrogen detection with periodic subwavelength palladium hole arrays,” Appl. Phys. Lett.95(13), 133504 (2009).
[CrossRef]

Sutapun, B.

B. Sutapun, M. Tabib-Azar, and A. Kazemi, “Pd-coated elastooptic fiber optic Bragg grating sensors for multiplexed hydrogen sensing,” Sens. Actuators B60(1), 27–34 (1999).
[CrossRef]

Swinehart, P. R.

M. Buric, K. P. Chen, M. Bhattarai, P. R. Swinehart, and M. Maklad, “Active fiber Bragg grating hydrogen sensors for all-temperature operation,” IEEE Photon. Technol. Lett.19(5), 255–257 (2007).
[CrossRef]

Tabib-Azar, M.

B. Sutapun, M. Tabib-Azar, and A. Kazemi, “Pd-coated elastooptic fiber optic Bragg grating sensors for multiplexed hydrogen sensing,” Sens. Actuators B60(1), 27–34 (1999).
[CrossRef]

Taubert, R.

A. Tittl, P. Mai, R. Taubert, D. Dregely, N. Liu, and H. Giessen, “Palladium-based plasmonic perfect absorber in the visible wavelength range and its application to hydrogen sensing,” Nano Lett.11, 4366–4369 (2011).
[CrossRef] [PubMed]

Tittl, A.

A. Tittl, P. Mai, R. Taubert, D. Dregely, N. Liu, and H. Giessen, “Palladium-based plasmonic perfect absorber in the visible wavelength range and its application to hydrogen sensing,” Nano Lett.11, 4366–4369 (2011).
[CrossRef] [PubMed]

Trouillet, A.

A. Trouillet, E. Marin, and C. Veillas, “Fibre gratings for hydrogen sensing,” Meas. Sci. Technol.17(5), 1124–1128 (2006).
[CrossRef]

X. Bévenot, A. Trouillet, C. Veillas, H. Gagnaire, and M. Clement, “Surface plasmon resonance hydrogen sensor using an optical fibre,” Meas. Sci. Technol.13(1), 118–124 (2002).
[CrossRef]

X. Bévenot, A. Trouillet, C. Veillas, H. Gagnaire, and M. Clement, “Hydrogen leak detection using an optical fibre sensor for aerospace applications,” Sens. Actuators B67(1-2), 57–67 (2000).
[CrossRef]

Veillas, C.

A. Trouillet, E. Marin, and C. Veillas, “Fibre gratings for hydrogen sensing,” Meas. Sci. Technol.17(5), 1124–1128 (2006).
[CrossRef]

X. Bévenot, A. Trouillet, C. Veillas, H. Gagnaire, and M. Clement, “Surface plasmon resonance hydrogen sensor using an optical fibre,” Meas. Sci. Technol.13(1), 118–124 (2002).
[CrossRef]

X. Bévenot, A. Trouillet, C. Veillas, H. Gagnaire, and M. Clement, “Hydrogen leak detection using an optical fibre sensor for aerospace applications,” Sens. Actuators B67(1-2), 57–67 (2000).
[CrossRef]

Villatoro, J.

von Rottkay, K.

K. von Rottkay, M. Rubin, and P. Duine, “Refractive index changes of Pd-coated magnesium lanthanide switchable mirrors upon hydrogen insertion,” J. Appl. Phys.85(1), 408–413 (1999).
[CrossRef]

Walter, E. C.

F. Favier, E. C. Walter, M. P. Zach, T. Benter, and R. M. Penner, “Hydrogen sensors and switches from electrodeposited palladium mesowire arrays,” Science293(5538), 2227–2231 (2001).
[CrossRef] [PubMed]

Walton, A.

Y. Pivak, R. Gremaud, K. Gross, M. Gonzalez-Silveira, A. Walton, D. Book, H. Schreuders, B. Dam, and R. Griessen, “Effect of the substrate on the thermodynamic properties of PdHx films studied by hydrogenography,” Scr. Mater.60(5), 348–351 (2009).
[CrossRef]

Ward, C. A.

Wei, T.

X. Wei, T. Wei, H. Xiao, and Y. Lin, “Nano-structured Pd-long period fiber gratings integrated optical sensor for hydrogen detection,” Sens. Actuators B134(2), 687–693 (2008).
[CrossRef]

Wei, X.

X. Wei, T. Wei, H. Xiao, and Y. Lin, “Nano-structured Pd-long period fiber gratings integrated optical sensor for hydrogen detection,” Sens. Actuators B134(2), 687–693 (2008).
[CrossRef]

Weiss, T.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett.10(7), 2342–2348 (2010).
[CrossRef] [PubMed]

Welch, D.

Z. Zhao, M. Carpenter, H. Xia, and D. Welch, “All-optical hydrogen sensor based on a high alloy content palladium thin film,” Sens. Actuators B113(1), 532–538 (2006).
[CrossRef]

Z. Zhao, Y. Sevryugina, M. A. Carpenter, D. Welch, and H. Xia, “All-optical hydrogen-sensing materials based on tailored palladium alloy thin films,” Anal. Chem.76(21), 6321–6326 (2004).
[CrossRef] [PubMed]

Wijngaarden, R.

J. Huiberts, J. Rector, R. Wijngaarden, S. Jetten, D. De Groot, B. Dam, N. Koeman, R. Griessen, B. Hjorvarsson, S. Olafsson, and Y. S. Cho, “Synthesis of yttriumtrihydride films for ex-situ measurements,” J. Alloy. Comp.239(2), 158–171 (1996).
[CrossRef]

Wilkinson, J.

C. Lavers and J. Wilkinson, “A waveguide-coupled surface-plasmon sensor for an aqueous environment,” Sens. Actuators B22(1), 75–81 (1994).
[CrossRef]

Willsch, R.

K. Schroeder, W. Ecke, and R. Willsch, “Optical fiber Bragg grating hydrogen sensor based on evanescent-field interaction with palladium thin-film transducer,” Opt. Lasers Eng.47(10), 1018–1022 (2009).
[CrossRef]

Xia, H.

Z. Zhao, M. Carpenter, H. Xia, and D. Welch, “All-optical hydrogen sensor based on a high alloy content palladium thin film,” Sens. Actuators B113(1), 532–538 (2006).
[CrossRef]

Z. Zhao, Y. Sevryugina, M. A. Carpenter, D. Welch, and H. Xia, “All-optical hydrogen-sensing materials based on tailored palladium alloy thin films,” Anal. Chem.76(21), 6321–6326 (2004).
[CrossRef] [PubMed]

Xiao, H.

X. Wei, T. Wei, H. Xiao, and Y. Lin, “Nano-structured Pd-long period fiber gratings integrated optical sensor for hydrogen detection,” Sens. Actuators B134(2), 687–693 (2008).
[CrossRef]

Yamada, I.

E. Maeda, S. Mikuriya, K. Endo, I. Yamada, A. Suda, and J. J. Delaunay, “Optical hydrogen detection with periodic subwavelength palladium hole arrays,” Appl. Phys. Lett.95(13), 133504 (2009).
[CrossRef]

Yee, S.

R. Jorgenson and S. Yee, “A fiber-optic chemical sensor based on surface plasmon resonance,” Sens. Actuators B12(3), 213–220 (1993).
[CrossRef]

Zach, M. P.

F. Favier, E. C. Walter, M. P. Zach, T. Benter, and R. M. Penner, “Hydrogen sensors and switches from electrodeposited palladium mesowire arrays,” Science293(5538), 2227–2231 (2001).
[CrossRef] [PubMed]

Zhao, Z.

Z. Zhao, M. Carpenter, H. Xia, and D. Welch, “All-optical hydrogen sensor based on a high alloy content palladium thin film,” Sens. Actuators B113(1), 532–538 (2006).
[CrossRef]

Z. Zhao, Y. Sevryugina, M. A. Carpenter, D. Welch, and H. Xia, “All-optical hydrogen-sensing materials based on tailored palladium alloy thin films,” Anal. Chem.76(21), 6321–6326 (2004).
[CrossRef] [PubMed]

Zoric, I.

C. Langhammer, E. M. Larsson, B. Kasemo, and I. Zorić, “Indirect nanoplasmonic sensing: Ultrasensitive experimental platform for nanomaterials science and optical nanocalorimetry,” Nano Lett.10(9), 3529–3538 (2010).
[CrossRef] [PubMed]

C. Langhammer, I. Zorić, B. Kasemo, and B. M. Clemens, “Hydrogen storage in Pd nanodisks characterized with a novel nanoplasmonic sensing scheme,” Nano Lett.7(10), 3122–3127 (2007).
[CrossRef] [PubMed]

Acta Mater. (1)

R. Gremaud, M. Gonzalez-Silveira, Y. Pivak, S. de Man, M. Slaman, H. Schreuders, B. Dam, and R. Griessen, “Hydrogenography of PdHx thin films: Influence of H-induced stress relaxation processes,” Acta Mater.57(4), 1209–1219 (2009).
[CrossRef]

Anal. Chem. (1)

Z. Zhao, Y. Sevryugina, M. A. Carpenter, D. Welch, and H. Xia, “All-optical hydrogen-sensing materials based on tailored palladium alloy thin films,” Anal. Chem.76(21), 6321–6326 (2004).
[CrossRef] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

E. Maeda, S. Mikuriya, K. Endo, I. Yamada, A. Suda, and J. J. Delaunay, “Optical hydrogen detection with periodic subwavelength palladium hole arrays,” Appl. Phys. Lett.95(13), 133504 (2009).
[CrossRef]

Appl. Surf. Sci. (1)

B. Chadwick and M. Gal, “Enhanced optical detection of hydrogen using the excitation of surface plasmons in palladium,” Appl. Surf. Sci.68(1), 135–138 (1993).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

M. Buric, K. P. Chen, M. Bhattarai, P. R. Swinehart, and M. Maklad, “Active fiber Bragg grating hydrogen sensors for all-temperature operation,” IEEE Photon. Technol. Lett.19(5), 255–257 (2007).
[CrossRef]

Int. J. Hydrogen Energy (1)

L. Boon-Brett, J. Bousek, G. Black, P. Moretto, P. Castello, T. Hübert, and U. Banach, “Identifying performance gaps in hydrogen safety sensor technology for automotive and stationary applications,” Int. J. Hydrogen Energy35(1), 373–384 (2010).
[CrossRef]

J. Alloy. Comp. (1)

J. Huiberts, J. Rector, R. Wijngaarden, S. Jetten, D. De Groot, B. Dam, N. Koeman, R. Griessen, B. Hjorvarsson, S. Olafsson, and Y. S. Cho, “Synthesis of yttriumtrihydride films for ex-situ measurements,” J. Alloy. Comp.239(2), 158–171 (1996).
[CrossRef]

J. Appl. Phys. (2)

K. Kalli, A. Othonos, and C. Christofides, “Characterization of reflectivity inversion, α-and β-phase transitions and nanostructure formation in hydrogen activated thin Pd films on silicon based substrates,” J. Appl. Phys.91(6), 3829–3840 (2002).
[CrossRef]

K. von Rottkay, M. Rubin, and P. Duine, “Refractive index changes of Pd-coated magnesium lanthanide switchable mirrors upon hydrogen insertion,” J. Appl. Phys.85(1), 408–413 (1999).
[CrossRef]

J. Opt. A, Pure Appl. Opt. (1)

R. Maier, B. Jones, J. Barton, S. McCulloch, T. Allsop, J. Jones, and I. Bennion, “Fibre optics in palladium-based hydrogen sensing,” J. Opt. A, Pure Appl. Opt.9(6), S45–S59 (2007).
[CrossRef]

J. Phys. D (1)

I. Pockrand, “Resonance anomalies in the light intensity reflected at silver gratings with dielectric coatings,” J. Phys. D9(17), 2423–2432 (1976).
[CrossRef]

Meas. Sci. Technol. (2)

A. Trouillet, E. Marin, and C. Veillas, “Fibre gratings for hydrogen sensing,” Meas. Sci. Technol.17(5), 1124–1128 (2006).
[CrossRef]

X. Bévenot, A. Trouillet, C. Veillas, H. Gagnaire, and M. Clement, “Surface plasmon resonance hydrogen sensor using an optical fibre,” Meas. Sci. Technol.13(1), 118–124 (2002).
[CrossRef]

Nano Lett. (4)

A. Tittl, P. Mai, R. Taubert, D. Dregely, N. Liu, and H. Giessen, “Palladium-based plasmonic perfect absorber in the visible wavelength range and its application to hydrogen sensing,” Nano Lett.11, 4366–4369 (2011).
[CrossRef] [PubMed]

C. Langhammer, I. Zorić, B. Kasemo, and B. M. Clemens, “Hydrogen storage in Pd nanodisks characterized with a novel nanoplasmonic sensing scheme,” Nano Lett.7(10), 3122–3127 (2007).
[CrossRef] [PubMed]

C. Langhammer, E. M. Larsson, B. Kasemo, and I. Zorić, “Indirect nanoplasmonic sensing: Ultrasensitive experimental platform for nanomaterials science and optical nanocalorimetry,” Nano Lett.10(9), 3529–3538 (2010).
[CrossRef] [PubMed]

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett.10(7), 2342–2348 (2010).
[CrossRef] [PubMed]

Opt. Eng. (1)

C. Perrotton, M. Slaman, N. Javahiraly, H. Schreuders, B. Dam, and P. Meyrueis, “Wavelength response of a surface plasmon resonance palladium-coated optical fiber sensor for hydrogen detection,” Opt. Eng.50(1), 014403 (2011).
[CrossRef]

Opt. Express (2)

Opt. Lasers Eng. (2)

D. Luna-Moreno, D. Monzon-Hernandez, S. Calixto-Carrera, and R. Espinosa-Luna, “Tailored Pd-Au layer produced by conventional evaporation process for hydrogen sensing,” Opt. Lasers Eng.49(6), 693–697 (2011).
[CrossRef]

K. Schroeder, W. Ecke, and R. Willsch, “Optical fiber Bragg grating hydrogen sensor based on evanescent-field interaction with palladium thin-film transducer,” Opt. Lasers Eng.47(10), 1018–1022 (2009).
[CrossRef]

Opt. Lett. (1)

Science (1)

F. Favier, E. C. Walter, M. P. Zach, T. Benter, and R. M. Penner, “Hydrogen sensors and switches from electrodeposited palladium mesowire arrays,” Science293(5538), 2227–2231 (2001).
[CrossRef] [PubMed]

Scr. Mater. (1)

Y. Pivak, R. Gremaud, K. Gross, M. Gonzalez-Silveira, A. Walton, D. Book, H. Schreuders, B. Dam, and R. Griessen, “Effect of the substrate on the thermodynamic properties of PdHx films studied by hydrogenography,” Scr. Mater.60(5), 348–351 (2009).
[CrossRef]

Sens. Actuators (1)

B. Liedberg, C. Nylander, and I. Lunstrom, “Surface plasmon resonance for gas detection and biosensing,” Sens. Actuators4, 299–304 (1983).
[CrossRef]

Sens. Actuators B (7)

I. Garcés, C. Aldea, and J. Mateo, “Four-layer chemical fibre optic plasmon-based sensor,” Sens. Actuators B7(1-3), 771–774 (1992).
[CrossRef]

C. Lavers and J. Wilkinson, “A waveguide-coupled surface-plasmon sensor for an aqueous environment,” Sens. Actuators B22(1), 75–81 (1994).
[CrossRef]

B. Sutapun, M. Tabib-Azar, and A. Kazemi, “Pd-coated elastooptic fiber optic Bragg grating sensors for multiplexed hydrogen sensing,” Sens. Actuators B60(1), 27–34 (1999).
[CrossRef]

X. Wei, T. Wei, H. Xiao, and Y. Lin, “Nano-structured Pd-long period fiber gratings integrated optical sensor for hydrogen detection,” Sens. Actuators B134(2), 687–693 (2008).
[CrossRef]

R. Jorgenson and S. Yee, “A fiber-optic chemical sensor based on surface plasmon resonance,” Sens. Actuators B12(3), 213–220 (1993).
[CrossRef]

X. Bévenot, A. Trouillet, C. Veillas, H. Gagnaire, and M. Clement, “Hydrogen leak detection using an optical fibre sensor for aerospace applications,” Sens. Actuators B67(1-2), 57–67 (2000).
[CrossRef]

Z. Zhao, M. Carpenter, H. Xia, and D. Welch, “All-optical hydrogen sensor based on a high alloy content palladium thin film,” Sens. Actuators B113(1), 532–538 (2006).
[CrossRef]

Other (4)

B. Fisher and D. Malocha, “A study on the aging of ultra-thin Palladium films on SAW hydrogen gas sensors,” in IEEE Frequency Control Symposium, pp. 242–247 (2010).

N. R. Fong, P. Berini, and R. N. Tait, “Modeling and design of hydrogen gas sensors based on a membrane-supported surface plasmon waveguide,” Sens. Act. B, 285–291 (2011).

F. A. Lewis, ed., The Palladium Hydrogen System (Academic Press, London and New York, 1967).

R. Gremaud, Hydrogenography: A Thin Film Optical Combinatorial Study of Hydrogen Storage Materials (Ipskamp, 2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Schematic representation of the way the sensitive material is deposited on the fiber core, after removing the cladding. (b) The simulated transmitted intensity as a function of the wavelength for two different SiO2 thicknesses. The line and the dashed line represent respectively the metallic and the hydrogenated states.

Fig. 2
Fig. 2

(a) Schematic representation of the role of each layer. The multilayer stack is deposited on the core of an optical fiber. Each curve shows the reflectance of the corresponding layer as a function of the incident angle. In an optical fiber the light propagates only for high angles (depending on the fiber NA).(b) The transmitted spectrum at the output of the fiber for various thickness. (The coupling is maximal when the intensity drops at 0.5 since only the TM polarized light is coupled to Surface Plasmon).

Fig. 3
Fig. 3

(a) Normalized transmitted spectrum for a (a1) Au/ SiO2 (140 nm)/ Pd (2.5 nm), for a (a2) Au/ SiO2 (180 nm)/ Pd (2.5 nm)and for a (a3) Au/ SiO2 (180 nm)/ Pd (5 nm) layer stack. The SPR peak shifts in the presence of H2. (b) The sensor response of a Au (35 nm)/SiO2 (180 nm)/Pd (2.5 nm) layer stack on successive hydrogenation cycles (at 4% and 2% H2 in Ar). (b1) The transmitted intensity changes as a function of [H2] and depends on the selected wavelength. (b2) The resonant wavelength shifts as a function of H2.(b3) Hydrogen cycles over times.

Fig. 4
Fig. 4

Au (35 nm)/SiO2 (180 nm)/Pd sensor dynamical range at room temperature and ambient pressure for different Pd thicknesses.(b) Response of a Au (35 nm)/SiO2 (180 nm)/Pd (5nm) layer stack on successivehydrogenation cycles (at 4% and 2% H2 in Ar), showing the shift of the resonant wavelength and the intensity variation of the minimal value.

Fig. 5
Fig. 5

Response time of a (35 nm)/SiO2(180 nm)/Pd sensor at room temperature and ambient pressure. (a) Hydriding time at 2% H2 in Ar (blue line), 4% H2 in Ar (red line) and dehydriding time (black line). (b) Sensor response at 0.5, 1 and 1.5% H2.

Metrics