Abstract

We propose a novel V-shaped Ag nanowire structure as a subwavelength polarization beam splitter. When an incident light is focused onto the junction of the two branches, two surface plasmon polaritons (SPPs) are launched and propagate along the two branches. The polarizations of the emission light from the two ends are always parallel to the directions of the branches and the splitting ratio can be adjusted by changing the polarization of the incident light. The polarization characteristic originates from the fact that only single plasmonic waveguide mode exists in the thin nanowire and high order modes are cutoff. The near-field coupling between the two branches dominates the SPPs launching and the splitting ratio, which are very different with the single nanowire case. The V-shaped nanowire structure will have many potential applications in the integration of plasmonic devices, such as plasmonic router or polarizer.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Raether, Surface plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1988).
  2. S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics 1(11), 641–648 (2007).
    [CrossRef]
  3. E. Ozbay, “Plasmonics: Merging Photonics and Electronics at Nanoscale Dimensions,” Science 311(5758), 189–193 (2006).
    [CrossRef] [PubMed]
  4. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
    [CrossRef] [PubMed]
  5. P. Berini, “Plasmon-polariton waves guided by thin lossy metal films of finite width: bound modes of asymmetric structures,” Phys. Rev. B 63(12), 125417 (2001).
    [CrossRef]
  6. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, “Channel plasmon-polariton guiding by subwavelength metal grooves,” Phys. Rev. Lett. 95(4), 046802–046805 (2005).
    [CrossRef] [PubMed]
  7. S. I. Bozhevolnyi and J. Jung, “Scaling for gap plasmon based waveguides,” Opt. Express 16(4), 2676–2684 (2008).
    [CrossRef] [PubMed]
  8. E. N. Economou, “Surface plasmons in thin films,” Phys. Rev. 182(2), 539–554 (1969).
    [CrossRef]
  9. K. Tanaka and M. Tanaka, “Simulations of nanometric optical circuits based on surface plasmon polariton gap waveguide,” Appl. Phys. Lett. 82(8), 1158–1160 (2003).
    [CrossRef]
  10. H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, “Silver nanowires as surface plasmon resonators,” Phys. Rev. Lett. 95(25), 257403 (2005).
    [CrossRef] [PubMed]
  11. A. W. Sanders, D. A. Routenberg, B. J. Wiley, Y. N. Xia, E. R. Dufresne, and M. A. Reed, “Observation of plasmon propagation, redirection, and fan-out in silver nanowires,” Nano Lett. 6(8), 1822–1826 (2006).
    [CrossRef] [PubMed]
  12. M. W. Knight, N. K. Grady, R. Bardhan, F. Hao, P. Nordlander, and N. J. Halas, “Nanoparticle-mediated coupling of light into a nanowire,” Nano Lett. 7(8), 2346–2350 (2007).
    [CrossRef] [PubMed]
  13. Y. Fang, H. Wei, F. Hao, P. Nordlander, and H. X. Xu, “Remote-excitation surface-enhanced Raman scattering using propagating Ag nanowire plasmons,” Nano Lett. 9(5), 2049–2053 (2009).
    [CrossRef] [PubMed]
  14. H. S. Chu, W. B. Ewe, and E. P. Li, “Tunable propagation of light through a coupled-bent dielectric-loaded plasmonic waveguides,” J. Appl. Phys. 106(10), 106101 (2009).
    [CrossRef]
  15. G. Veronis and S. Fan, “Crosstalk between three-dimensional plasmonic slot waveguides,” Opt. Express 16(3), 2129–2140 (2008).
    [CrossRef] [PubMed]
  16. S. Passinger, A. Seidel, C. Ohrt, C. Reinhardt, A. Stepanov, R. Kiyan, and B. Chichkov, “Novel efficient design of Y-splitter for surface plasmon polariton applications,” Opt. Express 16(19), 14369–14379 (2008).
    [CrossRef] [PubMed]
  17. Y. R. Fang, Z. P. Li, Y. Z. Huang, S. P. Zhang, P. Nordlander, N. J. Halas, and H. Xu, “Branched silver nanowires as controllable plasmon routers,” Nano Lett. 10(5), 1950–1954 (2010).
    [CrossRef] [PubMed]
  18. Z. P. Li, K. Bao, Y. R. Fang, Y. Z. Huang, P. Nordlander, and H. X. Xu, “Correlation between Incident and Emission Polarization in Nanowire Surface Plasmon Waveguides,” Nano Lett. 10(5), 1831–1835 (2010).
    [CrossRef] [PubMed]
  19. A. W. Sanders, D. A. Routenberg, B. J. Wiley, Y. N. Xia, E. R. Dufresne, and M. A. Reed, “Observation of plasmon propagation, redirection, and fan-out in silver nanowires,” Nano Lett. 6(8), 1822–1826 (2006).
    [CrossRef] [PubMed]
  20. Y. G. Sun, B. Mayers, T. Herricks, and Y. N. Xia, “Transformation of silver nanospheres into nanobelts and triangular nanoplates through a thermal process,” Nano Lett. 5, 675–679 (2003).
    [CrossRef]
  21. Y. T. Chen, T. R. Nielsen, N. Gregersen, P. Lodahl, and J. Mørk, “Finite-element modeling of spontaneous emission of a quantum emitter at nanoscale proximity to plasmonic waveguides,” Phys. Rev. B 81(12), 125431 (2010).
    [CrossRef]
  22. FDTD solution is commercial software of the finite-difference time-domain method of Lumerical Solutions, Inc.

2010 (3)

Y. R. Fang, Z. P. Li, Y. Z. Huang, S. P. Zhang, P. Nordlander, N. J. Halas, and H. Xu, “Branched silver nanowires as controllable plasmon routers,” Nano Lett. 10(5), 1950–1954 (2010).
[CrossRef] [PubMed]

Z. P. Li, K. Bao, Y. R. Fang, Y. Z. Huang, P. Nordlander, and H. X. Xu, “Correlation between Incident and Emission Polarization in Nanowire Surface Plasmon Waveguides,” Nano Lett. 10(5), 1831–1835 (2010).
[CrossRef] [PubMed]

Y. T. Chen, T. R. Nielsen, N. Gregersen, P. Lodahl, and J. Mørk, “Finite-element modeling of spontaneous emission of a quantum emitter at nanoscale proximity to plasmonic waveguides,” Phys. Rev. B 81(12), 125431 (2010).
[CrossRef]

2009 (2)

Y. Fang, H. Wei, F. Hao, P. Nordlander, and H. X. Xu, “Remote-excitation surface-enhanced Raman scattering using propagating Ag nanowire plasmons,” Nano Lett. 9(5), 2049–2053 (2009).
[CrossRef] [PubMed]

H. S. Chu, W. B. Ewe, and E. P. Li, “Tunable propagation of light through a coupled-bent dielectric-loaded plasmonic waveguides,” J. Appl. Phys. 106(10), 106101 (2009).
[CrossRef]

2008 (3)

2007 (2)

S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics 1(11), 641–648 (2007).
[CrossRef]

M. W. Knight, N. K. Grady, R. Bardhan, F. Hao, P. Nordlander, and N. J. Halas, “Nanoparticle-mediated coupling of light into a nanowire,” Nano Lett. 7(8), 2346–2350 (2007).
[CrossRef] [PubMed]

2006 (3)

A. W. Sanders, D. A. Routenberg, B. J. Wiley, Y. N. Xia, E. R. Dufresne, and M. A. Reed, “Observation of plasmon propagation, redirection, and fan-out in silver nanowires,” Nano Lett. 6(8), 1822–1826 (2006).
[CrossRef] [PubMed]

E. Ozbay, “Plasmonics: Merging Photonics and Electronics at Nanoscale Dimensions,” Science 311(5758), 189–193 (2006).
[CrossRef] [PubMed]

A. W. Sanders, D. A. Routenberg, B. J. Wiley, Y. N. Xia, E. R. Dufresne, and M. A. Reed, “Observation of plasmon propagation, redirection, and fan-out in silver nanowires,” Nano Lett. 6(8), 1822–1826 (2006).
[CrossRef] [PubMed]

2005 (2)

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, “Channel plasmon-polariton guiding by subwavelength metal grooves,” Phys. Rev. Lett. 95(4), 046802–046805 (2005).
[CrossRef] [PubMed]

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, “Silver nanowires as surface plasmon resonators,” Phys. Rev. Lett. 95(25), 257403 (2005).
[CrossRef] [PubMed]

2003 (3)

K. Tanaka and M. Tanaka, “Simulations of nanometric optical circuits based on surface plasmon polariton gap waveguide,” Appl. Phys. Lett. 82(8), 1158–1160 (2003).
[CrossRef]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Y. G. Sun, B. Mayers, T. Herricks, and Y. N. Xia, “Transformation of silver nanospheres into nanobelts and triangular nanoplates through a thermal process,” Nano Lett. 5, 675–679 (2003).
[CrossRef]

2001 (1)

P. Berini, “Plasmon-polariton waves guided by thin lossy metal films of finite width: bound modes of asymmetric structures,” Phys. Rev. B 63(12), 125417 (2001).
[CrossRef]

1969 (1)

E. N. Economou, “Surface plasmons in thin films,” Phys. Rev. 182(2), 539–554 (1969).
[CrossRef]

Aussenegg, F. R.

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, “Silver nanowires as surface plasmon resonators,” Phys. Rev. Lett. 95(25), 257403 (2005).
[CrossRef] [PubMed]

Bao, K.

Z. P. Li, K. Bao, Y. R. Fang, Y. Z. Huang, P. Nordlander, and H. X. Xu, “Correlation between Incident and Emission Polarization in Nanowire Surface Plasmon Waveguides,” Nano Lett. 10(5), 1831–1835 (2010).
[CrossRef] [PubMed]

Bardhan, R.

M. W. Knight, N. K. Grady, R. Bardhan, F. Hao, P. Nordlander, and N. J. Halas, “Nanoparticle-mediated coupling of light into a nanowire,” Nano Lett. 7(8), 2346–2350 (2007).
[CrossRef] [PubMed]

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Berini, P.

P. Berini, “Plasmon-polariton waves guided by thin lossy metal films of finite width: bound modes of asymmetric structures,” Phys. Rev. B 63(12), 125417 (2001).
[CrossRef]

Bozhevolnyi, S. I.

S. I. Bozhevolnyi and J. Jung, “Scaling for gap plasmon based waveguides,” Opt. Express 16(4), 2676–2684 (2008).
[CrossRef] [PubMed]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, “Channel plasmon-polariton guiding by subwavelength metal grooves,” Phys. Rev. Lett. 95(4), 046802–046805 (2005).
[CrossRef] [PubMed]

Chen, Y. T.

Y. T. Chen, T. R. Nielsen, N. Gregersen, P. Lodahl, and J. Mørk, “Finite-element modeling of spontaneous emission of a quantum emitter at nanoscale proximity to plasmonic waveguides,” Phys. Rev. B 81(12), 125431 (2010).
[CrossRef]

Chichkov, B.

Chu, H. S.

H. S. Chu, W. B. Ewe, and E. P. Li, “Tunable propagation of light through a coupled-bent dielectric-loaded plasmonic waveguides,” J. Appl. Phys. 106(10), 106101 (2009).
[CrossRef]

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Devaux, E.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, “Channel plasmon-polariton guiding by subwavelength metal grooves,” Phys. Rev. Lett. 95(4), 046802–046805 (2005).
[CrossRef] [PubMed]

Ditlbacher, H.

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, “Silver nanowires as surface plasmon resonators,” Phys. Rev. Lett. 95(25), 257403 (2005).
[CrossRef] [PubMed]

Dufresne, E. R.

A. W. Sanders, D. A. Routenberg, B. J. Wiley, Y. N. Xia, E. R. Dufresne, and M. A. Reed, “Observation of plasmon propagation, redirection, and fan-out in silver nanowires,” Nano Lett. 6(8), 1822–1826 (2006).
[CrossRef] [PubMed]

A. W. Sanders, D. A. Routenberg, B. J. Wiley, Y. N. Xia, E. R. Dufresne, and M. A. Reed, “Observation of plasmon propagation, redirection, and fan-out in silver nanowires,” Nano Lett. 6(8), 1822–1826 (2006).
[CrossRef] [PubMed]

Ebbesen, T. W.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, “Channel plasmon-polariton guiding by subwavelength metal grooves,” Phys. Rev. Lett. 95(4), 046802–046805 (2005).
[CrossRef] [PubMed]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Economou, E. N.

E. N. Economou, “Surface plasmons in thin films,” Phys. Rev. 182(2), 539–554 (1969).
[CrossRef]

Ewe, W. B.

H. S. Chu, W. B. Ewe, and E. P. Li, “Tunable propagation of light through a coupled-bent dielectric-loaded plasmonic waveguides,” J. Appl. Phys. 106(10), 106101 (2009).
[CrossRef]

Fan, S.

Fang, Y.

Y. Fang, H. Wei, F. Hao, P. Nordlander, and H. X. Xu, “Remote-excitation surface-enhanced Raman scattering using propagating Ag nanowire plasmons,” Nano Lett. 9(5), 2049–2053 (2009).
[CrossRef] [PubMed]

Fang, Y. R.

Y. R. Fang, Z. P. Li, Y. Z. Huang, S. P. Zhang, P. Nordlander, N. J. Halas, and H. Xu, “Branched silver nanowires as controllable plasmon routers,” Nano Lett. 10(5), 1950–1954 (2010).
[CrossRef] [PubMed]

Z. P. Li, K. Bao, Y. R. Fang, Y. Z. Huang, P. Nordlander, and H. X. Xu, “Correlation between Incident and Emission Polarization in Nanowire Surface Plasmon Waveguides,” Nano Lett. 10(5), 1831–1835 (2010).
[CrossRef] [PubMed]

Grady, N. K.

M. W. Knight, N. K. Grady, R. Bardhan, F. Hao, P. Nordlander, and N. J. Halas, “Nanoparticle-mediated coupling of light into a nanowire,” Nano Lett. 7(8), 2346–2350 (2007).
[CrossRef] [PubMed]

Gregersen, N.

Y. T. Chen, T. R. Nielsen, N. Gregersen, P. Lodahl, and J. Mørk, “Finite-element modeling of spontaneous emission of a quantum emitter at nanoscale proximity to plasmonic waveguides,” Phys. Rev. B 81(12), 125431 (2010).
[CrossRef]

Halas, N. J.

Y. R. Fang, Z. P. Li, Y. Z. Huang, S. P. Zhang, P. Nordlander, N. J. Halas, and H. Xu, “Branched silver nanowires as controllable plasmon routers,” Nano Lett. 10(5), 1950–1954 (2010).
[CrossRef] [PubMed]

M. W. Knight, N. K. Grady, R. Bardhan, F. Hao, P. Nordlander, and N. J. Halas, “Nanoparticle-mediated coupling of light into a nanowire,” Nano Lett. 7(8), 2346–2350 (2007).
[CrossRef] [PubMed]

S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics 1(11), 641–648 (2007).
[CrossRef]

Hao, F.

Y. Fang, H. Wei, F. Hao, P. Nordlander, and H. X. Xu, “Remote-excitation surface-enhanced Raman scattering using propagating Ag nanowire plasmons,” Nano Lett. 9(5), 2049–2053 (2009).
[CrossRef] [PubMed]

M. W. Knight, N. K. Grady, R. Bardhan, F. Hao, P. Nordlander, and N. J. Halas, “Nanoparticle-mediated coupling of light into a nanowire,” Nano Lett. 7(8), 2346–2350 (2007).
[CrossRef] [PubMed]

Herricks, T.

Y. G. Sun, B. Mayers, T. Herricks, and Y. N. Xia, “Transformation of silver nanospheres into nanobelts and triangular nanoplates through a thermal process,” Nano Lett. 5, 675–679 (2003).
[CrossRef]

Hofer, F.

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, “Silver nanowires as surface plasmon resonators,” Phys. Rev. Lett. 95(25), 257403 (2005).
[CrossRef] [PubMed]

Hohenau, A.

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, “Silver nanowires as surface plasmon resonators,” Phys. Rev. Lett. 95(25), 257403 (2005).
[CrossRef] [PubMed]

Huang, Y. Z.

Z. P. Li, K. Bao, Y. R. Fang, Y. Z. Huang, P. Nordlander, and H. X. Xu, “Correlation between Incident and Emission Polarization in Nanowire Surface Plasmon Waveguides,” Nano Lett. 10(5), 1831–1835 (2010).
[CrossRef] [PubMed]

Y. R. Fang, Z. P. Li, Y. Z. Huang, S. P. Zhang, P. Nordlander, N. J. Halas, and H. Xu, “Branched silver nanowires as controllable plasmon routers,” Nano Lett. 10(5), 1950–1954 (2010).
[CrossRef] [PubMed]

Jung, J.

Kiyan, R.

Knight, M. W.

M. W. Knight, N. K. Grady, R. Bardhan, F. Hao, P. Nordlander, and N. J. Halas, “Nanoparticle-mediated coupling of light into a nanowire,” Nano Lett. 7(8), 2346–2350 (2007).
[CrossRef] [PubMed]

Kreibig, U.

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, “Silver nanowires as surface plasmon resonators,” Phys. Rev. Lett. 95(25), 257403 (2005).
[CrossRef] [PubMed]

Krenn, J. R.

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, “Silver nanowires as surface plasmon resonators,” Phys. Rev. Lett. 95(25), 257403 (2005).
[CrossRef] [PubMed]

Lal, S.

S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics 1(11), 641–648 (2007).
[CrossRef]

Li, E. P.

H. S. Chu, W. B. Ewe, and E. P. Li, “Tunable propagation of light through a coupled-bent dielectric-loaded plasmonic waveguides,” J. Appl. Phys. 106(10), 106101 (2009).
[CrossRef]

Li, Z. P.

Y. R. Fang, Z. P. Li, Y. Z. Huang, S. P. Zhang, P. Nordlander, N. J. Halas, and H. Xu, “Branched silver nanowires as controllable plasmon routers,” Nano Lett. 10(5), 1950–1954 (2010).
[CrossRef] [PubMed]

Z. P. Li, K. Bao, Y. R. Fang, Y. Z. Huang, P. Nordlander, and H. X. Xu, “Correlation between Incident and Emission Polarization in Nanowire Surface Plasmon Waveguides,” Nano Lett. 10(5), 1831–1835 (2010).
[CrossRef] [PubMed]

Link, S.

S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics 1(11), 641–648 (2007).
[CrossRef]

Lodahl, P.

Y. T. Chen, T. R. Nielsen, N. Gregersen, P. Lodahl, and J. Mørk, “Finite-element modeling of spontaneous emission of a quantum emitter at nanoscale proximity to plasmonic waveguides,” Phys. Rev. B 81(12), 125431 (2010).
[CrossRef]

Mayers, B.

Y. G. Sun, B. Mayers, T. Herricks, and Y. N. Xia, “Transformation of silver nanospheres into nanobelts and triangular nanoplates through a thermal process,” Nano Lett. 5, 675–679 (2003).
[CrossRef]

Mørk, J.

Y. T. Chen, T. R. Nielsen, N. Gregersen, P. Lodahl, and J. Mørk, “Finite-element modeling of spontaneous emission of a quantum emitter at nanoscale proximity to plasmonic waveguides,” Phys. Rev. B 81(12), 125431 (2010).
[CrossRef]

Nielsen, T. R.

Y. T. Chen, T. R. Nielsen, N. Gregersen, P. Lodahl, and J. Mørk, “Finite-element modeling of spontaneous emission of a quantum emitter at nanoscale proximity to plasmonic waveguides,” Phys. Rev. B 81(12), 125431 (2010).
[CrossRef]

Nordlander, P.

Z. P. Li, K. Bao, Y. R. Fang, Y. Z. Huang, P. Nordlander, and H. X. Xu, “Correlation between Incident and Emission Polarization in Nanowire Surface Plasmon Waveguides,” Nano Lett. 10(5), 1831–1835 (2010).
[CrossRef] [PubMed]

Y. R. Fang, Z. P. Li, Y. Z. Huang, S. P. Zhang, P. Nordlander, N. J. Halas, and H. Xu, “Branched silver nanowires as controllable plasmon routers,” Nano Lett. 10(5), 1950–1954 (2010).
[CrossRef] [PubMed]

Y. Fang, H. Wei, F. Hao, P. Nordlander, and H. X. Xu, “Remote-excitation surface-enhanced Raman scattering using propagating Ag nanowire plasmons,” Nano Lett. 9(5), 2049–2053 (2009).
[CrossRef] [PubMed]

M. W. Knight, N. K. Grady, R. Bardhan, F. Hao, P. Nordlander, and N. J. Halas, “Nanoparticle-mediated coupling of light into a nanowire,” Nano Lett. 7(8), 2346–2350 (2007).
[CrossRef] [PubMed]

Ohrt, C.

Ozbay, E.

E. Ozbay, “Plasmonics: Merging Photonics and Electronics at Nanoscale Dimensions,” Science 311(5758), 189–193 (2006).
[CrossRef] [PubMed]

Passinger, S.

Reed, M. A.

A. W. Sanders, D. A. Routenberg, B. J. Wiley, Y. N. Xia, E. R. Dufresne, and M. A. Reed, “Observation of plasmon propagation, redirection, and fan-out in silver nanowires,” Nano Lett. 6(8), 1822–1826 (2006).
[CrossRef] [PubMed]

A. W. Sanders, D. A. Routenberg, B. J. Wiley, Y. N. Xia, E. R. Dufresne, and M. A. Reed, “Observation of plasmon propagation, redirection, and fan-out in silver nanowires,” Nano Lett. 6(8), 1822–1826 (2006).
[CrossRef] [PubMed]

Reinhardt, C.

Rogers, M.

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, “Silver nanowires as surface plasmon resonators,” Phys. Rev. Lett. 95(25), 257403 (2005).
[CrossRef] [PubMed]

Routenberg, D. A.

A. W. Sanders, D. A. Routenberg, B. J. Wiley, Y. N. Xia, E. R. Dufresne, and M. A. Reed, “Observation of plasmon propagation, redirection, and fan-out in silver nanowires,” Nano Lett. 6(8), 1822–1826 (2006).
[CrossRef] [PubMed]

A. W. Sanders, D. A. Routenberg, B. J. Wiley, Y. N. Xia, E. R. Dufresne, and M. A. Reed, “Observation of plasmon propagation, redirection, and fan-out in silver nanowires,” Nano Lett. 6(8), 1822–1826 (2006).
[CrossRef] [PubMed]

Sanders, A. W.

A. W. Sanders, D. A. Routenberg, B. J. Wiley, Y. N. Xia, E. R. Dufresne, and M. A. Reed, “Observation of plasmon propagation, redirection, and fan-out in silver nanowires,” Nano Lett. 6(8), 1822–1826 (2006).
[CrossRef] [PubMed]

A. W. Sanders, D. A. Routenberg, B. J. Wiley, Y. N. Xia, E. R. Dufresne, and M. A. Reed, “Observation of plasmon propagation, redirection, and fan-out in silver nanowires,” Nano Lett. 6(8), 1822–1826 (2006).
[CrossRef] [PubMed]

Seidel, A.

Stepanov, A.

Sun, Y. G.

Y. G. Sun, B. Mayers, T. Herricks, and Y. N. Xia, “Transformation of silver nanospheres into nanobelts and triangular nanoplates through a thermal process,” Nano Lett. 5, 675–679 (2003).
[CrossRef]

Tanaka, K.

K. Tanaka and M. Tanaka, “Simulations of nanometric optical circuits based on surface plasmon polariton gap waveguide,” Appl. Phys. Lett. 82(8), 1158–1160 (2003).
[CrossRef]

Tanaka, M.

K. Tanaka and M. Tanaka, “Simulations of nanometric optical circuits based on surface plasmon polariton gap waveguide,” Appl. Phys. Lett. 82(8), 1158–1160 (2003).
[CrossRef]

Veronis, G.

Volkov, V. S.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, “Channel plasmon-polariton guiding by subwavelength metal grooves,” Phys. Rev. Lett. 95(4), 046802–046805 (2005).
[CrossRef] [PubMed]

Wagner, D.

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, “Silver nanowires as surface plasmon resonators,” Phys. Rev. Lett. 95(25), 257403 (2005).
[CrossRef] [PubMed]

Wei, H.

Y. Fang, H. Wei, F. Hao, P. Nordlander, and H. X. Xu, “Remote-excitation surface-enhanced Raman scattering using propagating Ag nanowire plasmons,” Nano Lett. 9(5), 2049–2053 (2009).
[CrossRef] [PubMed]

Wiley, B. J.

A. W. Sanders, D. A. Routenberg, B. J. Wiley, Y. N. Xia, E. R. Dufresne, and M. A. Reed, “Observation of plasmon propagation, redirection, and fan-out in silver nanowires,” Nano Lett. 6(8), 1822–1826 (2006).
[CrossRef] [PubMed]

A. W. Sanders, D. A. Routenberg, B. J. Wiley, Y. N. Xia, E. R. Dufresne, and M. A. Reed, “Observation of plasmon propagation, redirection, and fan-out in silver nanowires,” Nano Lett. 6(8), 1822–1826 (2006).
[CrossRef] [PubMed]

Xia, Y. N.

A. W. Sanders, D. A. Routenberg, B. J. Wiley, Y. N. Xia, E. R. Dufresne, and M. A. Reed, “Observation of plasmon propagation, redirection, and fan-out in silver nanowires,” Nano Lett. 6(8), 1822–1826 (2006).
[CrossRef] [PubMed]

A. W. Sanders, D. A. Routenberg, B. J. Wiley, Y. N. Xia, E. R. Dufresne, and M. A. Reed, “Observation of plasmon propagation, redirection, and fan-out in silver nanowires,” Nano Lett. 6(8), 1822–1826 (2006).
[CrossRef] [PubMed]

Y. G. Sun, B. Mayers, T. Herricks, and Y. N. Xia, “Transformation of silver nanospheres into nanobelts and triangular nanoplates through a thermal process,” Nano Lett. 5, 675–679 (2003).
[CrossRef]

Xu, H.

Y. R. Fang, Z. P. Li, Y. Z. Huang, S. P. Zhang, P. Nordlander, N. J. Halas, and H. Xu, “Branched silver nanowires as controllable plasmon routers,” Nano Lett. 10(5), 1950–1954 (2010).
[CrossRef] [PubMed]

Xu, H. X.

Z. P. Li, K. Bao, Y. R. Fang, Y. Z. Huang, P. Nordlander, and H. X. Xu, “Correlation between Incident and Emission Polarization in Nanowire Surface Plasmon Waveguides,” Nano Lett. 10(5), 1831–1835 (2010).
[CrossRef] [PubMed]

Y. Fang, H. Wei, F. Hao, P. Nordlander, and H. X. Xu, “Remote-excitation surface-enhanced Raman scattering using propagating Ag nanowire plasmons,” Nano Lett. 9(5), 2049–2053 (2009).
[CrossRef] [PubMed]

Zhang, S. P.

Y. R. Fang, Z. P. Li, Y. Z. Huang, S. P. Zhang, P. Nordlander, N. J. Halas, and H. Xu, “Branched silver nanowires as controllable plasmon routers,” Nano Lett. 10(5), 1950–1954 (2010).
[CrossRef] [PubMed]

Appl. Phys. Lett. (1)

K. Tanaka and M. Tanaka, “Simulations of nanometric optical circuits based on surface plasmon polariton gap waveguide,” Appl. Phys. Lett. 82(8), 1158–1160 (2003).
[CrossRef]

J. Appl. Phys. (1)

H. S. Chu, W. B. Ewe, and E. P. Li, “Tunable propagation of light through a coupled-bent dielectric-loaded plasmonic waveguides,” J. Appl. Phys. 106(10), 106101 (2009).
[CrossRef]

Nano Lett. (7)

A. W. Sanders, D. A. Routenberg, B. J. Wiley, Y. N. Xia, E. R. Dufresne, and M. A. Reed, “Observation of plasmon propagation, redirection, and fan-out in silver nanowires,” Nano Lett. 6(8), 1822–1826 (2006).
[CrossRef] [PubMed]

M. W. Knight, N. K. Grady, R. Bardhan, F. Hao, P. Nordlander, and N. J. Halas, “Nanoparticle-mediated coupling of light into a nanowire,” Nano Lett. 7(8), 2346–2350 (2007).
[CrossRef] [PubMed]

Y. Fang, H. Wei, F. Hao, P. Nordlander, and H. X. Xu, “Remote-excitation surface-enhanced Raman scattering using propagating Ag nanowire plasmons,” Nano Lett. 9(5), 2049–2053 (2009).
[CrossRef] [PubMed]

Y. R. Fang, Z. P. Li, Y. Z. Huang, S. P. Zhang, P. Nordlander, N. J. Halas, and H. Xu, “Branched silver nanowires as controllable plasmon routers,” Nano Lett. 10(5), 1950–1954 (2010).
[CrossRef] [PubMed]

Z. P. Li, K. Bao, Y. R. Fang, Y. Z. Huang, P. Nordlander, and H. X. Xu, “Correlation between Incident and Emission Polarization in Nanowire Surface Plasmon Waveguides,” Nano Lett. 10(5), 1831–1835 (2010).
[CrossRef] [PubMed]

A. W. Sanders, D. A. Routenberg, B. J. Wiley, Y. N. Xia, E. R. Dufresne, and M. A. Reed, “Observation of plasmon propagation, redirection, and fan-out in silver nanowires,” Nano Lett. 6(8), 1822–1826 (2006).
[CrossRef] [PubMed]

Y. G. Sun, B. Mayers, T. Herricks, and Y. N. Xia, “Transformation of silver nanospheres into nanobelts and triangular nanoplates through a thermal process,” Nano Lett. 5, 675–679 (2003).
[CrossRef]

Nat. Photonics (1)

S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics 1(11), 641–648 (2007).
[CrossRef]

Nature (1)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Opt. Express (3)

Phys. Rev. (1)

E. N. Economou, “Surface plasmons in thin films,” Phys. Rev. 182(2), 539–554 (1969).
[CrossRef]

Phys. Rev. B (2)

P. Berini, “Plasmon-polariton waves guided by thin lossy metal films of finite width: bound modes of asymmetric structures,” Phys. Rev. B 63(12), 125417 (2001).
[CrossRef]

Y. T. Chen, T. R. Nielsen, N. Gregersen, P. Lodahl, and J. Mørk, “Finite-element modeling of spontaneous emission of a quantum emitter at nanoscale proximity to plasmonic waveguides,” Phys. Rev. B 81(12), 125431 (2010).
[CrossRef]

Phys. Rev. Lett. (2)

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, “Channel plasmon-polariton guiding by subwavelength metal grooves,” Phys. Rev. Lett. 95(4), 046802–046805 (2005).
[CrossRef] [PubMed]

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, “Silver nanowires as surface plasmon resonators,” Phys. Rev. Lett. 95(25), 257403 (2005).
[CrossRef] [PubMed]

Science (1)

E. Ozbay, “Plasmonics: Merging Photonics and Electronics at Nanoscale Dimensions,” Science 311(5758), 189–193 (2006).
[CrossRef] [PubMed]

Other (2)

FDTD solution is commercial software of the finite-difference time-domain method of Lumerical Solutions, Inc.

H. Raether, Surface plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1988).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) SEM image of the V-shaped Ag nanowire. The inset is the 45°-titled SEM image of focused ion beam milled cross section of a silver nanowire. (b) Sketch of the experiment setup. (c) Coordinate system.

Fig. 2
Fig. 2

(a) Microscope optical image of the V-shaped nanowire structure with β = 79°. (b) Intensity of the emission light at end a as a function of α corresponding to two different polarizations of incident light for the structure in (a). (c) Intensity of the emission light at end b as a function of α corresponding to two different polarizations of incident light for the structure in (a). (d) Microscope optical image of the V-shaped nanowire structure with β = 148°. (e) Intensity of the emission light at end a as a function of α corresponding to two different polarizations of incident light for the structure in (d). (f) Intensity of the emission light at end a as a function of α corresponding to two different polarizations of incident light for the structure in (d).

Fig. 3
Fig. 3

(a) Structure and coordinate system used in the simulation. (b) Intensity of the current along the nanowire when the polarization of the incident light is parallel to the nanowire. The inset is the current distribution in the x-z plane. (c) Electric field intensity distribution in the x-y plane when the polarization of the incident light is parallel to the nanowire. (d) Intensity of the current along the nanowire when the polarization of the incident light is perpendicular to the nanowire. The inset is the current distribution in the x-z plane. (e) Electric field intensity distribution in the x-y plane when the polarization of the incident light is perpendicular to the nanowire.

Fig. 4
Fig. 4

Far field angular distributions of (a) x, (b) y, and (c) z component of the emission light in the direction of the collecting objective. The white dashed circles indicate the collection angle of the objective used in the experiment (N.A. 0.8).

Fig. 5
Fig. 5

Intensities of the emission light versus the polarization angle of the incident light for V-shaped nanowires with (a) β = 75°, (b) β = 89°, and (c) β = 129°. The insets are the splitting ratio versus the polarization angle of the incident light and the SEM images of the structures. (d) Intensity of the emission light versus the polarization angle of the incident light for the single nanowire. The insets are the SEM images of the structures. The lines are the sinusoidal function fittings of the experimental results. The red arrows are the unified coordinate system used in the paper.

Fig. 6
Fig. 6

(a) Intensities of the electric field at the cross sections of the V-shaped nanowire structures with β = 30° corresponding to different polarizations. (b) Intensities of the electric field at the cross sections of the V-shaped nanowire structures with β = 150° corresponding to different polarizations. (c) Intensities of the emission light at end a versus θ for V-shaped nanowires with β = 15°, 45°, 75° and 90°. (d) Intensities of the emission light at end a versus θ for V-shaped nanowires with β = 120°, 135°, 150° and 165°. The insets are θmax, the value of θ corresponding to the maximum emission at end a, versus β.

Metrics