Abstract

We investigate the simultaneous propagation of multiple beams in a disordered Anderson localized optical fiber. The profiles of each beam fall off exponentially, enabling multiple channels at high-density. We examine the influence of fiber bends on the movement of the beam positions, which we refer to as drift. We investigate the extent of the drift of localized beams induced by macro-bending and show that it is possible to design Anderson localized optical fibers that can be used for practical beam-multiplexing applications.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Iano, T. Sato, S. Sentsui, T. Kuroha, and Y. Nishimura, “Multicore optical fiber,” in Optical Fiber Communication, 1979 OSA Technical Digest Series (Optical Society of America, 1979), paper WB1.
  2. B. Rosinski, J. W. D. Chi, P. Grosso, and J. Le Bihan, “Multichannel transmission of a multicore fiber coupled with vertical-cavity surface-emitting lasers,” J. Lightwave Technol.17, 807–810 (1999).
    [CrossRef]
  3. J. M. Fini, B. Zhu, T. F. Taunay, and M. F. Yan, “Statistics of crosstalk in bent multicore fibers,” Opt. Express18, 15122–15129 (2010).
    [CrossRef] [PubMed]
  4. B. Zhu, T. F. Taunay, M. F. Yan, J. M. Fini, M. Fishteyn, E. M. Monberg, and F. V. Dimarcello, “Seven-core multicore fiber transmissions for passive optical network,” Opt. Express18, 11117–11122 (2010).
    [CrossRef] [PubMed]
  5. T. Xie, D. Mukai, S. Guo, M. Brenner, and Z. Chen, “Fiber-optic-bundle-based optical coherence tomography,” Opt. Lett.30, 1803–1805 (2005).
    [CrossRef] [PubMed]
  6. R. K. Kostuk and J. Carriere, “Interconnect characteristics of fiber image guides,” Appl. Opt.40, 2428–2434 (2001).
    [CrossRef]
  7. C. Amatore, A. Chovin, P. Garrigue, L. Servant, N. Sojic, S. Szunerits, and L. Thouin, “Remote fluorescence imaging of dynamic concentration profiles with micrometer resolution using a coherent optical fiber bundle,” Anal. Chem.76, 7202–7210 (2004).
    [CrossRef] [PubMed]
  8. A. F. Gmitro and D. Aziz, “Confocal microscopy through a fiber-optic imaging bundle,” Opt. Lett.18, 565–567 (1993).
    [CrossRef] [PubMed]
  9. K. L. Reichenbach and C. Xu, “Numerical analysis of light propagation in image fibers or coherent fiber bundles,” Opt. Express15, 2151–2165 (2007).
    [CrossRef] [PubMed]
  10. S. Karbasi, C. R. Mirr, P. G. Yarandi, R. J. Frazier, K. W. Koch, and A. Mafi, “Observation of transverse Anderson localization in an optical fiber,” Opt. Lett.37, 2304–2306 (2012).
    [CrossRef] [PubMed]
  11. H. De Raedt, Ad. Lagendijk, and P. de Vries, “Transverse localization of light,” Phys. Rev.62, 47–50 (1989).
  12. T. Schwartz, G. Bartal, S. Fishman, and M. Segev, “Transport and Anderson localization in disordered two-dimensional photonic lattices,” Nature446, 52–55 (2007).
    [CrossRef] [PubMed]
  13. Y. Lahini, A. Avidan, F. Pozzi, M. Sorel, R. Morandotti, D. Christodoulides, and Y. Silberberg, “Anderson localization and nonlinearity in one-dimensional disordered photonic lattices,” Phys. Rev. Lett.100, 013906 (2008).
    [CrossRef] [PubMed]
  14. S. Karbasi, C. R. Mirr, R. J. Fraizer, P. G. Yarandi, K. W. Koch, and A. Mafi, “Detailed investigation of the impact of the fiber design parameters on the transverse Anderson localization of light in disordered optical fibers,” Opt. Express20, 18692–18706 (2012).
    [CrossRef] [PubMed]
  15. J. M. Ziman, Models of Disorder (Cambridge University Press, 1979).
  16. M. V. Berry and S. Klein, “Transparent mirrors: rays, waves and localization,” Eur. J. Phys.18, 222–228 (1997).
    [CrossRef]
  17. S. Karbasi, T. Hawkins, J. Ballato, K. W. Koch, and A. Mafi, “Transverse Anderson localization in a disordered glass optical fiber,” Opt. Mater. Express2, 1496–1503 (2012).
    [CrossRef]
  18. M. Heiblum and J. H. Harris, “Analysis of curved optical waveguides by conformal transformation,” IEEE J. Quantum Electron.11, 75–83 (1975).
    [CrossRef]
  19. R. T. Schermer and J. H. Cole, “Improved bend loss formula verified for optical fiber by simulation and experiment,” IEEE J. Quantum Electron.43, 899–909 (2009).
    [CrossRef]
  20. A. Mafi and J. V. Moloney, “Beam quality of photonic crystal fibers,” J. Lightwave Technol.23, 2267–2270 (2005).
    [CrossRef]
  21. Y. V. Kartashov, V. V. Konotop, V. A. Vysloukh, and L. Torner, “Light localization in nonuniformly randomized lattices,” Opt. Lett.37, 286–288 (2012).
    [CrossRef] [PubMed]

2012 (4)

2010 (2)

2009 (1)

R. T. Schermer and J. H. Cole, “Improved bend loss formula verified for optical fiber by simulation and experiment,” IEEE J. Quantum Electron.43, 899–909 (2009).
[CrossRef]

2008 (1)

Y. Lahini, A. Avidan, F. Pozzi, M. Sorel, R. Morandotti, D. Christodoulides, and Y. Silberberg, “Anderson localization and nonlinearity in one-dimensional disordered photonic lattices,” Phys. Rev. Lett.100, 013906 (2008).
[CrossRef] [PubMed]

2007 (2)

T. Schwartz, G. Bartal, S. Fishman, and M. Segev, “Transport and Anderson localization in disordered two-dimensional photonic lattices,” Nature446, 52–55 (2007).
[CrossRef] [PubMed]

K. L. Reichenbach and C. Xu, “Numerical analysis of light propagation in image fibers or coherent fiber bundles,” Opt. Express15, 2151–2165 (2007).
[CrossRef] [PubMed]

2005 (2)

2004 (1)

C. Amatore, A. Chovin, P. Garrigue, L. Servant, N. Sojic, S. Szunerits, and L. Thouin, “Remote fluorescence imaging of dynamic concentration profiles with micrometer resolution using a coherent optical fiber bundle,” Anal. Chem.76, 7202–7210 (2004).
[CrossRef] [PubMed]

2001 (1)

1999 (1)

1997 (1)

M. V. Berry and S. Klein, “Transparent mirrors: rays, waves and localization,” Eur. J. Phys.18, 222–228 (1997).
[CrossRef]

1993 (1)

1989 (1)

H. De Raedt, Ad. Lagendijk, and P. de Vries, “Transverse localization of light,” Phys. Rev.62, 47–50 (1989).

1975 (1)

M. Heiblum and J. H. Harris, “Analysis of curved optical waveguides by conformal transformation,” IEEE J. Quantum Electron.11, 75–83 (1975).
[CrossRef]

Amatore, C.

C. Amatore, A. Chovin, P. Garrigue, L. Servant, N. Sojic, S. Szunerits, and L. Thouin, “Remote fluorescence imaging of dynamic concentration profiles with micrometer resolution using a coherent optical fiber bundle,” Anal. Chem.76, 7202–7210 (2004).
[CrossRef] [PubMed]

Avidan, A.

Y. Lahini, A. Avidan, F. Pozzi, M. Sorel, R. Morandotti, D. Christodoulides, and Y. Silberberg, “Anderson localization and nonlinearity in one-dimensional disordered photonic lattices,” Phys. Rev. Lett.100, 013906 (2008).
[CrossRef] [PubMed]

Aziz, D.

Ballato, J.

Bartal, G.

T. Schwartz, G. Bartal, S. Fishman, and M. Segev, “Transport and Anderson localization in disordered two-dimensional photonic lattices,” Nature446, 52–55 (2007).
[CrossRef] [PubMed]

Berry, M. V.

M. V. Berry and S. Klein, “Transparent mirrors: rays, waves and localization,” Eur. J. Phys.18, 222–228 (1997).
[CrossRef]

Brenner, M.

Carriere, J.

Chen, Z.

Chi, J. W. D.

Chovin, A.

C. Amatore, A. Chovin, P. Garrigue, L. Servant, N. Sojic, S. Szunerits, and L. Thouin, “Remote fluorescence imaging of dynamic concentration profiles with micrometer resolution using a coherent optical fiber bundle,” Anal. Chem.76, 7202–7210 (2004).
[CrossRef] [PubMed]

Christodoulides, D.

Y. Lahini, A. Avidan, F. Pozzi, M. Sorel, R. Morandotti, D. Christodoulides, and Y. Silberberg, “Anderson localization and nonlinearity in one-dimensional disordered photonic lattices,” Phys. Rev. Lett.100, 013906 (2008).
[CrossRef] [PubMed]

Cole, J. H.

R. T. Schermer and J. H. Cole, “Improved bend loss formula verified for optical fiber by simulation and experiment,” IEEE J. Quantum Electron.43, 899–909 (2009).
[CrossRef]

De Raedt, H.

H. De Raedt, Ad. Lagendijk, and P. de Vries, “Transverse localization of light,” Phys. Rev.62, 47–50 (1989).

de Vries, P.

H. De Raedt, Ad. Lagendijk, and P. de Vries, “Transverse localization of light,” Phys. Rev.62, 47–50 (1989).

Dimarcello, F. V.

Fini, J. M.

Fishman, S.

T. Schwartz, G. Bartal, S. Fishman, and M. Segev, “Transport and Anderson localization in disordered two-dimensional photonic lattices,” Nature446, 52–55 (2007).
[CrossRef] [PubMed]

Fishteyn, M.

Fraizer, R. J.

Frazier, R. J.

Garrigue, P.

C. Amatore, A. Chovin, P. Garrigue, L. Servant, N. Sojic, S. Szunerits, and L. Thouin, “Remote fluorescence imaging of dynamic concentration profiles with micrometer resolution using a coherent optical fiber bundle,” Anal. Chem.76, 7202–7210 (2004).
[CrossRef] [PubMed]

Gmitro, A. F.

Grosso, P.

Guo, S.

Harris, J. H.

M. Heiblum and J. H. Harris, “Analysis of curved optical waveguides by conformal transformation,” IEEE J. Quantum Electron.11, 75–83 (1975).
[CrossRef]

Hawkins, T.

Heiblum, M.

M. Heiblum and J. H. Harris, “Analysis of curved optical waveguides by conformal transformation,” IEEE J. Quantum Electron.11, 75–83 (1975).
[CrossRef]

Iano, S.

S. Iano, T. Sato, S. Sentsui, T. Kuroha, and Y. Nishimura, “Multicore optical fiber,” in Optical Fiber Communication, 1979 OSA Technical Digest Series (Optical Society of America, 1979), paper WB1.

Karbasi, S.

Kartashov, Y. V.

Klein, S.

M. V. Berry and S. Klein, “Transparent mirrors: rays, waves and localization,” Eur. J. Phys.18, 222–228 (1997).
[CrossRef]

Koch, K. W.

Konotop, V. V.

Kostuk, R. K.

Kuroha, T.

S. Iano, T. Sato, S. Sentsui, T. Kuroha, and Y. Nishimura, “Multicore optical fiber,” in Optical Fiber Communication, 1979 OSA Technical Digest Series (Optical Society of America, 1979), paper WB1.

Lagendijk, Ad.

H. De Raedt, Ad. Lagendijk, and P. de Vries, “Transverse localization of light,” Phys. Rev.62, 47–50 (1989).

Lahini, Y.

Y. Lahini, A. Avidan, F. Pozzi, M. Sorel, R. Morandotti, D. Christodoulides, and Y. Silberberg, “Anderson localization and nonlinearity in one-dimensional disordered photonic lattices,” Phys. Rev. Lett.100, 013906 (2008).
[CrossRef] [PubMed]

Le Bihan, J.

Mafi, A.

Mirr, C. R.

Moloney, J. V.

Monberg, E. M.

Morandotti, R.

Y. Lahini, A. Avidan, F. Pozzi, M. Sorel, R. Morandotti, D. Christodoulides, and Y. Silberberg, “Anderson localization and nonlinearity in one-dimensional disordered photonic lattices,” Phys. Rev. Lett.100, 013906 (2008).
[CrossRef] [PubMed]

Mukai, D.

Nishimura, Y.

S. Iano, T. Sato, S. Sentsui, T. Kuroha, and Y. Nishimura, “Multicore optical fiber,” in Optical Fiber Communication, 1979 OSA Technical Digest Series (Optical Society of America, 1979), paper WB1.

Pozzi, F.

Y. Lahini, A. Avidan, F. Pozzi, M. Sorel, R. Morandotti, D. Christodoulides, and Y. Silberberg, “Anderson localization and nonlinearity in one-dimensional disordered photonic lattices,” Phys. Rev. Lett.100, 013906 (2008).
[CrossRef] [PubMed]

Reichenbach, K. L.

Rosinski, B.

Sato, T.

S. Iano, T. Sato, S. Sentsui, T. Kuroha, and Y. Nishimura, “Multicore optical fiber,” in Optical Fiber Communication, 1979 OSA Technical Digest Series (Optical Society of America, 1979), paper WB1.

Schermer, R. T.

R. T. Schermer and J. H. Cole, “Improved bend loss formula verified for optical fiber by simulation and experiment,” IEEE J. Quantum Electron.43, 899–909 (2009).
[CrossRef]

Schwartz, T.

T. Schwartz, G. Bartal, S. Fishman, and M. Segev, “Transport and Anderson localization in disordered two-dimensional photonic lattices,” Nature446, 52–55 (2007).
[CrossRef] [PubMed]

Segev, M.

T. Schwartz, G. Bartal, S. Fishman, and M. Segev, “Transport and Anderson localization in disordered two-dimensional photonic lattices,” Nature446, 52–55 (2007).
[CrossRef] [PubMed]

Sentsui, S.

S. Iano, T. Sato, S. Sentsui, T. Kuroha, and Y. Nishimura, “Multicore optical fiber,” in Optical Fiber Communication, 1979 OSA Technical Digest Series (Optical Society of America, 1979), paper WB1.

Servant, L.

C. Amatore, A. Chovin, P. Garrigue, L. Servant, N. Sojic, S. Szunerits, and L. Thouin, “Remote fluorescence imaging of dynamic concentration profiles with micrometer resolution using a coherent optical fiber bundle,” Anal. Chem.76, 7202–7210 (2004).
[CrossRef] [PubMed]

Silberberg, Y.

Y. Lahini, A. Avidan, F. Pozzi, M. Sorel, R. Morandotti, D. Christodoulides, and Y. Silberberg, “Anderson localization and nonlinearity in one-dimensional disordered photonic lattices,” Phys. Rev. Lett.100, 013906 (2008).
[CrossRef] [PubMed]

Sojic, N.

C. Amatore, A. Chovin, P. Garrigue, L. Servant, N. Sojic, S. Szunerits, and L. Thouin, “Remote fluorescence imaging of dynamic concentration profiles with micrometer resolution using a coherent optical fiber bundle,” Anal. Chem.76, 7202–7210 (2004).
[CrossRef] [PubMed]

Sorel, M.

Y. Lahini, A. Avidan, F. Pozzi, M. Sorel, R. Morandotti, D. Christodoulides, and Y. Silberberg, “Anderson localization and nonlinearity in one-dimensional disordered photonic lattices,” Phys. Rev. Lett.100, 013906 (2008).
[CrossRef] [PubMed]

Szunerits, S.

C. Amatore, A. Chovin, P. Garrigue, L. Servant, N. Sojic, S. Szunerits, and L. Thouin, “Remote fluorescence imaging of dynamic concentration profiles with micrometer resolution using a coherent optical fiber bundle,” Anal. Chem.76, 7202–7210 (2004).
[CrossRef] [PubMed]

Taunay, T. F.

Thouin, L.

C. Amatore, A. Chovin, P. Garrigue, L. Servant, N. Sojic, S. Szunerits, and L. Thouin, “Remote fluorescence imaging of dynamic concentration profiles with micrometer resolution using a coherent optical fiber bundle,” Anal. Chem.76, 7202–7210 (2004).
[CrossRef] [PubMed]

Torner, L.

Vysloukh, V. A.

Xie, T.

Xu, C.

Yan, M. F.

Yarandi, P. G.

Zhu, B.

Ziman, J. M.

J. M. Ziman, Models of Disorder (Cambridge University Press, 1979).

Anal. Chem. (1)

C. Amatore, A. Chovin, P. Garrigue, L. Servant, N. Sojic, S. Szunerits, and L. Thouin, “Remote fluorescence imaging of dynamic concentration profiles with micrometer resolution using a coherent optical fiber bundle,” Anal. Chem.76, 7202–7210 (2004).
[CrossRef] [PubMed]

Appl. Opt. (1)

Eur. J. Phys. (1)

M. V. Berry and S. Klein, “Transparent mirrors: rays, waves and localization,” Eur. J. Phys.18, 222–228 (1997).
[CrossRef]

IEEE J. Quantum Electron. (2)

M. Heiblum and J. H. Harris, “Analysis of curved optical waveguides by conformal transformation,” IEEE J. Quantum Electron.11, 75–83 (1975).
[CrossRef]

R. T. Schermer and J. H. Cole, “Improved bend loss formula verified for optical fiber by simulation and experiment,” IEEE J. Quantum Electron.43, 899–909 (2009).
[CrossRef]

J. Lightwave Technol. (2)

Nature (1)

T. Schwartz, G. Bartal, S. Fishman, and M. Segev, “Transport and Anderson localization in disordered two-dimensional photonic lattices,” Nature446, 52–55 (2007).
[CrossRef] [PubMed]

Opt. Express (4)

Opt. Lett. (4)

Opt. Mater. Express (1)

Phys. Rev. (1)

H. De Raedt, Ad. Lagendijk, and P. de Vries, “Transverse localization of light,” Phys. Rev.62, 47–50 (1989).

Phys. Rev. Lett. (1)

Y. Lahini, A. Avidan, F. Pozzi, M. Sorel, R. Morandotti, D. Christodoulides, and Y. Silberberg, “Anderson localization and nonlinearity in one-dimensional disordered photonic lattices,” Phys. Rev. Lett.100, 013906 (2008).
[CrossRef] [PubMed]

Other (2)

J. M. Ziman, Models of Disorder (Cambridge University Press, 1979).

S. Iano, T. Sato, S. Sentsui, T. Kuroha, and Y. Nishimura, “Multicore optical fiber,” in Optical Fiber Communication, 1979 OSA Technical Digest Series (Optical Society of America, 1979), paper WB1.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Multiple-beam propagation in a 5 cm-long p-ALOF (a) simulation for five beams; (b) experiment for two beams; and (c) experiment for two beams with different wavelengths. All beams are at 405 nm wavelength, except the bottom-middle beam in subfigure (c), which is at 633 nm wavelength.

Fig. 2
Fig. 2

(a) The cross-section of the intensity profiles of the localized beam at 405 nm wavelength for 20 different realizations of the p-ALOF randomness are shown using numerical simulations, where the profiles are plotted on top of each other to capture the expected variations. (b) The experimental measurements of the mode width are shown in a histogram from 92 separate measurements.

Fig. 3
Fig. 3

(a) Similar to Fig. 1(a), but the beam intensity is averaged over 20 different realizations of randomness. Substantial beam clean-up is observed compared with Fig. 1(a) due to the averaging. (b) Cross-section of the intensity profile where the results of 20 different realizations are plotted on top of each other to show the extent to which the beams overlap due to the statistical nature of the problem. (c) Same as (b) but the cross-sectional intensity is plotted for the average of the 20 different realizations. All figures are shown at 405 nm wavelength.

Fig. 4
Fig. 4

(a) Original index profile of the p-ALOF. (b) Conformally modified refractive index profile of a p-ALOF with bend radius of 0.5 mm. (c) Effective refractive index difference between the low-index and high-index sites for different values of bend radius as a function of the location across the fiber profile. The fiber is assumed to be bent in the x-direction. The dimensions of subfigures (a) and (b) are 300 μm on each side.

Fig. 5
Fig. 5

Trajectory of the beam center across the fiber as the beam propagates along a 5 cm segment for different bend radii in a) polymer fiber at λ = 405 nm, b) polymer fiber at λ = 633 nm, c) glass fiber at λ = 633 nm.

Fig. 6
Fig. 6

Experimental measurement of the intensity of the propagated light in a fiber with (a) no bend, (b) bend radius of 1 mm. The wavelength is 405 nm and the fiber sample is 15 cm long. No shift is observed, which is also consistent with the simulations in Fig. 5(a). We have intentionally saturated the CCD camera slightly to illustrate the location of the beams with respect to the boundary of the fiber for easier comparison.

Fig. 7
Fig. 7

Histogram of the experimental measurements of the mode width from 72 separate measurements in bent fibers with the bend radius of approximately 1 mm. The localization behavior holds for the majority of the 72 random realizations explored in this figure.

Fig. 8
Fig. 8

Beam intensity of the propagated light after 5 cm of propagation in a bent p-ALOF with R = 0.5 mm, when the light is launched closer to the (a) inside of the bend, (b) center of the fiber, and (c) outside of the bend. (d) Cross section of the beam intensity averaged over 20 samples for the beam in subfigure (a) in red versus the beam in subfigure (b) in green color versus the beam in subfigure (c) in blue color.

Metrics